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ABSTRACT

Ferroelectric materials exhibit the largest dielectric permittivities and piezoelectric responses in nature, making them invaluable in applications
from supercapacitors or sensors to actuators or electromechanical transducers. The origin of this behavior is their proximity to phase transitions.
However, the largest possible responses are most often not utilized due to the impracticality of using temperature as a control parameter and to
operate at phase transitions. This has motivated the design of solid solutions with morphotropic phase boundaries between different polar phases
that are tuned by composition and that are weakly dependent on temperature. Thus far, the best piezoelectrics have been achieved in materials
with intermediate (bridging or adaptive) phases. But so far, complex chemistry or an intricate microstructure has been required to achieve
temperature-independent phase-transition boundaries. Here, we report such a temperature-independent bridging state in thin films of chemically
simple BaTiO3. A coexistence among tetragonal, orthorhombic, and their bridging low-symmetry phases are shown to induce continuous vertical
polarization rotation, which recreates a smear in-transition state and leads to a giant temperature-independent dielectric response. The current
material contains a ferroelectric state that is distinct from those at morphotropic phase boundaries and cannot be considered as ferroelectric
crystals. We believe that other materials can be engineered in a similar way to contain a ferroelectric state with gradual change of structure, forming
a class of transitional ferroelectrics. Similar mechanisms could be utilized in other materials to design low-power ferroelectrics, piezoelectrics,
dielectrics, or shape-memory alloys, as well as efficient electro- and magnetocalorics.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5122954

Phase transitions (PTs) are among the most interesting and ubiq-
uitous phenomena in nature.1 In materials science, they are responsible
for the technological impact of ferromagnets, ferroelectrics,2 shape-
memory alloys, or memristors.3 PTs are associated with desirably large,

nonlinear changes in the order parameters (magnetization, polariza-
tion, resistance, etc.) and susceptibilities. However, they are often also
associated with energy losses, resulting from the cost of nucleating one
phase into the other.
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Ferroelectrics are an interesting class of materials due to their
spontaneous polarization and large responses to external stimuli
(electric field or stress), which characterizes them with the largest
existing capacitances and electromechanical responses. Operating
a ferroelectric near its transition temperature TC

4–9 induces flat-
tening of the energy potential and maximizes its dielectric and
piezoelectric responses. However, the drawback is poor tempera-
ture stability. A way around this problem has been found by engi-
neering phase boundaries between two polar phases via changes of
a parameter that is robustly fixed during the lifetime of the device,
such as composition. This approach requires careful tuning of the
chemistry in order to obtain phase boundaries that are
temperature-independent, that is parallel to the temperature axis
in the temperature-composition phase diagram (known as mor-
photropic phase boundaries, MPB). This is the case of PZT or
PMN-PT,5 the materials with the best performance. These are still
used in most applications despite their lead content, as most alter-
natives lack the required temperature stability. More recently,
compositional gradients have been utilized to achieve large dielec-
tric responses,10 again requiring a careful control of the composi-
tion. Early pioneering work11–15 has established that the origin of
the large piezoelectric and dielectric responses around MPBs is the
polarization rotation that takes place in low symmetry monoclinic
or triclinic phases present at MPBs. In addition, because the MPB
features and the low-symmetry phases are a result of the need for
elastic matching of the different phases coexisting at the MPB,16

these exceptional properties do not always survive when the mate-
rial is grown in thin film form, under demanding boundary
conditions.

A similar phenomenon has been observed in BaTiO3, at a so-
called Thermotropic Phase Boundary,17 in between the tetragonal and
orthorhombic phases, where a bridging low-symmetry phase can be
found locally in a certain temperature regime around the phase transi-
tion. MPB-like features are also reported in BiFeO3 thin films under
strain, where two phases coexist and form a complex nanodomain
structure with a lowered symmetry, polar rotation, and enhanced pie-
zoelectric response.18 However, in these chemically simple compounds
the temperature stability of the large responses has not been
demonstrated.

In this paper, we report a mechanism that leads to huge and
temperature-independent dielectric responses and large piezoelectric
responses in lead-free, ferroelectric films of the classical ferroelectric
BaTiO3. In these films, the proximity to different stability minima ren-
ders evolving polar domain configurations within the same film,
including intermediate bridging phases that support rotation of polari-
zation. These materials cannot be considered ferroelectric crystals, and
we propose the term transitional ferroelectrics to emphasize their
unique responses.

EFFECT OF BOUNDARY CONDITIONS ON THE POLAR
STATE AND SWITCHING OF BaTiO3

BaTiO3 thin films with thicknesses between 30 and 300nm have
been grown on NdScO3 substrates with SrRuO3 bottom (and option-
ally also top) electrodes by pulsed laser deposition. (Details can be
found in the Methods section in Note S1 in the supplementary
material.) Two different domain configurations had been reported
to exist in these films close to room temperature.19 One of the

structures is the well-known a/c multidomain phase, consisting of
alternating in-plane (a-domain) and out-of-plane (c-domain)
polarized regions, common in tetragonal thin films; the second
structure was described as resembling the 90� in-plane domain
configuration (a1/a2) with an additional weak out-of-plane compo-
nent. However, the observed contrast in the Piezoelectric Force
Microscopy (PFM) images was unusually weak for a strongly polar
material, such as BaTiO3, and the details of this complex domain
structure and phase diagram are still under debate.19–23

Dark-field Transmission Electron Microscopy (TEM) [Fig. 1(a)]
has been performed on these BaTiO3 films to shed light on the details
of the domain configurations throughout the film. Due to dynamical
diffraction, the variations of contrast in the dark-field TEM are related
to variations of the ferroelectric polarization along the direction of the
selected diffracted beam.24,25 We observed a strong dependence of the
domain orientations both on thickness and on electrical boundary
conditions. Using quasisymmetric and thick enough (above 10nm)
electrodes, the films develop a 180� domain wall close to the center of
the films, parallel to the film/electrode interfaces (hereafter referred to
as “horizontal” direction), as evidenced in Fig. 1(b) by the strong varia-
tion of contrast in the middle of the film and parallel to the interfaces.
This wall takes place between c-like domains with opposite polariza-
tion direction induced by interfacial dipoles, in the top and bottom
parts of the film, respectively, and it is similar to previous reports in
ultrathin BaTiO3 films.26 In Fig. 1(c), the horizontal dark-field image
shows periodic variations of contrast inclined at 45� with respect to
the surface, which correspond to an a/c ferro-elastic/electric domain
structure. The analysis of the strain fields (see supplementary material,
Fig. S1) has shown in-plane and out-of-plane strain variations at
those 45� inclined domain walls. On the other hand, no additional
strain was detected at the horizontal domain wall, confirming that
the 180� horizontal domain wall is indeed purely ferroelectric. The
overall polarization configuration in the film is shown schemati-
cally in Fig. 1(d).

The polarization-voltage (hysteresis) loop measured along the
out-of-plane direction of the film [Fig. 2(a)] gives a saturation polari-
zation of 25–30 lC/cm2, similar to bulk BaTiO3 (which is expected for
this nearly zero-strain state27). However, the loop shows no rema-
nence, and the corresponding switching currents are wide and consist
of two switching current peaks in each direction, instead of the one
peak in each direction typically found for regular ferroelectric switch-
ing. This is consistent with the polarization switching of the two sub-
layers with up and down c-polarization, separated by the 180� domain
wall observed in Fig. 1. At zero field the two sublayers possess oppos-
ing c-polarizations, and under a field of 60.1V (10 kV/cm, see also
supplementary material, Fig. S2), the polarization switches to a parallel
configuration. During this process, the electromechanical coupling is
strong with a measured piezoelectric coefficient of d33 ¼ 70 pm/V.
This d33 value is larger than that of typical BaTiO3 epitaxial films28 (as
they are subjected to clamping29) and comparable to that of PZT or
PMN-PT epitaxial films around the MPB30,31 or BaTiO3 bulk single
crystals.32

When the films are grown with asymmetric electrodes (a thin
SrRuO3 or platinum electrode), the horizontal 180� charged domain
wall is moved away from the center of the film, close to the surface
[Figs. 1(e) and 1(f)]. Concomitantly, the ferroelectric hysteresis loop
also changes drastically [Fig. 2(b)]. The switching current loop now
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shows a single switching current peak with an internal bias of 0.15V
(20 kV/cm). In addition, a finite remnant polarization at zero field is
now present, corresponding to the imbalance of up and down polari-
zation induced by the asymmetric configuration (see also supplemen-
tary material, Fig. S3). The piezoelectric loop displays the same
internal bias as the ferroelectric hysteresis and shows increased d33 val-
ues of 100 pm/V at the bias, or switching field, showcasing a highly
asymmetric structure. Moreover, the films act as a “strain diode”33 as
there is a significant difference between the piezoelectric constant at
large positive (70 pm/V) and negative (20 pm/V) biases. In this case

the effect is caused by the asymmetry of the electrodes, rather than by
combining opposing ferroelectric and flexoelectric effects.

TEMPERATURE-INDEPENDENT GIANT DIELECTRIC
PERMITTIVITY

When the polarization is measured in the in-plane direction, a
symmetric, squared, ferroelectric hysteresis loop, similar to that of
high-quality single crystals, is obtained [see Fig. 3(a)]. This loop
reflects the high crystalline quality of the films with a remanent
polarization of �12 lC/cm2, in agreement with the amount of
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a-polarization in these a/c structures.19 Interestingly, these properties
are only observed after field cycling, needed to remove pinched
dipoles34,35 (as shown in supplementary material, Fig. S5). The in-plane
dielectric permittivity and loss value (tan d) [Fig. 3(b)] are also typical
for a ferroelectric material of excellent crystal quality, showing sharp
switching signatures at the coercive field. In contrast, the dielectric per-
mittivity along the out-of-plane direction (see also supplementary
material, Fig. S4) shows giant values, significantly larger than predicted
for such films,20 with low losses, as observed in Fig. 3(c) (see also
supplementary material, Fig. S6, for additional details).

In addition, the in-plane dielectric permittivity as a function of
temperature [Fig. 3(d)] shows a pronounced divergence (it reaches
>25 000), as expected for ferroelectric crystals when approaching the
ferroelectric-to-paraelectric phase transition (Tc � 130 �C)19 and, thus,
denoting a large degree of ordering; while the out-of-plane dielectric
permittivity is remarkably stable under temperature variations and
only changes (decreases) significantly above TC. The value of this out-
of-plane dielectric permittivity is comparable to that of BaTiO3 single
crystals at room temperature.36 However, while in BaTiO3 single crys-
tals, the dielectric permittivity shows a strong temperature dependence,
in the present case we show a giant temperature-independent dielectric

permittivity, which—to the best of our knowledge—is larger than any
of the temperature-independent dielectric permittivities reported for
epitaxial thin films.8,10,37–39

Vertical gradients

For a detailed understanding of the remarkable properties
observed for these BaTiO3 thin films along the out-of-plane direction, a
closer look into the local structure of the films is needed. The films with
dissimilar electrodes [Fig. 4(a)] provide the opportunity to explore the
local strain state across the film thickness unhindered by the horizontal
180� charged domain walls. A thick 320nm BaTiO3 film is used to
increase the dimensions of the different phases that develop across the
film thickness as strain relaxes. Figure 4(b) shows a bright-field TEM
image that displays 45� inclined a/c domains. However, the domain
wall contrast disappears, gradually, toward the bottom interface
[Figs. 4(c) and 4(d)]. Local TEM polarization mapping, using scanning
convergent beam electron diffraction (SCBED),40–42 has been per-
formed to understand the crystal symmetries involved [Fig. 5(a)].
Excellent agreement between the experiments [Figs. 5(b), 5(d),
and 5(e)], and the simulated crystal symmetries [Figs. 5(c) and 5(f)],
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evidence distinctly different regions across the films: at the top of the
film, polarization vectors along [100]/[001] are consistent with tetrago-
nal a/c domains [Figs. 5(b) and 5(c)]. At the bottom area of the film,
the domains have orthorhombic symmetry, with polar vectors along
[101]/[101] [Figs. 5(e) and 5(f)]. In the middle of the layer, there exists
a complex transition region with reduced symmetry [Fig. 5(d)], which
cannot be reproduced in simulations, using either tetragonal or ortho-
rhombic structure models. These monoclinc or triclinic (this distinction
cannot be made in this 2D representation) lower symmetry regions
seen in the SCBED are not caused by averaging over multiple nanodo-
mains,43 revealing a true low-symmetry state. These observations are in
agreement with the strain analysis of Figs. 4(c) and 4(d). Here, dark-
field electron holography44 was used to measure the strain because it
provides a large field of view (about 400� 600nm2), which allows us
to map the whole film. The map and strain profiles reveal strong strain
gradients that increase from the bottom interface to the top surface.
The rather homogeneous strain at the bottom of the film [Fig. 4(c)] is
consistent with [101]/[101] orthorhombic domains, which are indistin-
guishable from a strain point of view. Even though this film is signifi-
cantly thicker than those used for the electrical measurements shown
in Fig. 2, similar multiregion mesostructures, though with lower resolu-
tion, are found for thinner films (see supplementary material, Figs. S7
and S8). The electrical measurements of this thicker film are shown in
supplementary material, Fig. S2(b). Thin films of BaTiO3 under higher
strain (on GdScO3 substrates) have also revealed complex multiphase
nanodomains.45

To understand better the origin of the distinctly different phases
found in these films, we have performed ab initio effective
Hamiltonian calculations as well as phase-field simulations (see sup-
plementary material Figs. S9 through S11). It is found that small
changes in misfit strain (�0.01%) or energy (�2meV/f.u.) are suffi-
cient to stabilize either orthorhombic or tetragonal ferroelectric phases
(see supplementary material Figs. S9 through S11). It is then, not
unexpected to observe both types of symmetries within the same film.
The need for them to coexist at the nanoscale brings intense stresses
that deform the ferroelectric phases into lower symmetries and inho-
mogeneous structures.

TRANSITIONAL FERROELECTRIC ENABLED BY
POLARIZATION ROTATION

The BaTiO3 films reported here have remarkable properties, with
wide switching current peaks, no remanent polarization, huge dielec-
tric permittivities, and increased piezoelectric constants in the out-of-
plane direction. Although some of these features may resemble relaxor
materials, in this case, the BaTiO3 films include none of the ingredients
that are known to give rise to random fields or random bonds in relax-
ors. The in-plane measurement direction behaves like expected for a
high-quality ferroelectric crystal, with a squared, large, remanent
polarization hysteresis loop and a pronounced dielectric anomaly at
the phase transition.

In the case of the asymmetric electrodes, along the out-of-plane
direction, the strain and TEM analyses show a strain gradient, with
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FIG. 4. (a) Aberration-corrected STEM-HAADF (scanning transmission electron microscopy with a high angle annular dark-field detector) image of a 320 nm BaTiO3 film grown
on a NdScO3 substrate with a 6 nm SrRuO3 electrode and a thick Pt top electrode. (Top) low magnification image of the film and (bottom) high resolution image of the SrRuO3/
BaTiO3 interface, which shows well-defined atomic columns and a defect-free crystal lattice. (b) Bright-field TEM image of the full film along the [010] direction showing some
domain contrast. (c) In-plane deformation (Exx) map obtained by dark-field electron holography, showing [101] domain walls in the BaTiO3 film. Exx is defined with respect to
the substrate lattice parameter. The inset in the bottom left corner shows a Piezoelectric Force Microscopy (amplitude) image of the a/c domain structure at the sample surface
(viewed along the [001] direction). (d) Deformation profiles extracted from the dashed regions in (c) running in the [101] direction and plotted as a function of the distance to
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low-symmetry phases bridging the expected tetragonal and orthorhom-
bic phases, to provide a polarization rotation coupled to the strain gra-
dient. This low-symmetry transitional phase denotes a flat energy
landscape that enables continuous polarization rotation between the
tetragonal and orthorhombic phase, which is independent of tempera-
ture. The huge dielectric permittivity of>4000 originates from the easy
rotation of the polarization even for small fields (see supplementary
material, Fig. S6) due to the continuous polarization rotation
mechanism. Similar materials with a polarization gradient but without
polarization rotation10,46 or BaTiO3 films without low-symmetry
phases27,47 do not show such temperature-independent response.

The quasisymmetric electrode configuration shares these func-
tional properties related to the low-symmetry phase, namely wide
switching current peaks, increased piezoelectric d33 coefficient, and
huge temperature-independent dielectric permittivity, with the asym-
metric case, as observed in Fig. 2. The internal bias in the asymmetric
configuration is created by uncompensated dipoles [as easily seen in
Fig. 5(a)] to create the asymmetric structure, leading to a strain diode,
while in this quasisymmetric configuration, the 180� domain wall in
the center compensates those two sets of dipoles with two switching
peaks to get an effective zero internal bias and more symmetric
structure.

Some of the properties of this material resembles those of mor-
photropic phase boundaries (MPBs), in PbZrxTi1�xO3 (PZT) and the
ferroelectric relaxors solid solutions, as well as those of BaTiO3 crystals
at the thermotrophic phase boundary17 or BaTiO3 engineered

nanodomains.48 In addition, strain,18 stress,49 or electron beam radia-
tion48 can create multiple phases, multidomains, and “ferroelectric-
glass” states48 that share some similar features with MPB systems,
which have been shown to display bridging phases at the boundary
between two or more phases and to exhibit rotational degrees of free-
dom with an enhancement of the dielectric permittivity/piezoelectric
response. However, not all these systems can be engineered such that
the coexistence region and bridging phases are weakly dependent of
temperature (a key ingredient for their utilization in devices). The
BaTiO3/NdScO3 system fulfills this condition and stays in such inter-
mediate, or transitional, state in a wide temperature range, similar to
the MPB ferroelectrics. Nevertheless, microscopically, the material is
clearly different since it cannot be considered a polycrystal but also not
a single crystal, and it is not a relaxor but also not a homogeneous fer-
roelectric. The microstructure of the material presented here is closer
to the compositionally graded ferroelectrics, but in this case, the grad-
ing is strain-mediated and self-organized naturally during the material
processing. Thus, it seems appropriate to use a broader term to refer
to materials that exist in an intermediate, or coexisting, state that is
robust against temperature variations. We propose to coin these mate-
rials as “transitional ferroelectrics.”

Concluding, this work demonstrates that transitional states,
enabled by polarization rotation gradients and engineered by utilizing
materials with nearly degenerate, differently oriented polar phases
have properties that are distinct from those of single crystals, multido-
main crystals, ceramics, or relaxor ferroelectrics. We show that, in
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incidence at room temperature. Image reconstructed from a SCBED dataset where the intensity is determined by the polarity of the domains. The image was obtained by com-
paring the intensities of four [101] reflections. Orange arrows are a sketch of specific polarization vectors obtained from local CBED patterns. (b)–(f) CBED patterns measured
or simulated for different regions on the film, showcasing good agreement between measurement and simulation. The orange lines indicate the mirror plane directions, corre-
sponding to the polarization symmetry. (b) The polarizations at the top surface correspond to tetragonal [100]/[001] polarization directions. (c) Simulated CBED pattern for the
tetragonal polarizations. (d) CBED pattern corresponding to the middle part of the film (this pattern comes from the orange circle in (a), the polarization transition region. (e)
and (f) Measured and simulated CBED patterns obtained in the bottom region of the film, corresponding to [101]/[101] polarization directions.
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BaTiO3 thin films grown on NdScO3 substrates with varying thick-
nesses of SrRuO3 electrodes, these gradients facilitate an electrical-
field-induced gradual rotation of the polarization. While the in-plane
direction shows standard ferroelectric behavior, the out-of-plane direc-
tion shows a flat energy landscape. It manages to achieve a giant
dielectric permittivity with a large piezoelectric constant as would be
characteristic of MPBs, while managing an exceptional temperature-
stability without requiring demanding boundary conditions. This
combination of properties enables energy-efficient electromechanical
functionalities and represents the dielectric equivalent of a magnetic
Permalloy with high permittivity that is largely temperature-
independent and with dielectric hard and easy axes. Similar mecha-
nisms could be utilized in the design of other low power ferroelectrics,
piezoelectrics, dielectrics, or shape-memory alloys, as well as in effi-
cient electro- and magnetocaloric cooling.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the experimental
methods, ab initio effective Hamiltonian calculations and phase-field
simulations (Note S1); additional STEM-HAADF on a 80nm thick
BaTiO3 film (Note S2, Fig. S1); additional ferroelecric and dielectric
measurements (Note S3, Fig. S2); differently biased ferroelectric loops
depending on the electrode configuration (Note S4, Fig. S3); effect of
the number of cycles on the out-of-plane ferroelectric switching (Note
S5, Figs. S4 and S5); small signal ferroelectric measurements (Note S6,
Fig. S6); additional SCBED measurements (Note S7, Figs. S7 and S8).
In Note S8, the theoretical results are included in the form of both ab
initio effective Hamiltonian calculations (Figs. S9 and S10) and phase-
field simulations (Fig. S11).

ACKNOWLEDGMENTS

The authors are grateful to U. Bhaskar for preliminary
piezoelectric measurements, to C. Mag�en for preliminary TEM
measurements, to G. Agnus for developing oxides patterning processes,
and to N. Robin, P. Muralt, and D. Damjanovic for useful discussions.
A.S.E. and B.N. acknowledge financial support from the alumni
organization of the University of Groningen, De-Aduarderking (Ubbo
Emmius Fonds), and from the Zernike Institute for Advanced
Materials. T.D. acknowledges the European Metrology Research
Programme (EMRP) Project No. IND54 397 Nanostrain and the
European Union’s Seventh Framework Programme (No. FP7/2007-
2013)/ERC Grant Agreement No. 320832. T.D. thanks Knut M€uller-
Caspary for technical help with the STEM experiment. A.G.
acknowledges funding by the Deutsche Forschungsgemeinschaft (Nos.
SPP 1599 GR 4792/1-2 and GR 4792/2-1). Y.T.S. and J.M.Z.
acknowledge the financial support by the DOE BES (Grant No.
DEFG02-01ER45923). Electron diffraction experiments were carried
out at the Center for Microanalysis of Materials at the Frederick Seitz
Materials Research Laboratory of the University of Illinois at Urbana-
Champaign. J.H. and P.O. were supported by the Operational
Programme Research, Development, and Education (financed by
European Structural and Investment Funds and by the Czech Ministry
of Education, Youth, and Sports), Project No. SOLID21-CZ.02.1.01/0.0/
0.0/16_019/0000760). N.D. and G.C. acknowledge financial support by
the Severo Ochoa Excellence programme.

REFERENCES
1K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
2M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and

Related Materials (Oxford University Press, Oxford, 1977).
3D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80

(2008).
4F. Weyland, M. Acosta, J. Koruza, P. Breckner, J. R€odel, and N. Novak, Adv.

Funct. Mater. 26, 7326 (2016).
5S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker,

J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B.

Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R.

Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R.

H. Blick, and C. B. Eom, Science 334, 958 (2011).
6Z. Luo, D. Zhang, Y. Liu, D. Zhou, Y. Yao, C. Liu, B. Dkhil, X. Ren, and X.

Lou, Appl. Phys. Lett. 105, 102904 (2014).
7W. J. Merz, Phys. Rev. 91, 513 (1953).
8P. Zubko, N. Jecklin, N. Stucki, C. Lichtensteiger, G. Rispens, and J.-M.

Triscone, Ferroelectrics 433, 127 (2012).
9M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, and

J. R€odel, Appl. Phys. Rev. 4, 041305 (2017).
10A. R. Damodaran, S. Pandya, Y. Qi, S.-L. Hsu, S. Liu, C. Nelson, A. Dasgupta,

P. Ercius, C. Ophus, L. R. Dedon, J. C. Agar, H. Lu, J. Zhang, A. M. Minor, A.

M. Rappe, and L. W. Martin, Nat. Commun. 8, 14961 (2017).
11S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
12R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys.

Rev. Lett. 84, 5423 (2000).
13L. Bellaiche, A. Garc�ıa, and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000).
14H. Fu and R. E. Cohen, Nature 403, 281 (2000).
15M. Davis, M. Budimir, D. Damjanovic, and N. Setter, J. Appl. Phys. 101,

054112 (2007).
16Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland, Phys.

Rev. Lett. 91, 197601 (2003).
17T. T. A. Lummen, Y. Gu, J. Wang, S. Lei, F. Xue, A. Kumar, A. T. Barnes, E.

Barnes, S. Denev, A. Belianinov, M. Holt, A. N. Morozovska, S. V. Kalinin, L.-

Q. Chen, and V. Gopalan, Nat. Commun. 5, 3172 (2014).
18R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A.

Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld,

R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W.

Martin, and R. Ramesh, Science 326, 977 (2009).
19A. S. Everhardt, S. Matzen, N. Domingo, G. Catalan, and B. Noheda, Adv.

Electron. Mater. 2, 1500214 (2016).
20V. G. Koukhar, N. A. Pertsev, and R. Waser, Phys. Rev. B 64, 214103 (2001).
21A. Gr€unebohm, M. Marathe, and C. Ederer, Appl. Phys. Lett. 107, 102901

(2015).
22Y. L. Li and L. Q. Chen, Appl. Phys. Lett. 88, 072905 (2006).
23S. Choudhury, Y. L. Li, L. Q. Chen, and Q. X. Jia, Appl. Phys. Lett. 92, 142907

(2008).
24M. Tanaka, N. Kitamura, and G. Honjo, J. Phys. Soc. Jpn. 17, 1197 (1962).
25T. Asada and Y. Koyama, Phys. Rev. B 70, 104105 (2004).
26G. Sanchez-Santolino, J. Tornos, D. Hernandez-Martin, J. I. Beltran, C.

Munuera, M. Cabero, A. Perez-Mu~noz, J. Ricote, F. Mompean, M. Garcia-

Hernandez, Z. Sefrioui, C. Leon, S. J. Pennycook, M. C. Mu~noz, M. Varela, and

J. Santamaria, Nat. Nanotechnol. 12, 655 (2017).
27K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.

B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom,

Science 306, 1005 (2004).
28V. Thery, A. Bayart, J.-F. Blach, P. Roussel, and S. Saitzek, Appl. Surf. Sci. 351,

480 (2015).
29R. Mahjoub, S. P. Alpay, and V. Nagarajan, Phys. Rev. Lett. 105, 197601

(2010).
30A. Kholkin, M. Calzada, P. Ramos, J. Mendiola, and N. Setter, Appl. Phys. Lett.

69, 3602 (1996).
31M. Boota, E. P. Houwman, M. Dekkers, M. D. Nguyen, K. H. Vergeer, G.

Lanzara, G. Koster, and G. Rijnders, Sci. Technol. Adv. Mater. 17, 45 (2016).
32S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S.-E. Park, L.

E. Cross, and T. R. Shrout, Jpn. J. Appl. Phys., Part 1 38, 5505 (1999).

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011402 (2020); doi: 10.1063/1.5122954 7, 011402-7

VC Author(s) 2020

https://doi.org/10.1063/1.5122954#suppl
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1038/nature06932
https://doi.org/10.1002/adfm.201602368
https://doi.org/10.1002/adfm.201602368
https://doi.org/10.1126/science.1207186
https://doi.org/10.1063/1.4895615
https://doi.org/10.1103/PhysRev.91.513
https://doi.org/10.1080/00150193.2012.678159
https://doi.org/10.1063/1.4990046
https://doi.org/10.1038/ncomms14961
https://doi.org/10.1063/1.365983
https://doi.org/10.1103/PhysRevLett.84.5423
https://doi.org/10.1103/PhysRevLett.84.5423
https://doi.org/10.1103/PhysRevLett.84.5427
https://doi.org/10.1038/35002022
https://doi.org/10.1063/1.2653925
https://doi.org/10.1103/PhysRevLett.91.197601
https://doi.org/10.1103/PhysRevLett.91.197601
https://doi.org/10.1038/ncomms4172
https://doi.org/10.1126/science.1177046
https://doi.org/10.1002/aelm.201500214
https://doi.org/10.1002/aelm.201500214
https://doi.org/10.1103/PhysRevB.64.214103
https://doi.org/10.1063/1.4930306
https://doi.org/10.1063/1.2172744
https://doi.org/10.1063/1.2908210
https://doi.org/10.1143/JPSJ.17.1197
https://doi.org/10.1103/PhysRevB.70.104105
https://doi.org/10.1038/nnano.2017.51
https://doi.org/10.1126/science.1103218
https://doi.org/10.1016/j.apsusc.2015.05.155
https://doi.org/10.1103/PhysRevLett.105.197601
https://doi.org/10.1063/1.117220
https://doi.org/10.1080/14686996.2016.1140306
https://doi.org/10.1143/JJAP.38.5505
https://scitation.org/journal/are


33U. K. Bhaskar, N. Banerjee, A. Abdollahi, G. Rijnders, E. Solanas, and G.
Catalan, Nanoscale 8, 1293 (2016).

34M. I. Morozov and D. Damjanovic, J. Appl. Phys. 104, 034107 (2008).
35K. Carl and K. H. Hardtl, Ferroelectrics 17, 473 (1977).
36F. Jona and G. Shirane, Ferroelectric Crystals (Dover Publications, Inc.,
Mineola, 1993).

37J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury,
W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L.
Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature 430, 758 (2004).

38P. Gerber, C. K€ugeler, U. B€ottger, and R. Waser, J. Appl. Phys. 98, 124101 (2005).
39E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.
M. Triscone, and P. Ghosez, Nature 452, 732 (2008).

40K. H. Kim and J. M. Zuo, Ultramicroscopy 124, 71 (2013).
41Y. T. Shao and J. M. Zuo, Acta Crystallogr. 73, 708 (2017).

42Y. T. Shao and J. M. Zuo, Phys. Rev. Lett. 118, 157601 (2017).
43K. Kim and J. Zuo, Acta Crystallogr. A70, 583 (2014).
44M. H€ytch, F. Houdellier, F. H€ue, and E. Snoeck, Nature 453, 1086 (2008).
45S. Kobayashi, K. Inoue, T. Kato, Y. Ikuhara, and T. Yamamoto, J. Appl. Phys.
123, 064102 (2018).

46J. C. Agar, A. R. Damodaran, M. B. Okatan, J. Kacher, C. Gammer, R. K.
Vasudevan, S. Pandya, R. V. K. Mangalam, G. A. Velarde, S. Jesse, N. Balke, A.
M. Minor, S. V. Kalinin, and L. W. Martin, Nat. Mater. 15, 549 (2016).

47A. R. Damodaran, E. Breckenfeld, Z. Chen, S. Lee, and L. W. Martin, Adv.
Mater. 26, 6341 (2014).

48R. Ahluwalia, N. Ng, A. Schilling, R. G. P. McQuaid, D. M. Evans, J. M. Gregg,
D. J. Srolovitz, and J. F. Scott, Phys. Rev. Lett. 111, 165702 (2013).

49M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J.
Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature 451, 545 (2008).

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 7, 011402 (2020); doi: 10.1063/1.5122954 7, 011402-8

VC Author(s) 2020

https://doi.org/10.1039/C5NR06514C
https://doi.org/10.1063/1.2963704
https://doi.org/10.1080/00150197808236770
https://doi.org/10.1038/nature02773
https://doi.org/10.1063/1.2146055
https://doi.org/10.1038/nature06817
https://doi.org/10.1016/j.ultramic.2012.09.002
https://doi.org/10.1107/S2052520617008496
https://doi.org/10.1103/PhysRevLett.118.157601
https://doi.org/10.1107/S2053273314013643
https://doi.org/10.1038/nature07049
https://doi.org/10.1063/1.5012545
https://doi.org/10.1038/nmat4567
https://doi.org/10.1002/adma.201400254
https://doi.org/10.1002/adma.201400254
https://doi.org/10.1103/PhysRevLett.111.165702
https://doi.org/10.1038/nature06459
https://scitation.org/journal/are

	s1
	s2
	f2
	f1
	f3
	s3
	f4
	f5
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49

