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The temperature jump problem in rarefied molecular (diatomic and polyatomic) gases is investigated based on a one-
dimensional heat conduction problem. The gas dynamics is described by a kinetic model, which is capable to recover
the general temperature and thermal relaxation processes predicted by the Wang-Chang Uhlenbeck equation. Analytical
formulations for the temperature jump coefficient subject to the classical Maxwell’s gas-surface interaction are derived
via the Chapman-Enskog expansion. Numerically, the temperature jump coefficient and the Knudsen layer function are
calculated by matching the kinetic solution to the Navier-Stokes prediction in the Knudsen layer. Results show that the
temperature jump highly depends on the thermal relaxation processes: the values of the temperature jump coefficient
and the Knudsen layer function are determined by the relative quantity of the translational thermal conductivity to the
internal thermal conductivity; a minimum temperature jump coefficient emerges when the translational Eucken factor
is 4/3 times of the internal one. Due to the exclusion of the Knudsen layer effect, the analytical estimation of the
temperature jump coefficient may possess large errors. A new formulation, which is a function of the internal degree
of freedom, the Eucken factors, and the accommodation coefficient, is proposed based on the numerical results.

I. INTRODUCTION

A gas flow may be modeled either by the Navier-Stokes
equations as a continuum or by the kinetic equation as a
myriad of discrete molecules. The continuous description
equipped with non-slip velocity and non-jump temperature
conditions at the solid boundary is only valid when the mean
free path of gas molecules λ is significantly smaller than the
characteristic flow length L; otherwise, the kinetic descrip-
tion at the mesoscopic level of molecular velocity distribu-
tion function should be adopted. Compared to the continuum
equations, a numerical solving of the kinetic equation is much
more expensive, since the independent variables are increased
with the number of physical variables (e.g., position, velocity,
and internal energy) on which the state of every gas molecule
depends. Therefore, for flows having moderate Knudsen num-
ber (Kn = λ/L) where the kinetic effect resulted from the in-
homogeneity introduced by the solid boundary is only impor-
tant within the Knudsen layer of thickness O(λ ), it is very at-
tractive to effectively quantify the flow behaviors though the
continuum equations incorporated velocity slip and tempera-
ture jump boundary conditions; while the actual kinetic effect
can be taken into account by the Knudsen layer function.

The temperature jump at the interface between a solid wall
and an adjacent gas is traditionally defined as the difference
between the temperature of the wall and the temperature aris-
ing at the wall from a linear extrapolation of the temperature
curve of gas beyond the Knudsen layer1,2, written as

Te = Tw +ζT

µ

p

√

2kBTw

m

∂T

∂n
, at wall, (1)

where Te and Tw are the linearly extrapolated gas temperature
and the wall temperature, respectively; ζT is the constant tem-
perature jump coefficient (TJC); µ is the shear viscosity of
gas; p is the local gas pressure; kB is the Boltzmann constant;

FIG. 1. The temperature jump is defined as the difference between
the wall temperature Tw and the temperature at the wall Te from a
linear extrapolation of the temperature curve in the bulk region; ζT is
the temperature jump coefficient, and λe is the equivalent mean free
path of gas molecules; The Knudsen layer function Ts describes the
deviation of the linearly extrapolated temperature (dash line) from
the true temperature (solid line) in Knudsen layer.

m is the mass of gas molecules; and ∂/∂n = n ·∇ with n be-
ing the unit outward normal vector at the wall, respectively.
The Knudsen layer function is defined as the deviation of the
linearly extrapolated temperature from the true temperature in
the Knudsen layer. Figure 1) shows a schematic diagram of
the problem. A rough estimation of the coefficient ζT is given
by3

ζT =
γ
√

π

(γ +1)Pr

2−α0

α0
, (2)

where γ is the specific heat ratio; Pr is the Prandtl number;
and α0 is the constant accommodation coefficient in the clas-
sical Maxwell’s boundary condition, representing the fraction
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2

of incident molecules that are diffusely reflected at the wall.
This estimation is obtained on the assumption that the veloc-
ity distribution function of gas molecules does not vary within
the Knudsen layer. Note that velocity gradients near the wall
may lead to temperature jump as well, however this effect is
usually ignored since it is small and cannot be controlled in
experiments4.

More rigorous analysis can be done by matching the ki-
netic solution inside the Knudsen layer to the outer Navier-
Stokes solution. Taking advantages of the improvement in
solving kinetic equations, TJCs have been obtained based on
the Bhatnagar-Gross-Krook (BGK) kinetic model5,6, Shakhov
model7, and the linearized Boltzmann equation8–12. It is
shown that under the fully diffuse reflection at walls, the TJC
varies in a small range from model to model; the one ob-
tained from the Shakhov model equation is very close to those
obtained from the Boltzmann equation with more realistic
Lennard-Jones potentials. In practice, a value of ζT = 1.95
is recommended2. The dependence of the jump coefficient on
the accommodation coefficient was approximated as

ζT =
15

√
π

16

(
2−α0

α0
+0.173

)

(3)

by Welander2 or as

ζT =
15

√
π

16

2−α0

α0
(1+0.1621α0) (4)

by Loyalka 13 . Both the estimations are based on the solutions
of the BGK equation. The TJCs subjected to the Cercignani-
Lampis gas-surface interaction7,12, as well as those of gas
mixtures14,15 have also been calculated. A comprehensive
review and comparison of these data have been reported by
Sharipov2. Note that the expression (1) is generally a first-
order result, which is adequate when Kn < 0.116. The second-
order temperature jump condition can be derived through the
asymptotic expansion of the molecular velocity distribution
function17; a second jump coefficient emerges along with the
second-order derivative of gas temperature at the wall. For
steady flows without external heating source, the second jump
coefficient is only known, equal to zero, for the BGK model.
The second jump coefficients for a problem governed by the
Poisson equation, i.e., the steady conduction subject to forcing
heating and an unsteady problem subject to time-dependent
wall temperature have been obtained16,18.

Although one more often deals with molecular (diatomic
or polyatomic) gases in practical applications, the above men-
tioned works only considered monatomic gases. When the
Boltzmann equation is extended to the Wang-Chang Uhlen-
beck (WCU) equation19 for molecular gases, additional de-
grees of freedom due to the excitation of internal energies as-
sociated with rotations, vibrations, and electrons yield a much
more complicated governing system; the internal motions are
treated quantum-mechanically and each energy level is as-
signed with an individual distribution function, making ana-
lytical and numerical solutions extremely difficult and expen-
sive. Hitherto the TJC in molecular gases, although very few,

are calculated based on kinetic model equations. The proba-
bly first estimation was made by Lin1 from the Morse model
for gases with only rotations excited, which is read as

ζT =
γ
√

π

(γ +1)Pr

(
2−α0

α0
+0.17

)

, (5)

implying that ζT roughly depends on, considering the gas
physical properties, the ratio of the shear viscosity to the ther-
mal conductivity, i.e., the Prandtl number Pr, and the num-
ber of internal degrees of freedom that determines the specific
heat ratio γ . In the particular case of a monatomic gas when
γ = 5/3 and Pr = 2/3, the estimation (5) is reduced to (3).
A more comprehensive analysis on both the velocity slip
and temperature jump in molecular gases was recently con-
ducted20. The slip/jump coefficients and the Knudsen layer
functions were obtained through the Chapman-Enskog expan-
sion to the ellipsoidal BGK (ES-BGK) model equation21,22.
The ES-BGK model contains three adjustable parameters, al-
lowing fitting the experimental values of the shear viscosity,
the thermal conductivity, and the bulk viscosity that appears
due to the finite time required for the system to distribute en-
ergy among the internal degrees of freedom. The results for
some typical molecular gases show that the TJC also varies
with the bulk viscosity, although not significantly.

In molecular gases, unique transport phenomena, which
play important roles in rarefied molecular gas dynamics23,
take place because of the exchange of translational and in-
ternal energies. It can be shown24,25 that the relaxation rate of
between the translational and internal energies determines the
ratio of the bulk viscosity to the shear viscosity, and the ther-
mal relaxation rates of translational and internal heat fluxes
determine the thermal conductivities, comprising of transla-
tional and internal parts. Note that the thermal conductiv-
ity (or Pr) in expression (5) is an overall measurement com-
bining both the translational and internal contributions. Few
data on the temperature jump coefficient in molecular gases
has been reported. To the authors’ awareness, comprehen-
sive study on the effects of the unique relaxation processes in
molecular gases, especially the thermal relaxations, has been
far overlooked. However, we will discover later that the TJC
and Knudsen layer function have strong dependence on the
relaxation rates of heat fluxes, even though the total thermal
conductivity is fixed.

This work aims to fill the above knowledge gap. Credibil-
ity of the analysis is highly affected by the accuracy of the ki-
netic equation and the analytical method or numerical scheme
we use. In this paper, the behavior of molecular gas flows is
described by a kinetic model introduced by Li et al. 25 . Been
calibrated and verified through the direct simulation Monte
Carlo (DSMC) method, the model has the ability to recover
the general temperature and thermal relaxations derived from
the Wang-Chang Uhlenbeck equation, and to freely adjust the
relaxation rates, the influence of which thus can be investi-
gated. This cannot be attained by any other kinetic mod-
els26–29. The remainder of the paper is arranged as follows.
The kinetic description for the dynamics of rarefied molecular
gases including the kinetic equation and gas-surface interac-
tion model is given in §II. A rough estimation of the TJC
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3

subject to the Maxwell’s boundary condition, is derived by
assuming a first-order Chapman-Enskog velocity-energy dis-
tribution function. The details are also given in §III. The one-
dimensional steady heat conduction problem and the assump-
tions to numerically calculate the TJC and the Knudsen layer
function are presented in §IV, where the numerical scheme
is briefly described. The results and discussions are demon-
strated in §V, followed by an empirical but more accurate for-
mulation for the TJC. Some conclusions are presented in §VI.
The paper is one of our serial works on the slip/jump coeffi-
cients, where the thermal velocity slip in molecular gases were
studied in Ref.30.

II. GOVERNING EQUATIONS

The gaseous kinetic description for rarefied molecular gases
is presented in this section. We consider flow under the con-
straint that a gas molecule has three translational and d rota-
tional degrees of freedom. The rotational energy can be ex-
pressed by a single continuous variable I as the way of classi-
cal mechanics.

A. Gas kinetic equation

Solving WCU equation for molecular gases is unrealistic
due to its high complexity and excessive computational bur-
den. Therefore, kinetic models are proposed to imitate the be-
haviour of the WCU equation. The typical ones are extended
from BGK-type model equations of monatomic gas, such as
Rykov model29, ellipsoidal-statistical BGK model21,31, Wang
model32. Recently, Wu model25,33 is proposed to improve the
accuracy of model equations by using Boltzmann collision op-
erator of monatomic gases for elastic collisions, and incorpo-
rating the thermal relaxation rates to recover the correct trans-
port coefficients. Thus, Wu model is adopted in the present
work and briefly introduced as following.

In spatial-homogeneous systems, on an average sense, the
relaxation of the temperature associated with the rotational en-
ergy, denoting as Tr is described by the Jeans–Landau equa-
tion

∂Tr

∂ t̂
=

pt

µ

T −Tr

Z
, (6)

where t̂ is the time, pt is the kinetic pressure; µ is the gas
shear viscosity, Z is the rotational collision number (roughly
speaking, a gas molecule would experience one inelastic col-
lision in every Z binary collisions), and T is the overall
temperature calculated from the weighted sum of the trans-
lational temperature Tt and the rotational temperature Tr as
T = (3Tt +dTr)/(3+d). The relaxations of the translational
heat flux Qt and the rotational heat flux Qr generated from the
transfer of energies satisfy the following general relations34,35

[
∂Qt/∂ t̂

∂Qr/∂ t̂

]

=− pt

µ

[
Att Atr

Art Arr

][
Qt

Qr

]

, (7)

where A= [Ai j] (i, j = t or r) is the matrix of relaxation rates
possessing positive eigenvalues. These unique transport pro-
cesses (6) and (7) induce the bulk viscosity µb, and make the
thermal conductivity κ consisting of both the translational and
rotational contributions, termed κt and κr, respectively, thus
κ = κt +κr. These transport coefficients are determined as25

µb

µ
=

2dZ

3(d +3)
, (8)

and

[
κt

κr

]

=
kBµ

2m

[
Att Atr

Art Arr

]−1 [
5
d

]

. (9)

It will be convenient to express the thermal conductivities in
terms of the dimensionless factors36,37

κm

µkB

=
3

2
ft +

d

2
fr =

3+d

2
feu, (10)

where feu is the total Eucken factor; ft and fr are the transla-
tional and rotational Eucken factor, respectively, defined as

ft =
2

3

κtm

µkB

, fr =
2

d

κrm

µkB

, (11)

respectively. The values of the Eucken factors can be ex-
tracted from experiments24. For monatomic gases, Att = 2/3
and Atr = Art = Arr = 0, so that feu = ft = 2.5 and fr = 0.

In practice, gas kinetic models are introduced to reduce
the computational complexity arisen in the Wang-Chang Uh-
lenbeck equation. To guarantee accuracy, it is required that
the model equation is capable to interpret the relaxation pro-
cesses and recover the transport coefficients. To this end,
we adopt the following kinetic model, where the state of gas
is described by the one-particle velocity-energy distribution
function f (t̂,X,V , I) with X = (X1,X2,X3), V = (V1,V2,V3)
and I ≥ 0 being the location, translational velocity and ro-
tational energy of gas molecules, respectively. Macroscopic
quantities, such as the number density n(t̂,X), the bulk ve-
locity U (t̂,X), the temperatures Tt/r (t̂,X) and heat fluxes
Qt/r (t̂,X) are defined as

[

n,nU ,
3

2
nkBTt ,

d

2
nkBTr,Qt ,Qr

]

=
∫∫ [

1,V ,
mC2

2
, I,C

mC2

2
,CI

]

f dV dI, (12)

where C = V −U is the peculiar velocity. We also defined
the pressures as pt = nkBTt , pr = nkBTr and p= nkBT in terms
of the translational, rotational, and overall temperatures, re-
spectively.

In the absence of external force, the evolution of f is gov-
erned by

∂ f

∂ t̂
+V · ∂ f

∂X
=

gt − f

τ̂
︸ ︷︷ ︸

elastic

+
gr −gt

Zτ̂
︸ ︷︷ ︸

inelastic

, (13)
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4

where τ̂ = µ/pt is the relaxation time related to translational
motions, and the terms on the right-hand side of the equation
describe the change of f due to elastic and inelastic collisions,

respectively. The reference velocity distribution functions gt

and gr, expanding about the equilibrium f0 = Et (T ) ·Er (T ) in
a series of orthogonal polynomials, have the following forms

gt = Et (Tt)Er (Tr)

[

1+
2mQt ·C
15kBTt pt

(
mC2

2kBTt

− 5

2

)

+
2mQr ·C
dkBTt pr

(
I

kBTr

− d

2

)]

, (14a)

gr = Et (T )Er (T )

[

1+
2mQ′ ·C
15kBT p

(
mC2

2kBT
− 5

2

)

+
2mQ′′ ·C

dkBT p

(
I

kBT
− d

2

)]

, (14b)

where

Et (T ) = n

(
m

2πkBT

)3/2

exp

(

− mC2

2kBT

)

,

Er (T ) =
Id/2−1

Γ(d/2)(kBT )d/2
exp

(

− I

kBT

)

,

(15)

and Γ(·) is the gamma function. Q′ and Q′′ are linear com-
binations of the translational and rotational heat fluxes, which
are formulated to recover the relaxations (7), read as

[
Q′

Q′′

]

=

[
(2−3Att)Z +1 −3AtrZ

−ArtZ Z (1−Arr)

][
Qt

Qr

]

. (16)

It is worth noting that this kinetic model can be regarded as
a general version of the Rykov kinetic model29, regarding that
the relaxation of heat fluxes in the Rykov model is a special
circumstance with Atr = 0 and Art = 0. In the limit without
translational-rotational energy exchange (Z → ∞, d = 0, Att =
2/3 and Atr = Art = Arr = 0), the kinetic model (13) reduces
to the Shakhov model equation for monatomic gases38.

B. Gas-surface interaction model

Considering the gas-wall interaction from the viewpoint of
a non-absorbing wall at rest, all the gas molecules hitting the
wall with a velocity V ′ will return to the flows with a new
velocity V . The velocity-energy distribution function of the
molecules in the nearest vicinity of the wall is denoted as

fw =

{

f−, V ·n≤ 0

f+, V ·n> 0
, (17)

where f− and f+ are the distributions of incident and reflected
molecules, respectively. The correlation between the incident
and reflected distribution functions is determined by the re-
flection kernel R (V ′ → V ) as

f+ =
1

|V ·n|

∫

V ′·n<0
f−

(
V ′)

R
(
V ′ → V

)
dV ′. (18)

Under the classical Maxwell’s gas-wall interaction model,
the distribution function of the reflected molecules is a lin-
ear combinations of two extreme situations: specular reflec-
tion and fully-diffuse reflection. In the former situation, the

wall is assumed perfectly smooth and rigid; when an incident
molecule interacts with the wall, its normal velocity is inverse,
while the tangential velocity remains unchanged. Thus the re-
flection kernel is expressed as

Rspec

(
V ′ → V

)
= δ

(
V ′−V +2(V ·n)n

)
, (19)

where δ (·) is the delta function. On the other hand, when an
incident molecule interacts with a rough wall with vibrating
atoms, energy-exchange occurs between the gas molecule and
the solid atoms; the reflected molecules tend to get equilib-
rium at the wall temperature Tw, and the reflection kernel is
given as

Rdi f f

(
V ′ → V

)
= |V ·n| f0 (Tw) , (20)

where f0 = Et ·Er is the equilibrium distribution. With a con-
stant accommodation coefficient α0, the reflection kernel of
the Maxwell’s boundary condition is read as

RM

(
V ′ → V

)
=α0Rdi f f

(
V ′ → V

)

+(1−α0)Rspec

(
V ′ → V

)
.

(21)

For molecular gases, the reflection kernel can be general-
ized as

f+=
1

|V ·n|

∫∫

V ′·n<0
f−

(
V ′, I′

)
R

(
V ′ → V , I′ → I

)
dV ′dI′,

(22)
with

R
(
V ′ → V , I′ → I

)
=

α0
|V ·n|m2Id/2−1

2πΓ(d/2)(kBTw)
2+d/2

× exp

(

− mV 2

2kBTw

− I

kBTw

)

+(1−α0)δ
(
V ′−V +2(V ·n)n

)
δ
(
I − I′

)
,

(23)
where I′ and I denote the rotational energies of the incident
and reflected molecules, respectively.

III. ANALYTICAL ESTIMATION OF TJC

Now we present an analytical estimation of the TJC, which
is sought at Kn ≪ 1. When the system is close to equilibrium,
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5

the distribution function can be expanded as f = f0 + f1 with
f1 the perturbed part to the first order of Chapman-Enskog
expansion39. By linearizing the reference distribution gt and
gr at the equilibrium temperature T and considering a static
gas system with respect to the wall, it is obtained

f1 = f0

{

− µ

p
C ·∇ lnT

[(
mC2

2kBT
− 5

2

)

+

(
I

kBT
− d

2

)]

+
Tt −T

T

(

1− 1

Z

)[(
mC2

2kBT
− 3

2

)

− 3

d

(
I

kBT
− d

2

)]

+

(

1− 1

Z

)[
2mQt ·C
15kBT p

(
mC2

2kBT
− 5

2

)

+
2mQr ·C

dkBT p

(
I

kBT
− d

2

)]

+
1

Z

[
2mQ′ ·C
15kBT p

(
mC2

2kBT
− 5

2

)

+
2mQ′′ ·C

dkBT p

(
I

kBT
− d

2

)]}

.

(24)
Following the method introduced by Struchtrup 4 , the tem-
perature jump condition is derived by matching the energy
fluxes along the normal direction of solids to the ones com-
puted from the distribution function fw, i.e.,

Qt ·n=
∫

mC2

2
C ·n fwdV dI,

Qr ·n=
∫

IC ·n fwdV dI.

(25)

From (17), fw contains the distribution of the incident
molecules f− = f0+ f1 and the one of the reflected molecules
f+ that is calculated from (20) based on the kernel (23). Since
the specular reflection does not contribute to the energy ex-

change in gas-surface interaction, the diffuse reflection part of
f+ is only considered, which is given by

f+di f f = f0 (V ,Tw)
α0

2Z

√
T

Tw

[

Z +1+
Tt

T
(Z −1)

]

. (26)

Substituting (24) and (26) into (25), we obtain the expres-
sions for the heat fluxes in the normal direction at the wall

Qt ·n=
α0nk

3/2
B

Z (2πmT )1/2

[(

Tw (Tt +T )+T (T −3Tt)

)

Z

− (T −Tt)(3T −Tw)

]

− α0

24Zm

[

n ·
(

−2m
(
ZQt +Q′−Qt

)
+15µZkB∇T

)]

,

Qr ·n=
α0nk

3/2
B

4Z (2πmT )1/2

{

d

[

T (Z +1)+Tt (Z −1)

]

(Tw −T )

−6T (Z −1)(T −Tt)

}

+
α0

8Zm
n ·

[
4m

(
ZQr +Q′′−Qr

)
−2dµZkB∇T

]
.

(27)
We denote ∆Tt = Tt − Tw, ∆Tr = Tr − Tw as the jumps of
the translational and rotational temperatures, respectively, and
write the heat fluxes in terms of the Eucken factors (11) and
the temperature gradient as

Qt ·n=−3kBµ ft

2m

∂T

∂n
, Qr ·n=−dkBµ fr

2m

∂T

∂n
. (28)

The correlations between the temperature jumps and the tem-
perature gradient can be obtained as

µ

p

(
2kBTw

m

)1/2 ∂T

∂n
=

4 [(Z −1)d +3Z]α0∆Tt +4dα0∆Tr

3
√

πZ (d +3)

[

ft +
1
6

(

dAtr fr +3(Att −1) ft −5

)] ,

µ

p

(
2kBTw

m

)1/2 ∂T

∂n
=

3dα0∆Tt +d [3(Z −1)d +dZ]α0∆Tr

√
πZ (d +3)

[

d fr +
1
2 α0

(

d (Arr −1) fr −d +3Art ft −1

)] .

(29)

Note that the terms of ∆Tt/r with orders higher than one have
been neglected in (29). The TJCs related to the translational,
rotational and total temperatures, denoting as ζ ∗

Tt
, ζ ∗

Tr
and ζ ∗

T ,

respectively, are eventually solved as

ζ ∗
Tt
=

2−α0

α0

√
π

[

3 ft

(

Z (d +3)−3

)

−4d fr

]

8(d +3)(Z −1)
,

ζ ∗
Tr
=

2−α0

α0

√
π

[

−9 ft +4 fr

(

Z (d +3)−d

)]

8(d +3)(Z −1)
,

ζ ∗
T =

2−α0

α0

√
π

(

9 ft +4d fr

)

8(d +3)
.

(30)
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6

When d = 0, ft = 2.5, fr = 0 and Z → ∞, the system ap-
proaches the limit of monatomic gases, and (30) gives

ζ ∗
T = ζ ∗

Tt
=

15
√

π

16

2−α0

α0
, ζ ∗

Tr
= 0, (31)

where ζ ∗
T is reduced to the estimation (2), providing γ = 5/3

and Pr = 2/3.
The temperature jump coefficients are plotted in Figure 2

for fully-diffuse gas surface interaction. From (30), we can
have some simple observations:

1. Each of the three TJCs corresponding to the transla-
tional, rotational and overall temperatures could be quit
different from the other twos for a certain gas species.

2. The values of TJCs varies with ft and fr even when
the total thermal conductivity is fixed; although ft and
fr are determined by the thermal relaxation rates Ai j

from (9) and (11), the value of any individual Ai j does
not influence the TJCs.

3. The rotational collision number Z affect the transla-
tional and rotational TJCs, where the two TJCs ap-
proaches infinity (physically impossible) as Z → 1;
however the overall TJC has no dependence on it.

4. For the Maxwell’s boundary condition, the accommo-
dation coefficient changes the values of TJCs through
the same factor (2−α0)/α0.

The analytical formulations (30) are derived by making a
truncation in the velocity-energy distribution functions up to
the first order of Chapman-Enskog expansion, i.e., when the
Navier-Stokes equations are valid. It is worth noting that the
Navier-Stokes equations cannot resolve the Knudsen layer,
which give additional contributions to the temperature jump,
see the dash-dotted line and the dash line in Figure 1. The
assumption of the first-order Chapman-Enskog distribution
function may induce large error, e.g., an error of about 15%
for monatomic gases4. In the following sections, we will nu-
merically investigate the temperature jump based on the ki-
netic description that accounts for all the rarefied effects, and
calculate the TJC and Knudsen layer function by compar-
ing the kinetic solution inside the Knudsen layer to the outer
Navier-Stokes solution.

IV. FORMULATIONS FOR NUMERICAL SOLUTION

We calculate the temperature jump problem via the heat
conduction in a dilute molecular gas confined between two
parallel plates located at X1 = 0 and X1 = L, respectively. The
plate fixed at X1 = 0 maintains at a temperature T0 +∆T/2,
while the other plate has a temperature T0 −∆T/2, so that T0

is a reference temperature and ∆T is the temperature differ-
ence between the two plates. We will investigate the kinetic
effects introduced by the plates under the follow assumptions:

1. Kn ≪ 1, such that the Navier-Stokes description, i.e.,
the Laplace equation ∂ 2T/∂X2

1 = 0 subject to the

1.6 1.8 2.0 2.2 2.4
ft

0.5

1.0

1.5

2.0

2.5

3.0
Z= 3, d= 2, feu = 2

(a)

1.6 1.8 2.0 2.2 2.4
ft

0.5

1.0

1.5

2.0

2.5

3.0
Z= 2, d= 3, feu = 1.5

(b)

Tt

Tr

T

FIG. 2. The analytical estimation of TJCs under fully-diffuse gas-
surface interaction (30) with α0 = 1: influence of the Eucken factors,
ft varies from 1.5 to 2.5. (a) Z = 3, d = 2 and feu = 2; (b) Z = 2,
d = 3 and feu = 1.5.

boundary condition (1) is valid; the kinetic effects are
only important within the Knudsen layer and can be
quantified by the Knudsen layer function, which van-
ishes rapidly away from the boundary with length scale
of variation of the order of Kn.

2. ∆T ≪ T0, such that variations of the result through
the temperature dependence of transport coefficients are
negligible. The weakly disturbed system can be lin-
earized around the reference equilibrium state at rest
with density ρ0 and temperature T0

A. Linear governing system

We have present the kinetic description in §II. To improve
computational efficiency, two reduced velocity distribution
functions G(t̂,X,V ) =

∫
∞

0 f dI and R(t̂,X,V ) =
∫

∞

0 I f dI

are introduced to eliminate the dependence on I. Accord-
ing to the assumption (ii), the reduced distribution func-
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7

tions can be linearized around global equilibrium state as
G= n0 (E0 +h0)/v3

m and R= n0kBT0 (d/2E0 +h1)/v3
m, where

E0 = π−3/2 exp
(
−v2

)
is the equilibrium distribution function,

v =V /vm and vm =
√

2kBT0/m is the most probable molecu-
lar speed. Let us further denote: X = Lx, n= n0 (1+ρ), U =
vmu, Tt = T0 (1+θt), Tr = T0 (1+θr), (Qt ,Qr,Q

′,Q′′) =
n0kBT0vm (qt ,qr,q

′,q′′), (t̂, τ̂) = L/vm (t,τ), T = T0 (1+θ)
with θ = (3θt +dθr)/(3+d), pt = n0kBT0 (1+ρ +θt) and
p = n0kBT0 (1+ρ +θ). Finally, if we introduce h2 = h1 −
dh0/2, the evolution of the linear system is eventually de-
scribed by h0 and h2, whose governing equations are

∂h0

∂ t
+v · ∂h0

∂x
= L0,

∂h2

∂ t
+v · ∂h2

∂x
= L2,

(32)

where

L0 = LS +
E0

Zτ

[

(θ −θt)

(

v2 − 3

2

)

+
4(q′−qt) ·v

15

(

v2 − 5

2

)]

,

L2 =
1

τ

(
d

2
E0θr −h2

)

+
dE0

2Zτ
(θ −θr)+

2E0

Zτ
q′′ ·v,

(33)
with

LS =
1

τ

{

E0

[

ρ+2u ·v+θt

(

v2 − 3

2

)

+
4qt ·v

15

(

v2 − 5

2

)]

−h0

}

.

(34)

The dimensionless mean relaxation time, which has the order
of the Knudsen number, is expressed as

τ =
2Kn√

π
=

µ (T0)

n0L

√
2

mkBT0
. (35)

The perturbations of macroscopic flow properties from the
global equilibrium state are calculated from the velocity mo-
ments of h0 and h2

[ρ,u,θt ,qt ] =
∫ [

1,v,
2

3
v2 −1,v

(

v2 − 5

2

)]

h0dv,

[θr,qr] =
∫ [

2

d
,v

]

h2dv.

(36)

We have mentioned that the kinetic model is reduced to the
Shakhov model for monatomic gases in the limit of Z → ∞.
However, it may bring errors due to the fact that a velocity-
independent relaxation time τ is used. To improve the model
accuracy, Wu proposed to recover the realistic relaxation time
by replacing the elastic collision part LS with the Boltzmann
collision operator33

LB =
∫∫

B

[

E0
(
v′)h0

(
v′
∗
)
+E0

(
v′
∗
)

h0
(
v′)

−E0 (v)h0 (v∗)−E0 (v∗)h0 (v)

]

dΩdv∗,

(37)

where B is the collision kernel, v, v∗, v′, and v′
∗ are the

pre/post velocities of a collision pair, and Ω is the solid an-
gle. The collision kernel is determined by the intermolecular
potential. In this paper, we employ the inverse power law,
where the shear viscosity is a single power-law function of
temperature, i.e., µ ∝ T ω

t with ω the viscosity exponent.
Under the Maxwell’s boundary condition with a constant

accommodation coefficient, the perturbed distribution func-
tions at the walls (x1 = 0 or 1) are determined as

h0 (v) =α0E0

[

±∆θ
(
v2 −2

)

−2
√

π

∫

v′·n<0
v′ ·nh0

(
v′)dv′

]

+(1−α0)h0 (v−2(v ·n)n) ,

h2 (v) =±α0E0
d

2
∆θ +(1−α0)h2 (v−2(v ·n)n) ,

(38)

where ∆θ = ∆T/T0 is the perturbation of wall temperature.

B. Determination of TJC and Knudsen layer function

In order to avoid overlap of the two Knudsen layers ad-
jacent to the plates, we set a small Knudsen number thus
τ = 0.01. The discrete velocity method is employed to deter-
ministically solve the kinetic equations (32), where the steady-
state solution is obtained using the general synthetic iterative
scheme40–42 that is developed by the authors to improve inef-
ficiency and inaccuracy of the conventional iterative scheme
for small-Knudsen-number flows. In the scheme, a set of syn-
thetic equations governing the evolution of macroscopic flow
properties are simultaneously solved with the kinetic equa-
tions, which help accelerate the evolution of distribution func-
tions. The kinetic equations in turn provide high-order terms
for the constitutive relations in the macroscopic equations and
the boundary condition as well. It has been rigorously proven
that the scheme can achieve fast convergence, i.e., obtain
steady-state solution within dozen of iterations over the whole
range of Knudsen numbers, retain accuracy in the high Knud-
sen number region and asymptotically preserve the Navier-
Stokes solution on very coarse spatial grid when Kn → 0.
Hence it is efficient and accurate to simulate the current mul-
tiscale problem, possessing hydrodynamic scale in the bulk
region and kinetic scale in the Knudsen layer. The details of
the numerical scheme for linear flows of molecular gases can
be found in Ref.42. We will omit the description in the present
paper and leave some remarks on the accuracy of the compu-
tation in Appendix.

The TJC is calculated from the linear fitting of the temper-
ature profile, named θNS, in the bulk region (x1 ∈ [0.3,0.7]),
according to its definition (1) as

ζT =−k+∆θ

2kτ
, (39)

where k is the slope coefficient in the linear fitting

θNS (x1) = k

(

x1 −
1

2

)

∆θ . (40)
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TABLE I. Temperature jump coefficient ζT in monatomic gases. The
inverse law potential is consider with the viscosity component setting
as ω = 0.5 and ω = 1.0.

ω 0.5 1.0
ζT 1.9321 2.0058
ζT from9 1.9194 -

The Knudsen lay function, i.e., defective temperature Θ, is ob-
tained by comparing the kinetic solution and the linear fitting
within the Knudsen layer

Θ(x1) =
1

kτ∆θ
(θNS −θ) . (41)

We will separately consider the TJC (Knudsen layer function)
for the translational and rotational temperatures, which are de-
noted as ζTt (Θt ) and ζTr (Θr), respectively in the following
sections.

V. RESULTS AND DISCUSSIONS

We first present results in monatomic gases that are ob-
tained by solving the linearized Boltzmann equation. The re-
sults will be compared to the data in the literature, to show the
accuracy of our solutions. Then elaborate results and discus-
sions will be given for molecular gases.

A. Temperature jump in monatomic gas

We consider two different cases, choosing ω = 0.5 and
ω = 1.0, which correspond to the hard-sphere and Maxwellian
molecular models. A more realistic potential will lead to a re-
sult between the two situations43. The boundary condition is
fully-diffuse wall with α0 = 1 in (38). The obtained TJCs are
listed in Table I, while the Knudsen layer functions are plotted
in Figure 3. The solutions for hard-sphere molecules obtained
by Sone9 who used a finite different scheme to directly solve
the linear Boltzmann equation, has also been included. Note
that due to a different definition of normalization, Sone’s orig-
inal results are multiplied by 4/5 to make equivalent to our
solutions. It is observed that our results have a good agree-
ment to the reference data, where relative difference between
the TJCs for ω = 0.5 is about 0.67%. Just as that have been
found in the literature, the temperature jump is not sensitive to
the intermolecular potential: the TJC rises with a magnitude
of 0.07 from the hard-sphere model to the Maxwell model; the
maximum absolute difference in the Knudsen layer function is
about 0.13.

B. Temperature jump in molecular gas

For reliable results, we need to determine the freely ad-
justable parameters in the kinetic model. A proper value for

0.0 2.5 5.0 7.5 10.0 12.5
x1/

0.0

0.2

0.4

0.6 = 0.5
= 1.0

Sone's solution

FIG. 3. Comparison of the Knudsen layer functions in monatomic
gases. Lines are our results obtained by solving the linearized
Boltzmann equation. Markers illustrates9 results for hard-sphere
molecules.

the rotational collision number can be obtained to recover the
experimentally measured shear and bulk viscosities. How-
ever, it is difficult to determine the thermal relaxation rates
from an experimental measurement of the thermal conductiv-
ity, since only the total conductivity is straightforwardly ob-
tained. In this paper, we use the values of Z and Ai j extracted
from the direct simulation Monet Carlo (DSMC) method. In
the DSMC equipping with the variable-soft-sphere model43

and the Borgnakke and Larsen 44 collision rule for molecular
gases, the rotational collision number is the only factor that
can modify the thermal relaxation rates once the shear viscos-
ity and self-diffusivity are fixed; by monitoring the relaxation
of heat fluxes in homogeneous systems, the correlations of Ai j

against Z can be obtained25. It is shown that all the param-
eters Ai j are inversely proportional to the rotational collision
number. By matching the total thermal conductivity, or equiv-
alently feu = 1.993 at T0 = 300 K measured in the Rayleigh-
Brillouin scattering in rarefied gases24, the parameters for ni-
trogen are given as: Z = 2.667, Att = 0.786, Atr = −0.201,
Art = −0.059, and Arr = 0.842, resulting in ft = 2.365 and
fr = 1.435. Considering that both the bulk viscosity and ther-
mal conductivity are determined by the collision number in
the DSMC, the given value of Z may not lead to the correct
bulk viscosity.

We have shown that the molecular interaction in elastic col-
lision does not significantly influence the TJC and the Knud-
sen layer function. Now we are investigating how the unique
transport processes in molecular gases affect the temperature
jump. We first consider the influence of the temperature relax-
ation (6) by changing the rotational collision number. The gas
is nitrogen with ω = 0.74, d = 2, ft = 2.365 and fr = 1.435 (or
Att = 0.786, Atr = −0.201, Art = −0.059, and Arr = 0.842).
We set three different values of Z as 1.0, 2.667 and 5.0. The
boundary condition is set as fully-diffuse reflection. The ob-
tained temperature jump coefficients are listed in Table II. It
is found that the three TJCs have almost the same value of
about 1.73, due to the fact that the translational, rotational and
overall temperatures coincide in the bulk region, i.e., outside
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TABLE II. Temperature jump coefficients in molecular gases with
different rotational collision numbers Z. The other parameters are
d = 2, ω = 0.74, Att = 0.786, Atr = −0.201, Art = −0.059, and
Arr = 0.842, thus ft = 2.365, fr = 1.435 and feu = 1.993. Fully-
diffuse gas-wall interaction is considered.

Z 1.0 2.667 5.0
ζTt

1.7300 1.7303 1.7305
ζTr

1.7300 1.7302 1.7303
ζT 1.7300 1.7303 1.7304

0 2 4 6 8
x1/

0.0

0.2

0.4

0.6
t, Z= 1.0
r, Z= 1.0
t, Z= 5.0
r, Z= 5.0

FIG. 4. The Knudsen layer functions for the translational and the
rotational temperatures when Z = 1.0 and Z = 5.0. The other param-
eters are d = 2, ω = 0.74, Att = 0.786, Atr =−0.201, Art =−0.059,
and Arr = 0.842, thus ft = 2.365, fr = 1.435 and feu = 1.993. Fully-
diffuse gas-wall interaction is considered.

of the Knudsen layer. The rotational collision number Z has
hardly any influence on the TJC. The translational and rota-
tional Knudsen layer functions for Z = 1.0 and Z = 5.0 are
plotted in Figure 4, which demonstrates that the rarefied ef-
fect in the Knudsen layer leads to the deviations between the
translational and internal temperatures. When Z = 1.0, i.e.,
inelastic collisions that exchange translational and internal en-
ergies frequently take place, Θt and Θr are close, while as Z

increases to 5.0, i.e., the probability for inelastic collisions be-
comes smaller, the discrepancy between Θt and Θr enlarges.
However, the variation is not significant.

Then we study the influence of thermal relaxations (7) by
changing the relaxation rates and retaining Z = 2.667. The
thermal conductivities will vary with Ai j, therefore in order to
make duly comparisons, the total Eucken factor feu = 1.993
is kept as the experimental value for nitrogen at T0 = 300 K.
When we alter the values of ft and fr, the cross terms Atr and
Art are also fixed, while the diagonal terms Att and Arr will
change correspondingly. Figure 5(a) displays the TJCs against
the translational Eucken factor, where the three lines relate
to the three groups of cross terms: Atr = Art = 0.0 without
cross exchanges; Atr =−0.201 and Art =−0.059 the ones ex-
tracted from the DSMC; Atr =−1.005 and Art −0.295 that are
5 times larger, in magnitude, than the previous group, repre-
senting intensified cross exchanges. Note that the TJCs for the
different temperatures are almost the same, thus only the val-

ues of ζT are plotted. The TJC first falls and then slightly rises
as ft increases (or fr decreases), and the minimum value that
is about 1.72 appears when ft is around 2.2 ∼ 2.25. Large val-
ues of TJC occur when ft ( fr) is relative small (large). When
ft varies from 1.5 to 2.5, the largest TJC is about 110%∼115%
of the minimum one. For a fixed group of ft and fr, the
TJC slightly changes with the thermal relaxation rates, where
the variation in magnitude is smaller than 0.1. The Knudsen
layer functions are plotted in Figure 5(b) for Atr =−0.201 and
Art =−0.059. It is shown that, when ft = 1.5 and fr = 2.733,
the translational Knudsen layer function Θt is larger than the
rotational Θr, which implies that Tt in the Knudsen layer de-
viates more from the Navier-Stokes solution; while when ft
increases to 2.5 and fr reduces, the situation reverses and now
Θr is larger. The two Knudsen layer functions meet at around
ft ≃ 2.20, which corresponds to that when the minimum tem-
perature jump coefficient emerges.

Compared to monatomic gases, the TJC in molecular gases
is generally smaller.

C. The minimum TJC

We have shown that for a selected gas species with a cer-
tain internal degree of freedom and a fixed total thermal con-
ductivity, the values of TJC and Knudsen layer function de-
pend on the relative quantity of the translational contribution
in the total thermal conductivity to the internal one. When
the translational contribution ft is relatively larger, the trans-
lational Knudsen layer function is smaller than the internal
one, i.e., the translational temperature is closer to the extrap-
olated Navier-Stokes solution in the Knudsen layer; the sit-
uation reverses when the internal contribution becomes rela-
tively larger. A minimum TJC can be found when the transla-
tional and internal Knudsen layer functions overlap; the larger
the differences between the translational and rotational Knud-
sen layer functions or the translational and internal compo-
nents of the total thermal conductivity, the larger the TJC.

We can give an estimation at which value of ft the minimum
TJC appears under the classical Maxwell’s gas-surface inter-
action. Since the translational and internal Knudsen functions
are coincident, the analytical TJCs (30) that exclude the effect
from the Knudsen layer, should be equal to each other, see the
dotted dash line in Figure (1), corresponding to the crossover
points of the three lines in 2(a) and (b). Therefore from (30),
we find the minimum TJC emerges when

ft =
4

3
fr =

4(3+d)

3(4+d)
feu, (42)

which is independent on the rotational collision number and
the accommodation coefficient. This is further confirmed
from the numerical results illustrated in Figure 6.

D. Correction to the analytical TJC

Comparing the numerical results of the TJC presented in
this section to the ones obtained from the analytical formu-
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1.6 1.8 2.0 2.2 2.4
ft

1.7

1.8

1.9

2.0

T

(a)

Atr = 0.0, Art = 0.0
Atr = 0.201, Art = 0.059
Atr = 1.005, Art = 0.295

0 2 4 6 8
x1/

0.0

0.2

0.4

0.6

0.8

1.0
(b)

t, ft = 2.5, fr = 1.233
r, ft = 2.5, fr = 1.233
t, ft = 2.2, fr = 1.683
r, ft = 2.2, fr = 1.683
t, ft = 1.5, fr = 2.733
r, ft = 1.5, fr = 2.733

FIG. 5. Influence of the translational and rotational Eucken fac-
tors when the total one is fixed feu = 1.993: (a) Temperature jump
coefficient displaying the influence of three different groups of Atr

and Art . (b) Knudsen layer functions displaying the influence when
Atr = −0.201 and Art = −0.059. The other gas parameters are
Z = 2.667, d = 2 and ω = 0.74. Fully-diffuse gas-wall interaction is
considered.

lations given in § III, we can find that the estimate (30), in
which the contribution from the Knudsen layer to the tem-
perature jump has been excluded, possesses large errors. The
main errors are:

1. The rotational collision number may have strong effect
on the value of the analytical translational and inter-
nal TJCs, making them deviate a lot from the analytical
overall TJC. However, the actual translational, internal
as well as overall TJCs are almost identical due to the
fact that the three temperatures overlap in the bulk re-
gion at small Knudsen numbers. The actual TJC is in-
dependent on the rotational collision number. Although
the analytical overall TJC has this feature, it is much
smaller than the actual TJC.

2. Under the classical Maxwell’s boundary condition with
a constant accommodation coefficient and for a certain

1.6 1.8 2.0 2.2 2.4
ft

1.8

2.0

2.2

2.4

T

ft = 2.214

ft = 2.214

(a)

d= 2, feu = 1.993, 0 = 1.0
d= 2, feu = 1.993, 0 = 0.9

1.6 1.8 2.0 2.2 2.4
ft

3.7

3.8

3.9

4.0

4.1

4.2

T

ft = 1.714

(b)

d= 3, feu = 1.5, 0 = 0.5

0 2 4 6
x1/

0.0

0.2

0.4

0.6
(c)

t, d= 2, feu = 1.993, ft = 2.214
r, d= 2, feu = 1.993, ft = 2.214
t, d= 3, feu = 1.5, ft = 1.714
r, d= 3, feu = 1.5, ft = 1.714

FIG. 6. Under the classical Maxwell’s boundary condition with a
constant accommodation coefficient, a minimum TJC can be found
when the translational and internal components ft and fr vary but the
total Eucken factor feu is fixed. (a)-(b) The value of ft at which the

minimum TJC appears is about ft =
4(3+d)
3(4+d)

feu that does not depend

on the rotational collision number Z and the accommodation coef-
ficient α0; (c) The Knudsen layer functions of the translational and
internal temperatures are coincident at the minimum TJC. For cases
of d = 2 and feu = 1.993, we have set Z = 2.667, Atr =−0.201 and
Art = −0.059. For cases of d = 3 and feu = 1.5, we have set Z = 3
and Atr = Art = 0.0. In (c) α0 = 1.
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value of total Eucken factor, the analytical formula-
tion cannot reproduce the trend of the variation of TJC
against the translational Eucken factor, that is the TJC

first falls to a minimum value and then rises.

To correct the analytical estimation, we propose a new for-
mulation for the TJC in molecular gases, read as

ζT =
2−α0

α0
(1+0.1621α0)

√
π

8

(
4(3+d)

4+d
feu +

∣
∣
∣
∣

4

4+d
feu −

3

3+d
ft

∣
∣
∣
∣

)

, (43)

which is free of Z as well as the thermal relaxation rates Ai j,

and can produce the minimum TJC at ft =
4(3+d)
3(4+d) feu. It can

also be shown that this new formulation is reduced to (4) for
monatomic gases when d = 0 and feu = ft =

5
2 . The com-

parisons between the new formulated TJC and the numerical
solutions are plotted in Figure 7. The formulation shows high
accuracy especially around the minimum values, while the de-
viation becomes slightly larger when TJC is getting higher.
This can be explained by the neglect of higher order terms of
∆Tt/r in (29), which leads to linear dependence of TJC on the
Eucken factors. While it can be seen from Figure 7 that the
numerical results of TJC show slight nonlinear dependence
on ft . Nevertheless, for all the considered cases, the relative
differences between the TJCs calculated from (43) and the nu-
merical ones are not larger than 5.78%.

VI. CONCLUSIONS

We have investigated the temperature jump problem in rar-
efied molecular (diatomic and polyatomic) gases with excited
rotational energy, on the base of a kinetic model that is capa-
ble to realize the temperature relaxation described by the Lan-
dau relation and the general thermal relaxation predicted by
the Wang-Chang Uhlenbeck equation. In the kinetic model,
the relaxation rates of these unique transport processes in
molecular gases can be freely adjustable, the influences of
which on the temperature jump have been separately inves-
tigated. Analytical estimations of the temperature jump coef-
ficient subject to the Maxwell’s gas-surface interaction with
a constant accommodation coefficient have been obtained by
assuming a first-order Chapman-Enskog velocity-energy dis-
tribution function. The analytical TJCs are functions of the
accommodation coefficient, the internal degree of freedom,
the rotational collision number, as well as the Eucken factor
and its translational and internal components. Due to the fact
that the Knudsen layer cannot be resolved from the first-order
truncated distribution function, the analytical estimations may
possess larger errors. The temperature jump coefficient and
the Knudsen layer function have been numerical calculated
by directly solving the kinetic model for the one-dimensional
steady conductive problem. Some conclusions can be ob-
tained from the numerical results:

1. Compared to the one of a monatomic gas, the tem-
perature jump coefficient is general smaller in molecu-

1.5 2.0 2.5
ft

1.5

2.0

2.5

3.0

3.5

T

0 = 1.0

0 = 0.9 0 = 0.7

Z= 2.667, d= 2, feu = 1.993

(a)

1.5 2.0 2.5
ft

4

5

6

7

8
T

0 = 0.5

0 = 0.3

Z= 3, d= 3, feu = 1.5
(b)

FIG. 7. A new formulation (43) is proposed to estimate the TJC
in molecular gases under the classical Maxwell’s gas-surface inter-
action with a constant accommodation coefficient α0. Compari-
son between the new estimated (solid lines) and numerical (mark-
ers) results: (a) d = 2, Z = 2.667, feu = 1.993, Atr = −0.201, and
Art =−0.059; (b) d = 3, Z = 3, feu = 1.5, Atr = Art = 0.

lar gases, where energy-exchange between translational
and internal motions occurs.

2. The temperature jump coefficients related to the transla-
tional, internal and overall temperatures are coincident
due to the fact that the three temperatures overlap in the
bulk region when the Knudsen number is small. But
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TABLE III. Computations are carried out on different grid systems to find converged results of the jump coefficient ζT .

Case N = 64 N = 64 N = 64 N = 128
Nv = 96×24×24 Nv = 48×24×24 Nv = 96×48×24 Nv = 96×24×24
N f = 48×24×24 N f = 24×24×24 N f = 48×24×24 N f = 48×24×24

#1 1.7307 1.7705 1.7339 1.7302
#2 1.8994 1.9292 1.9017 1.8994
#3 1.7638 1.8058 1.7672 1.7633
#4 1.9834 2.0065 1.9853 1.9828
#5 1.7479 1.7888 1.7513 1.7474

the corresponding Knudsen layers may be quit different
due to the rarefaction effect.

3. The intermolecular potential for the elastic collisions
has a limited influence on the temperature jump.

4. The temperature jump coefficient is almost independent
on the rotational collision number. However, the dif-
ference between the translational and internal Knudsen
layer functions enlarges as the rotational collision num-
ber increases, although the variation is not significant.

5. The thermal relaxation processes significantly affect the
temperature jump. The value of the temperature jump
coefficient is determined by the relative quantity of the
translational components in the total thermal conduc-
tive to the rotational one. For a certain gas species with
a fixed total Eucken factor, the temperature jump coef-
ficient and the Knudsen layer functions vary with the
translational Eucken factor. A minimum value of the
temperature jump coefficient emerges when the Eucken

factors are ft =
4
3 fr =

4(3+d)
3(4+d) feu, where the translational

and internal Knudsen layer functions are coincident.

Based on the numerical results, a new formulation has been
proposed to estimate the temperature jump coefficient under
the classical Maxwell’s boundary condition, which is a func-
tion of the internal degree of freedom, the total Eucken factor
and its translational component, and the constant accommo-
dation coefficient. The formulation is reduced to the one for
monatomic gases in the limit when the translational-rotational
energy exchange vanishes.
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Appendix A: On the accuracy of the numerical results

In this section, we present some analyses about the accu-
racy of our numerical results. To find the solution of the
heat conduction problem, the kinetic model equation (32) is
solved by the discrete velocity method combining with the
general synthetic iterative scheme. The spatial derivatives in
the governing equations are approximated by the 4th-order
discontinuous Galerkin method on one-dimensional domain
partitioned by N linear segments. The cell size is refined
near the solid plates. The integrals in the molecular veloc-
ity space are approximated by the first-order quadrature rule.
Nv = N1

v × N2
v × N3

v discrete velocities are allocated over a
truncated domain of [−6,6]3, where v1 is discretized by non-
uniform nodes with refinement around v1 = 0, while v2 and
v3 are discretized by uniform nodes. The means to partition
the spatial and velocity spaces can be found in Ref.42, see
equations (43) and (47) there. The linearized Boltzmann col-
lision operator is evaluated by the fast spectral method, using
N f = N1

f ×N2
f ×N3

f uniform frequencies. The details of the

fast spectral method can be found in Ref.45,46. When conduct-
ing the iterative scheme to find the steady-state solution, the
iteration terminates when the maximum residue in flow den-
sity, temperature and heat fluxes is smaller than 10−6.

We carried out computations on different grid systems and
confirmed that the obtained results are close to each other. The
obtained temperature jump coefficients from different cases:

1. #1: Z = 2.667, ft = 2.365, feu = 1.993, Atr = −0.201
and Art =−0.059;

2. #2: Z = 2.667, ft = 1.5, feu = 1.993, Atr = Art = 0.0;

3. #3: Z = 2.667, ft = 2.5, feu = 1.993, Atr = Art = 0.0;

4. #4: Z = 2.667, ft = 1.5, feu = 1.993, Atr = −1.005,
Art =−0.295;

5. #5: Z = 2.667, ft = 2.5, feu = 1.993, Atr = −1.005,
Art =−0.295;

are listed in Table III. The results presented in §V are obtained
with N = 128, Nv = 96×24×24 and N f = 48×24×24.
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Nomenclature
A matrix of relaxation rates
C peculiar velocity
d rotational degrees of freedom

Et , Er equilibrium distribution of velocity and rotational energy
f velocity-energy distribution function
f0 equilibrium velocity-energy distribution function
f1 perturbed distribution function

ft , fr, feu translational, rotational and total Eucken factor
fw velocity-energy distribution at the wall

f+, f− incident and reflected distribution function
gt , gr reference velocity distribution functions
G, R reduced velocity distribution functions

h0, h1m h2 dimensionless perturbed velocity distribution functions
I molecular rotational energy
I′ incident molecular rotational energy
k slope coefficient in the linear fitting of temperature

kB Boltzmann constant
Kn Knudsen number
L characteristic flow length

L0, L2 collision terms in the linear system
LS relaxation approximation of elastic collision
LB Boltzmann operator
m molecular mass
n number density
n0 reference number density
n outward normal vector at the wall

pt , pr, p translational, rotational and overall pressure
Pr Prandtl number

qt , qr dimensionless translational, rotational heat flux
q′, q′′ linear combinations of qt and qr

Qt , Qr translational and rotational heat flux
Q′, Q′′ linear combinations of Qt and Qr

R reflection kernel
t̂, t time, dimensionless time

Tt , Tr, T translational, rotational and overall temperature
T0 reference temperature
Te linearly extrapolated temperature
Tw wall temperature
U ,u bulk velocity, dimensionless velocity
vm most probable molecular speed
V molecular translational velocity
V ′ incident molecular translational velocity
X,x location, dimensionless location

Z rotational collision number
α0 accommodation coefficient
γ specific heat ratio

δθ dimensionless perturbed wall temperature
∆Tt , ∆Tr translational and rotational temperatures jump

ζT temperature jump coefficient
ζ ∗

Tt
, ζ ∗

Tr
, ζ ∗

T translational, rotational and overall TJCs
Θ Knudsen lay function (defective temperature)

θt , θr, θ dimensionless perturbed temperature
θNS linear fitting of the temperature profile

κt , κr, κ translational, rotational and total thermal conductivity
λ mean free path
µ shear viscosity
µb bulk viscosity
ρ dimensionless perturbed number density

τ̂,τ relaxation time, dimensionless relaxation time
ω viscosity index
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