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One sentence summary: In deep subseafloor sediments above 45°C microbial cells are rare, 

endospores prevail, and life still persists at 120°C. 
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Abstract: Microorganisms in marine subsurface sediments substantially contribute to global biomass. 1 

Sediments warmer than 40°C account for ~half the volume of marine sediment, but the processes 2 

mediated by microbial populations in these hard-to-access environments are poorly understood. Here 3 

we demonstrate the presence and activity of microbial life in up to 1.2 km deep and up to 120°C hot 4 

sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop 5 

two orders of magnitude, while endospores become more than 6,000 times more abundant than 6 

vegetative cells. Methane is biologically produced and oxidized until sediments reach 80-85°C. In 7 

100°C to 120°C hot sediments, isotopic evidence and elevated cell concentrations demonstrate the 8 

activity of acetate-degrading hyperthermophiles. Strikingly, above 45°C populated zones alternate 9 

with zones up to 192 m thick where microbes were undetectable. 10 

Scientific ocean drilling has demonstrated the ubiquity of microbial life in deep subseafloor 11 

environments down to 2.5 km below seafloor (1-3). As sediment temperature increases with burial 12 

depth, more than 50% of the global marine sediment volume is situated above 40°C (4). So far, the 13 

vast majority of subseafloor-life studies has targeted environments with in-situ temperatures <30°C, 14 

and consequently the habitability of hotter sediments is largely unexplored. Microbes with growth 15 

temperatures up to 122°C have been isolated at hydrothermal vents (5), where the metabolism of 16 

these hyperthermophiles is fueled by high fluxes of oxidants and reductants (6). However, in deeply 17 

buried sediments, the potential metabolic energy is limited and with increasing depth and 18 

temperature the slow-growing microbial communities struggle to meet the cellular maintenance 19 

energy requirement (3, 7, 8). Even in organic-matter rich petroleum reservoirs, microbial activity 20 

appears to cease at temperatures of ~80°C (9, 10). 21 

Aiming to fill the vast knowledge gaps regarding the response of microbial life to increasing 22 

temperature, we investigated up to 1.2 km deep and up to 120°C hot sediments in the Nankai Trough 23 

off Cape Muroto, Japan (fig. S1). In this area, an up to 16 million year (My) old, ~600 m thick 24 

succession of hemipelagic mudstones and tuffs has been rapidly buried by an equally thick layer of 25 

trench deposits over the past ~0.4 My (11, 12; fig. S2). Sediments concurrently heated by 26 

approximately 50°C, and the onset of subduction formed a décollement separating the accreting and 27 

underthrusted domains (11, 12). First indications for the presence of microbial life in ~800 m deep, 28 

~80-90°C warm sediments at a nearby drill site date back two decades (12, 13). However, insufficient 29 

sensitivity in cell detection at that time compromised the habitability assessment of this environment 30 

(13). We designed Expedition 370 of the International Ocean Discovery Program (IODP) to achieve 31 

maximal sensitivity in life detection together with accurate determination of in-situ temperatures, 32 

and established Site C0023 (32°22.0018ʹN, 134°57.9844ʹE, 4776 m water depth; fig. S1) in the vicinity 33 

of the previous drill site (14). Rigorous precautions during sampling and improvements in cell 34 

enumeration techniques (11) increased the sensitivity in cell detection by five orders of magnitude 35 

compared to the previous study (13). For the quantification of cells that can be stained by a 36 

fluorescent dye (hereafter termed vegetative cells; ref. 11), the procedural blank was 4.2 ± 4.0 cells 37 

cm-3 of sediment (N = 20), thereby yielding a minimum quantification limit (MQL) of 16 cells cm-3 38 

(11). Temperature measurements in the borehole constrained a steady-state temperature profile 39 

with a gradient of 110°C km—1 and a temperature of 120 ± 3°C in the deepest core retrieved from the 40 

basement at 1177 m below seafloor (mbsf) (11, figs. S3-4). The combination of authigenic minerals 41 

and thermally altered biomarkers reveals a history of episodic, short-term ingression of ~140-220°C 42 

hot hydrothermal fluids along permeable strata in the underthrust domain (15, fig. S2).  43 

At Site C0023, the depth profile of cell concentrations deviates notably from the global trend of 44 

gradually decreasing cell concentrations observed in similarly deep but substantially colder (<30°C) 45 

sediments (1, 2). At ~300-400 mbsf, concentrations of vegetative cells drop abruptly by two orders of 46 
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magnitude and approach the MQL as temperature rises from 40°C to 50°C (Fig. 1A). Concurrently, 47 

concentrations of endospores, i.e., dormant, resistant structures affiliated with the bacterial phylum 48 

Firmicutes (fig. S5), which are widely found in marine sediments and soils (16, 17), increase to 49 

2 x 105 cm-3 (Fig. 1B). Nevertheless, a small microbial population persists at >50°C in the form of both 50 

vegetative cells and endospores (Fig. 1). Down to the 120°C hot basement, sediments harboring 51 

microbial communities with up to 400 vegetative cells cm-3 are interspersed within intervals of up to 52 

192 m thickness, in which no cells were detected (Fig. 1A; fig. S6). We rule out the possibility that the 53 

detection of cells resulted from contamination because cell concentration is neither related to the 54 

abundance of fractures in sediment cores nor to the concentration of the perfluorocarbon-based 55 

contamination tracer supplied during drilling operation (11, fig. S7); such relationships would be 56 

expected if contaminant cells were introduced via drilling fluids. Consistent with the extremely low 57 

concentrations of vegetative cells and the difficulty of extracting DNA from endospores (18), DNA 58 

yields were insufficient for producing reliable DNA-based community data for samples buried more 59 

deeply than 320 mbsf (14). In samples shallower than 320 mbsf, the community resembled those 60 

found in shallow subsurface sediments (14). 61 

In contrast to the scattered distribution of vegetative cells in sediments >50°C, endospores show a 62 

clear zonation (Fig. 1B), as quantified by measurement of the diagnostic biomarker dipicolinic acid 63 

(DPA) (11, 19). We rule out that substantial levels of DPA could have accumulated after the decay of 64 

endospores, given the propensity of 2-carboxylated pyridines to decarboxylate upon moderate short-65 

term heating (20). Endospore concentrations rise prominently in a ~200-m interval of 75-90°C hot 66 

sediments, with a maximum of 1.2 x 106 endospores cm-3 at 85°C. The average endospore-to-67 

vegetative cell ratio exceeds 6,000 in sediments below 350 mbsf (11; table S1) and is thus 2-3 orders 68 

of magnitude higher than in cold subseafloor sediments (19). Plausible scenarios for the 69 

accumulation of endospores in sediments that are nearly barren of vegetative cells relate to the 70 

thermal history of the site since the onset of trench conditions ~0.4 My ago (11, 12) and involve the 71 

transitory growth of a thermophilic population of endospore formers (cf. ref. 17) after temperature 72 

rose to ~50°C and its subsequent sporulation (11, fig. S8). Interestingly, in two expanded horizons, at 73 

570-633 mbsf and 829-1021 mbsf, neither vegetative cells nor endospores were detected (Fig. 1, fig. 74 

S6).  75 

Pore-water profiles of microbial substrates and products provide evidence for microbial activity 76 

down to the ~16 My old oceanic crust (Fig. 2). High concentrations of methane with a mean carbon 77 

isotopic composition (δ13C-CH4) of -61.3 ± 3.0 per mil (‰) (Fig. 2A-B) indicate biogenic 78 

methanogenesis at least down to the 80-85°C hot sulfate methane transition zone (SMTZ) at ~730 79 

mbsf. The positive excursion in δ13C-CH4 in the 80 to 85°C hot SMTZ (Fig. 2B) points to a biogenic 80 

methane sink and is consistent with previous observations from cultivation-based approaches that 81 

demonstrated the activity of thermophilic anaerobic methane-oxidizing communities at these 82 

temperatures (21-22). Below the SMTZ, methane is only present in micromolar concentrations, with 83 

rising δ13C-CH4 values and decreasing methane/ethane ratios indicating a relative increase of 84 

thermogenic hydrocarbons (Fig. 2B). Remarkably, a reversal of this trend at >1000 mbsf hints at a 85 

biogenic methane source above 100°C. 86 

Diffusive profiles of pore-water constituents do not allow the distinction between current and recent 87 

in-situ biogeochemical processes, while radiotracer experiments specifically target on-going 88 

microbial activity, albeit with some unavoidable deviation from in-situ conditions. At Site C0023, 89 

radiotracer experiments reveal present-day methanogenic activity in 65% of the investigated samples 90 

(Fig. 2D). Potential rates of methanogenesis via CO2 reduction in sediments below 300 mbsf are 91 

generally below 4 pmol cm-3 d-1 and thus within the range of previous observations made in the deep 92 
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subseafloor (23). Their depth distribution is consistent with cellular concentrations (Fig. 1) and 93 

activities deduced from the pore-water profiles of methane (Fig. 2A-B). Rates are highest in the 94 

methanic zone, decrease distinctly to <0.6 pmol cm-3 d-1 below the SMTZ, and drop to undetectable 95 

levels in 63% of the samples taken from the deep expanded horizon with no detectable cells and 96 

endospores (Fig. 2D). Strikingly, potential methanogenesis rates rise again to values observed in the 97 

methanic zone in the three deepest samples (Fig. 2D), thus confirming the existence of active 98 

methanogenic communities in 110-120°C hot sediments and pillow basalts above basement. 99 

Acetate has been suggested to fuel microbial life in deeply buried, geothermally heated sediments 100 

(24). Throughout the sediment column of Site C0023, reactions degrading acetate via sulfate 101 

reduction and methanogenesis are exergonic, with Gibbs free energy yields becoming increasingly 102 

negative with depth (fig. S9; ref. 11). The concentrations of acetate and its carbon isotopic 103 

compositions (δ13C-acetate) (Fig. 2C) indicate distinct changes in acetate utilization with temperature 104 

and depth. In the up to 60°C hot upper 600 mbsf, low and invariable concentrations of acetate 105 

around 26 ± 22 µM (N=19) imply its balanced microbial production and consumption, while the 106 

corresponding fluctuation of δ13C-acetate around -25.5 ± 3.4‰ is consistent with various metabolic 107 

pathways influencing its pool (25). In sharp contrast, acetate utilization is minimal at 60°C to 100°C. 108 

At 60-75°C, acetate concentrations rise steeply with the simultaneous decline of methane 109 

concentrations and accumulation of endospores. A local minimum in acetate concentration at the 110 

SMTZ (Fig. 2C) is consistent with some microbial utilization at this geochemical interface. Below the 111 

SMTZ, acetate concentrations level at 9.2 ± 2.4 mM with an invariable δ13C-acetate 112 

around -18.8 ± 0.5‰. The combination of high concentration and low isotopic variability implies an 113 

acetate pool without significant turnover within the endospore-dominated zone as well as in the 114 

underlying 200 m thick zone, where neither cells nor endospores were detected.   115 

At >1030 mbsf, however, acetate concentrations decline and δ13C-acetate monotonically increases 116 

with depth, reaching a maximum of -7.9‰ in the deepest pore-water sample recovered from 117 

1101 mbsf. This trend is consistent with active hyperthermophiles degrading preferentially 13C-118 

depleted acetate, leaving the residual acetate isotopically enriched. Without continued consumption, 119 

diffusion would homogenize δ13C-acetate variations, as observed in the overlying sediments. The 120 

drawdown of the acetate pool requires isotopic fractionation factors of -7.7 to -15.4‰ (11, fig. S10), 121 

which are consistent with those observed in lab cultures (26). The size of the sink would have to be 122 

on the order of 5 x 10-12 mol cm-3 year-1 (11). Given cellular concentrations of 10 to 100 cm-3 in 123 

sediments corresponding to this acetate sink, the required cellular metabolic rates are 2-3 orders of 124 

magnitude lower than observed in lab cultures of the hyperthermophilic archaea Pyrococcus furiosus 125 

(27) and Archaeoglobus fulgidus (28). Thus, acetate profiles are consistent with the existence of a 126 

small acetate-utilizing microbial community at >100°C. Acetate oxidation and syntrophic 127 

consumption of the resulting CO2 and electrons by methanogens are a known acetate sink in deep 128 

sediments (29) and at elevated temperatures (30). This process is exergonic under in-situ conditions 129 

(fig. S9) and could account for the elevated methanogenesis rates (Fig. 2D) and the isotopic signature 130 

of methane (Fig. 2B) in the deepest portion of the borehole. 131 

Our findings reveal the impact of increasing temperature with depth on microbial life. This is 132 

exemplified in the massive collapse of the population of vegetative cells in <0.4 My old sediments at 133 

300-400 mbsf. In this interval, temperatures of 40-50°C are within the upper growth range of 134 

mesophiles. The coincident accumulation of endospores as a result of a putative sporulation of 135 

mesophilic endospore-forming Firmicutes (Fig. 1) supports the conclusion that the abundance and 136 

activity of microbial populations is primarily controlled by temperature-dependent physiological 137 

factors down to 600 mbsf. In the deeper portion of Site C0023 geological processes exert additional 138 
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control. A sharp decline in biogenic methanogenesis and acetate utilization at 70°C to 75°C coincides 139 

with the upper growth range of thermophiles, but notably, this depth interval concurrently spans the 140 

lithological boundary between Upper and Lower Shikoku Basin (cf. Fig. 1). At this boundary, tuffs 141 

(indurated volcanic ash) cease to be present. Tuff alteration forms smectite, and microbial reduction 142 

of Fe(III) in smectite serves as an energy yielding process and has in fact been found to promote 143 

smectite-to-illite conversion at 500-600 mbsf at Site C0023 (31). Thus, a modulation of the down-hole 144 

profile of microbial activity by microbe-mineral interactions is conceivable. Peak endospore 145 

concentrations at 85°C coincide with both the SMTZ and the plate boundary décollement. While 146 

frictional heating to temperatures of potentially up to ~1000°C (32) during plate motion likely causes 147 

additional challenges for microorganisms in this zone, endospores and high acetate concentrations 148 

provide a seed bank and energy, respectively, for an ecosystem recovery from episodic 149 

perturbations. 150 

In the upper 200 m of the underthrust domain, at ~90-100°C, an expanded zone without detectable 151 

cells and with no geochemical signs of microbial activity traverses the sparsely populated sediments 152 

(Figs. 1, 2). In this zone, under-compacted and mechanically weak sediments are overpressurized and 153 

affected by ~145-220°C hot fluids for short durations (15, 33). The short heating events may have 154 

locally sterilized sediment (15), but microbial cells, acetate consumption and methanogenic activity 155 

prevail again in >100°C sediments, where mechanical strength and salinity increase towards the 156 

sediment/basement interface (Figs. 1, 2, fig. S2). Hydraulic communication between basalts and 157 

overlying sediment is evidenced by shared styles of epigenetic mineralization in the form of calcite 158 

veins and ferruginous metal oxides. Mass transfer between basal sediment and a basalt-hosted 159 

aquifer, would increase the habitability of the basal sediment by reducing formation fluid pressure, 160 

and replenishing otherwise depleted substrates such as reduced iron and sulfate (34). 161 

Our study reveals the dependence of microbial abundance and activity to critical temperatures 162 

around 40-50°C and 70°C; it moreover shows that life in the deep subseafloor is not constrained by 163 

an upper temperature limit below 120°C. Our findings highlight the interplay of geological processes, 164 

temperature and microbial life in the deep, hot sediments of the Nankai Trough, and suggest a 165 

critical influence of subduction-related geological processes on habitability.  166 
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Fig. 1. Depth profiles of vegetative cells and endospores in relation to environmental factors at IODP 

Site C0023. (A) Concentrations of vegetative cells determined by counting of microbial cells fluorescently 

stained with SYBR Green I; based on a procedural blank of 4.2 ± 4.0 cells cm-3 of sediment (N = 20), the 

minimum quantification limit (MQL) was 16 cells cm-3. (B) Concentrations of bacterial endospores 

derived from the diagnostic biomarker dipicolinic acid; analytical sensitivity corresponds to a detection 

limit (DL) of 2.2 x 104 endospores cm-3. (C) A schematic summary of environmental factors such as 

temperature, tectonic units, and salinity showing the geochemical influence of basalt alteration in the 

basement; red symbols on the temperature axis designate the depth horizons at which in-situ 

temperature measurements were made (11). Gray shading indicates zones where concentrations of both 

vegetative cells and endospores were below the detection limits of the employed methods in all 

investigated samples; SMTZ indicates the location of the sulfate-methane transition zone (cf. Fig. 2).  
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Fig. 2. Geochemical signals of microbial metabolism at Site C0023. (A) Dissolved methane (14) and 

sulfate (14), (B) C1/C2 ratios (14) and δ13C-CH4, (C) dissolved acetate and δ13C-acetate, and (D) potential 

rates of methanogenesis (MG) based on conversion of 14C-CO2 to 14C-CH4; note that the value at 180 

mbsf lies off the scale off the chart. Potential MG (PMG) rates were determined at 40°C for ≤360 mbsf, 

60°C for 405-585 mbsf, 80°C for 604-775 mbsf, and 95 °C for ≥816 mbsf. The minimum quantification 

limit (MQL) was 0.094 pmol CH4 cm-3 d-1. Gray shading, SMTZ and temperature axis are as in Fig. 1. VPDB 

in panels B and D is the Vienna Pee Dee Belemnite standard. 
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Materials and Methods and Supporting Text 1 

1. Study site and operations (fig. S1) 2 

This study aimed to elucidate the influence of temperature on microbial communities in deep 3 

subseafloor sediments, and to determine the limits of microbial life. The particular challenge of such an 4 

endeavor arises from the necessity to potentially demonstrate the absence of microbial life. Accordingly, 5 

the highest possible levels of analytical sensitivity and contamination control need to be achieved under 6 

the demanding conditions of kilometer-deep scientific drilling. Expedition 370 of the International Ocean 7 

Discovery Program (IODP) was designed to meet this challenge. Our study site is located at the 8 

deformation front of the Nankai Trough subduction zone (fig. S1), ~125 km off Cape Muroto, Japan, in 9 

the vicinity of Sites 808 and 1174 of the Ocean Drilling Program (ODP) (35, 13). Due to high heat flow in 10 

this region (36), we expected to encounter the currently known upper temperature record of microbial 11 

life in the laboratory, ~120°C (5), at a relatively shallow depth of ~1.2 km below seafloor. From such 12 

depth, sediment cores can be retrieved by non-riser drilling, i.e. without the continuous circulation of 13 

dense drilling muds in a riser system, which is needed to advance to depths of several kilometers but 14 

associated with considerable contamination risks (3). At the same time, the increase of temperature with 15 

depth is still gradual enough to allow the observation of critical transitions with high depth and 16 

temperature resolution. For example, a 10°C change across the upper temperature limits of mesophiles 17 

(~43°C), thermophiles (~80°C), or deep subseafloor life in general can be expected to stretch over a 100 18 

m depth interval in the borehole. 19 

When Site C0023 (Hole C0023A: 32°22.00ʹN, 134°57.98ʹE, 4776 m water depth) was drilled and cored 20 

with DV Chikyu to a total depth of 1180 meters below seafloor (mbsf), sediment coring was combined 21 

with in-situ temperature measurements down to 408 mbsf. For greater depths, a precise temperature 22 

model was established based on detailed physical property measurements. Operations were concluded 23 

with the installation of a borehole observatory for long-term temperature measurements down to 860 24 

mbsf. No cores were retrieved from <189 mbsf, as the upper portion of the hole needed to be stabilized 25 

with a 20-inch casing. Cores of typically 3-9 m length were cut by a short advance modified hydraulic 26 

piston coring system (S-HPCS) from 189 mbsf to 408 mbsf, and by continuous rotary core barrel (RCB) 27 

coring from >410 mbsf to the bottom of the hole. Several measures were taken to minimize potential 28 

contamination and alteration of samples. (I) To avoid intrusion of microbes from drilling fluid during 29 

coring, intact parts of sediment cores without drilling induced fractures were identified by X-ray 30 

computed tomography (CT) image scans, sampled in the form of whole round cores (WRC) and cleaned 31 

immediately after retrieval. (II) To avoid introduction of microbes with airborne particles during sample 32 

processing in the laboratory, a super-clean working environment was established using tabletop air 33 

filtration units and static electricity neutralizers (ionizers) inside anaerobic chambers and clean benches. 34 

(III) To minimize alteration of depressurized samples and loss of information during storage, the carefully 35 

cleaned, anaerobically packed, refrigerated or frozen samples were transported by helicopter shuttle to 36 

Kochi Core Center (KCC) in Kochi Prefecture, Japan, on an almost daily basis. On shore, samples were 37 

further processed without delay in a laboratory that meets the International Organization for 38 

Standardization (ISO) Class 1 clean room standards. Operations at Site C0023 started with IODP 39 

Expedition 370 in September 2016 and finished with the retrieval of data from the temperature 40 

observatory and collection of surface sediments during RV Kairei/ROV Kaiko cruise KR18-04 in March 41 

2018. All operations, quality control measures, sampling procedures, shipboard analyses, and the 42 

installation and retrieval of the borehole observatory are described in detail in the expedition reports 43 

(14, 37).  44 
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 45 

2. Geology, physical properties, and thermal history of Site C0023 (fig. S2) 46 

As part of the Philippine Sea Plate, Site C0023 has been approaching the trench from the Shikoku Basin 47 

at a rate of around 41-65 mm y-1 for a total of ~16 million years (My). During the ~750 km long passage 48 

from spreading center to subduction zone, a 14 m thick layer of volcaniclastics and a 618 m thick layer of 49 

hemipelagic mudstone, occasionally interspersed by volcanic ash layers, piled up on the crust with an 50 

average sedimentation rate of ~35-53 m My-1 (38). Upon arrival in the trench ~0.4 million years ago (Ma), 51 

sedimentation rates increased drastically to up to ~1319 m My-1 (38). Since then, a 494 m thick layer of 52 

sand and silt rich mudstone accumulated, partly from debris flows or turbidity currents. The resulting 53 

succession of lithological units (fig. S2A) is consistent with previous findings (13, 35) and comprises axial 54 

trench-wedge facies (Subunit IIA, 189-318.5 mbsf), outer trench-wedge facies (Subunit IIB, 353-428 55 

mbsf), trench-to-basin transitional facies (Subunit IIC, 428-494 mbsf), upper Shikoku Basin facies (Unit III, 56 

494-637.25 mbsf), lower Shikoku Basin facies (Unit IV, 637.25-1112 mbsf), acidic volcaniclastics (Unit V, 57 

1112-1125.9 mbsf), and basaltic basement (Unit VI, 1125.9-1177 mbsf) (14). Both basin and trench 58 

deposits contain only little organic matter. Total organic carbon (TOC) contents decrease monotonically 59 

from 0.5 wt% at 190 mbsf to 0.02 wt% at the bottom of the hole, and low TOC/N ratios around 5.8 ± 2.1 60 

point to a predominantly marine source of the organic material (cf. Fig. F51 in ref. 14).  61 

Site C0023 is located in the protothrust zone of the Nankai Accretionary prism, which has formed by the 62 

off-scraping of sediment from the descending Philippine Plate (39). Situated seaward from the frontal 63 

thrust, Site C0023 shows little deformation compared to the landward part of the prism, but detachment 64 

surfaces are present and bisect the succession of lithological units into three separate domains (fig. S2A), 65 

i.e., (I) an upper domain that comprises the prism, cut by low angle thrusts, (II) the décollement zone at 66 

758-796 mbsf, consisting of relatively thin, characteristically brecciated fault zones that are alternating 67 

with several meter thick intact zones, and (III) an underthrust domain with extensional faulting and no 68 

thrust fault zones (14). 69 

The physical properties of Site C0023 are reflected in the down-hole profiles of porosity, P-wave velocity, 70 

and equivalent strength (EST) (fig. S2, ref. 14, 33). All three parameters show distinct deviations from a 71 

smooth compaction curve. (I) Porosities, inferred from moisture and density measurements of discrete 72 

sediment and rock samples (fig. S2B), generally decrease with increasing depth from 40% to 50% at 200 73 

mbsf to 32% at 1030 mbsf. However, a distinct reversal of this trend occurs across and below the 74 

décollement, where porosities increase by 5-7% (760-830 mbsf). In contrast, porosities decrease more 75 

sharply than expected in mud rocks and volcaniclastics at the bottom of the hole (>1030 mbsf). In the 76 

underlying basaltic basement rocks, porosities range from 5.5% to 25%. (II) P-wave velocity stands for 77 

the speed at which ultrasonic sound waves pass through a material, and it is related not only to the 78 

material’s porosity but also to its compressibility and shear strength. At Site C0023, P-wave velocities, 79 

measured on intact sediment cores, reflect the general down-hole decrease of porosity as well as its 80 

excursion towards higher porosities across the décollement and the sharp decrease of porosities in 81 

sediments and basaltic rocks at the bottom of the hole (fig. S2C). At ~630 mbsf, however, elevated P-82 

wave velocities do not match the high porosities of bulk sediment samples (45-50%). This finding points 83 

to a stiffening of the fine to coarse tuff and tuffaceous muds in this interval, potentially due to diagenetic 84 

mineral alteration reactions (40). (III) EST is a measure for the in-situ strength of the geological 85 

formation, i.e. its relative triaxial shear strength that can be deduced from parameters recorded during 86 

the drilling operation, such as weight-on-bit, top drive torque, and rotations per minute (33). The down-87 
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hole EST profile of Site C0023 (fig. S2D, ref. 33) shows distinctly elevated mechanical strength for the 88 

tuff-rich sediments around ~630 mbsf, as well as the presence of a mechanically weak zone below the 89 

décollement, stretching from ~800-1050 mbsf. In this zone, EST decreases by a factor of 5 from 10 to 2 90 

MPa. While the mechanical weakening is clearly evident in the EST profiles, which has been measured 91 

under in-situ pressure conditions, there is no corresponding decrease in the down-hole P-wave velocity 92 

profile, which has been generated on core samples after pore pressure had been released during 93 

recovery. The deviation between EST and P-wave velocity suggests that the mechanical weakness of the 94 

upper portion of the underthrust domain is related to high in-situ pore pressure. If pore pressure 95 

exceeds hydrostatic pressure, the effective pressure on sediments is reduced and consequently their in-96 

situ strength decreases. Together, the physical properties of Site C0023 suggest that (a) volcaniclastic 97 

sediments in the prism domain form a distinct, mechanically strong layer ~630 mbsf, (b) the upper 250 m 98 

of the underthrust domain (~800-1050 mbsf) are under-compacted and mechanically weak due to the 99 

presence of overpressurized fluids, and (c) the décollement (758-796 mbsf) forms a barrier that does not 100 

allow fluids to flow from the underthrust sediments into the prism domain. 101 

These observations agree well with previous studies, which infer the presence of high-fluid pressure 102 

below the décollement from seismic imaging (41, 42), suggest the possibility that a décollement acts as a 103 

barrier inhibiting upward fluid convection, leading to high pore pressure and increased structural 104 

weakness of subducting sediments (43-45), and explain the surplus of water below the décollement with 105 

in-situ dehydration of clay minerals (46, 47) and/or channelized lateral advective fluid flow from deeper 106 

portions (48, 49). 107 

At Site C0023, signs of low-temperature hydrothermal mineralization provide evidence for fluid flow in 108 

the underthrust domain (14, 15). Between 775 and 1121 mbsf, hydrothermal mineralization assemblages 109 

occur in the form of veins and stratabound alteration patches, which are rich in barite and 110 

rhodochrosite, pale-yellow in color, and often 10-15 cm thick (14). Due to their elevated density, 111 

hydrothermal minerals are visible in X-ray CT images, and consequently their down-hole distribution can 112 

be tracked by radiodensity logging, as shown in fig. S2E (cf. ref. 50). For the known hydrostatic pressures 113 

and modern concentrations of dissolved barium within the underthrust sediments of Site C0023, 114 

retrograde solubility for barite would occur above 145°C (15). Analyses of fluid inclusions in authigenic 115 

barite minerals revealed high salinities of around 16-25% NaCl equivalent and trapping temperatures 116 

ranging from 118-141°C at 822 mbsf to 146-219°C at 1010 mbsf (15). These salinities and 117 

homogenization temperatures distinctly exceed present-day salinities and temperatures at Site C0023, 118 

and point to mixing with deep-sourced hot and saline fluids (15). The morphology of the authigenic 119 

minerals in veins and burrows suggest that the ingression of such fluids started before and continued 120 

throughout the deformation of underthrust sediments (15). Tsang et al. (15) estimate the duration of 121 

individual hydrothermal fluid flow events by fitting a heat flow model, which predicts the spatial and 122 

temporal expansion of thermal aureoles along permeable sedimentary fabrics, to the actual size of 123 

hydrothermal veins and alteration patches observed by visual core description and radiodensity logging 124 

(14, 50). They conclude that the ingression of hydrothermal fluids has occurred in the form of episodic 125 

short-term pulses, which have lasted for less than three days and altered sediment temperatures within 126 

up to 30 cm thick aureols around veins or alteration patches (15). Hydrothermal mineral assemblages 127 

were found down to 1121 mbsf (14, 15). Their absence at greater depths points to a lack of 128 

hydrothermal influence in the oldest sediments of Site C0023. Instead, hematized sediments and 129 

reddening occur in both sediments and basalts at the sediment/basalt interface together with low-130 

temperature mineral assemblages such as calcite veins that penetrate both crust and sediment (14, 15). 131 
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The close spatial association is typical for umbers, i.e. ferruginous horizons adjacent to oceanic basement 132 

that are associated with the end of rifting and low-temperature off-axis activity (15). 133 

The episodic ingression of hydrothermal fluids has no measurable effect with respect to petroleum 134 

generation (15). Instead, the current thermal maturity of sedimentary organic matter at Site C0023 can 135 

solely be explained by conventional burial diagenesis (15). Three thermal maturity parameters, which 136 

were calculated from hopane and sterane biomarkers, indicate a thermal regime in which catagenesis 137 

has just begun, but the thermal state of Site C0023 can only be explained if past heat flows were higher 138 

than today (15). Biomarker and present-day temperature data agree best with a basin modeling 139 

scenario, in which heat flow was distinctly elevated 2 Ma, and formations in underthrust sediments 140 

began to cool about 0.1 Ma (15). Against the tectonic background of southeast Japan, a conceivable 141 

scenario for Site C0023 includes high heat flow close to the spreading center until 15 Ma, a subsequent 142 

transition through lower off-axis heat flows, and a brief increase in past heat flow around 2 Ma due to 143 

the far-field effect of increased volcanic activity (15). This scenario is consistent with a previous thermal 144 

history model for adjacent ODP Site 1174 (12). 145 

Sediment temperature is a function of heat flow, thermal conductivity and depth below seafloor. 146 

Consequently, the arrival of Site C0023 in the trench ~0.4 Ma and the associated ~30-fold increase in 147 

sedimentation rates (38) led to a rapid ~50°C increase of temperature across the entire sediment 148 

column. 149 

 150 

3. Modern temperature regime of Site C0023 (fig. S3-S4) 151 

In order to determine the modern temperature regime of Site C0023, formation temperatures were 152 

measured in situ from 189.3 to 407.6 mbsf during drilling (14). Based on the deduced heat flow and 153 

thermal conductivities measured on samples, a temperature profile to the bottom of Hole C0023A was 154 

synthesized with the assumption of purely vertical conductive and steady-state heat flow (fig. S3). The 155 

projected downhole temperature reaches ~86°C at the top of the décollement zone and 119.7 ± 3.4°C at 156 

the bottom of the hole (fig. S4). Post-cruise monitoring of temperatures in the borehole observatory 157 

confirm the projected temperatures and thus verify our temperature model (37). 158 

3.1 Overview of Method 159 

We calculated the in-situ temperature profile based on the step-wise integration of Fourier’s Law,  160 

 q=-κ(z) dT(z)dz  (1) 161 

which gives, 162 

 T(z) = T(z*) − q∑ - ∆/0
1(/)0

23
456 , (2) 163 

where, 164 

T(z) = temperature, 165 

z	= depth from the sediment–bottom water interface, 166 

κ(z) = thermal conductivity, 167 

∆z4 = difference in depth between successive measurements of k(z) 168 

T(z0) = temperature at the depth of first measurement, zo, 169 
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q = heat flow, (note that in this coordinate system q < 0) 170 

∑ - ∆9:
;(9):

2<
=56  = thermal resistance, and 171 

N = number of thermal conductivity measurements (51). 172 

Application of equation 2 requires an estimate of the heat flow and a profile of thermal conductivities. 173 

Its use also assumes that heat flow is conductive, and is constant with depth as well as time. We 174 

measured thermal conductivities with high spatial resolution, nearly one measurement per core down to 175 

the basement (N	= 111) (14). The assumption of constant heat flow with depth may not be correct, 176 

however. When the sediment accumulation rate is high and the column length is long, as potentially is 177 

the case in the Nankai Trough, conduction may not keep pace with the burial of cold sediment and heat 178 

flow can vary with depth.  179 

To test the assumption of steady-state heat flow with depth and time at Site C0023, we first solve the 180 

time-dependent heat flow equation, taking κ, ρ, and Cp as depth independent 181 

 
BC(/,E)
BE = F

GHI
BJC(/,E)
B/J  (3) 182 

where 183 

ρ =bulk sediment density and 184 

Cp = bulk sediment specific heat. 185 

The solution of equation 3 for a sediment column whose length continuously increases due to sediment 186 

accumulation and with constant basement heat flow is, 187 

 T(z) = T(z*) +
LM JN OM JN PM JN -QRQS2TUVWXYUQ

Z[\J

]M JN
^erf(η) − erf(ηO)c (4) 188 

where we used the Buckingham π theorem (52) to define the non-dimensional variable, h, 189 

 η = 	 (Oe/)]
M JN

fLM JN OM JN
 (5) 190 

with 191 

α = thermal diffusivity, κ/(ρCp), 192 

s = linear sediment accumulation rate, 193 

L = sediment column length, and  194 

h’ = value of h at the depth the temperature gradient is measured 195 

hL = value of h at depth z	=	L, the sediment-basement interface. 196 

We then compare the solution of equation 1 (constant heat flux and assuming constant κ) to the time 197 

dependent solution, equation 4, to determine the temperature error offset, DT(z=L)=T(z=L)steady-198 

state	-	T(z=L)time-dependent, that results from assuming steady-state heat flow. At the bottom of the 199 

sediment column, the temperature offset, DT(z=L), of these two solutions is approximately given by:  200 

 ΔT(z = L) ≈
e-QRQS2TUVWXYUt

Z[\JOJ]
ufL  (6) 201 



 19 

To get this estimate we expanded equation 4 as a Taylor series, keeping the first two terms, and then 202 

subtracted the steady-state solution, equation 3. 203 

At Site C0023, the magnitude of DT(z=L) is -1.0°C based on the following typical values, 204 

(dT/dz)measured = 0.1 (°C m-1), 205 

L-z for depth of temperature gradient measurement = 950 (mbsf), 206 

L = 1176 (m),  207 

s = 3.8 10-11 (m s-1), 208 

ρ = 2.0 103 (kg m-3) and 209 

Cp = 1.4 103 (J kg-1 °C-1). 210 

This is an upper limit of the offset as the sediment accumulation rate was more than an order of 211 

magnitude lower than assumed here during the accumulation of about half of the sediment column. This 212 

offset is within the error of measurement uncertainty (3.4°C, see below), justifying the conductive 213 

steady-state assumption. 214 

3.2 Measurements at Site C0023 215 

Details of the methods for measuring temperature and thermal conductivity are given in refs. 14 and 53. 216 

Briefly, temperature was measured in-situ using a short advance modified hydraulic piston coring system 217 

(S-HPCS) equipped with an advanced piston corer temperature tool (APCT-3) until the S-HPCS could no 218 

longer penetrate properly into the formation (14). The APCT-3 consists of a thermistor that is 219 

hydraulically stroked up to 4.5 m into the sediment, well beyond the thermal influence of drilling 220 

operations. After penetration, it takes ~10 min for the sensor to equilibrate to the in-situ temperature of 221 

the formation. Measured temperatures were extrapolated from the APCT-3 measurements, using the 222 

program TP-Fit (53). The uncertainty of individual measurements is estimated to be 0.1-0.2°C (e.g., ref. 223 

54). 224 

Thermal conductivity was measured on sediment and rock samples using either the full-space needle 225 

probe or the half-space line source depending on sediment strength; the methods are described in detail 226 

in the expedition report (14). Values of thermal conductivity are based on the observed rise in 227 

temperature for a given quantity of heat. The full-space needle and the half-space line probes were 228 

calibrated at least once every 24 h. The calibration was performed on Macor samples of known thermal 229 

conductivity (1.611 ± 2% W m-1 K-1 and 1.652 ± 2% W m-1 K-1 for the full- and half-space probes, 230 

respectively). We base the uncertainty of the entire method, ~2%, on the variance of the measured data 231 

from a smooth fit.  232 

Eight formation temperatures were measured in-situ between 189.3 to 407.6 mbsf. Based on quality 233 

assessment of coring and time series temperature data while measuring, we used four temperature data 234 

among the eight to determine the thermal gradient and heat flow. Temperatures increased linearly as a 235 

function of thermal resistance, ∑ - ∆/0
F(/)0

23
456 	between 204.1 and 355.2 mbsf (fig. S3). In the temperature 236 

calculations, the value of κ(z)i is taken as the average of the two values measured at adjacent depths. 237 

The calculated heat flow, based on a linear least square of temperature vs. thermal resistance is -0.140 238 

W m-2 with a 90% confidence of ± 0.005 W m-2. The uncertainty in the heat flow is consistent with the 239 

expected uncertainties in individual temperature measurements of ~0.1 to 0.2°C. 240 
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Estimated temperatures are shown in fig. S4. The estimated temperature at the bottom of Hole C0023A 241 

(1176.6 mbsf) is 119.7 ± 3.4°C (90% confidence limit). 242 

The confidence limit is based on propagating the errors associated with the heat flow and thermal 243 

resistance. The uncertainty in the calculated temperature is dominated by the uncertainty in the heat 244 

flow (> 90% of the uncertainty). Uncertainty in thermal conductivity is minor due to the large number of 245 

measurements. 246 

 247 

4. Cell concentrations (Fig. 1A) 248 

Enumeration of microbial cells in subseafloor environments that are situated close to the limits of 249 

habitability requires the highest possible levels of analytical sensitivity and contamination control (55). In 250 

order to improve the detection limit of cell enumeration, microbial cells were detached from the 251 

sediment matrix by ultrasonication, subsequently recovered by density gradient centrifugation and 252 

concentrated on polycarbonate membrane filters, before they were treated with the nucleic acid stain 253 

SYBR Green I, and manually counted under the microscope. For maximal contamination control, we 254 

implemented rigorous quality assurance (QA) and quality control (QC) measures for all steps involved in 255 

core recovery, core processing, and sample analysis. Numerous cell counts in the range of the procedural 256 

blank (fig. S6) and negligible drilling disturbance (fig. S7) testify to the effectiveness of contamination 257 

control during sample handling. Detailed information on analytical methods and QA/QC procedures and 258 

results are given in the expedition report (14).  259 

4.1 Cell enumeration 260 

In principle, sediment samples for cell enumeration were taken from the very center of selected, quality 261 

controlled WRCs under anoxic and sterile conditions, using sterilized spatulas or cut-off syringes in 262 

unconsolidated sediments and a table-top mini-drill in consolidated sediments. In consolidated 263 

sediments, the sterilized drill bit of the mini-drill was exchanged after each sample. Soft sediments were 264 

immediately submerged in fixation solution. Consolidated sediments were kept under anoxic conditions 265 

until they were crushed by ceramic pestle and mortar and immersed in fixation solution. Approximately 266 

10 cm3 of powdered sediment were thoroughly mixed with fixation solution consisting of 20 mL of 3% 267 

(w/v) sodium chloride and 10% (v/v) neutralized formalin (containing 3.8% formaldehyde). If necessary, 268 

the mixture was stored at 4°C.  269 

Fixed cells were separated from the slurry via ultrasonication and density gradient centrifugation (56). 270 

For cell detachment, a 1 mL aliquot of the formalin-fixed sediment slurry was amended with 1.4 mL of 271 

2.5% NaCl, 300 μL of pure methanol, and 300 μL of detergent mix (ref. 57, 100 mM ethylenediamine 272 

tetraacetic acid [EDTA], 100 mM sodium pyrophosphate, 1% [v/v] Tween-80). The mixture was 273 

thoroughly shaken for 60 min (Shake Master, Bio Medical Science, Japan), and subsequently sonicated at 274 

160 W for 30 s for 10 cycles (Bioruptor UCD-250HSA; Cosmo Bio, Japan). The detached cells were 275 

recovered by centrifugation based on the density difference of microbial cells and sediment particles, 276 

which allows collection of microbial cells in a low-density layer. To this end, the sample was transferred 277 

onto a set of four density layers composed of 30% Nycodenz (1.15 g cm-3), 50% Nycodenz (1.25 g cm-3), 278 

80% Nycodenz (1.42 g cm-3), and 67% sodium polytungstate (2.08 g cm-3). Cells and sediment particles 279 

were separated by centrifugation at 10,000 × g for 1 h at 25°C. The light density layer was collected using 280 

a 20G needle syringe. The heavy fraction, including precipitated sediment particles, was resuspended 281 

with 5 mL of 2.5% NaCl, and centrifuged at 5000 × g for 15 min at 25°C. The supernatant was combined 282 
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with the previously recovered light density fraction. With the remaining sediment pellet, the density 283 

separation was repeated. The sediment was resuspended using 2.1 mL of 2.5% NaCl, 300 μL of methanol, 284 

and 300 μL of detergent mix and shaken at 500 rpm for 60 min at 25°C, before the slurry sample was 285 

transferred into a fresh centrifugation tube where it was layered onto another density gradient and 286 

separated by centrifugation just as before. The light density layer was collected using a 20G needle 287 

syringe, and combined with the previously collected light density fraction and supernatant to form a 288 

single suspension for cell counting.  289 

For cell enumeration, a 50%-aliquot of the collected cell suspension was passed through a 0.22-μm 290 

polycarbonate membrane filter. Cells on the membrane filter were treated with SYBR Green I nucleic 291 

acid staining solution (1/40 of the stock concentration of SYBR Green I diluted in Tris-EDTA [TE] buffer). 292 

The number of SYBR Green I-stained cells were enumerated by direct microscopic count (4, 58). At least 293 

900 fields of view were analyzed for each whole membrane filter. 294 

The cell staining with DNA-staining dye, including SYBR Green I, critically relies on the penetration of dye 295 

into the cells. For normal “cells”, including subseafloor microbes, the staining has worked reliably and 296 

contributed to the exploration of the deep subseafloor biosphere (3). However, we found that the 297 

situation is different in endospores as they do not allow DNA-dyes to penetrate inside and are resistant 298 

to DNA-staining. The example in fig. S5 shows the staining of vegetative cells (fig. S5a) and endospores 299 

(fig. S5b) of Bacillus subtilis NBRC13719. Although the stainability was 100% in vegetative cells, 98.8% 300 

(N = 4707) spores appeared in orange color in fluorescence observation, which indicated the adsorption 301 

and overaccumulation of SYBR Green I on the surface of endospores (58). The adsorption was also 302 

indicated by the enlarged image of the orange-stained endospores, in which the center of the endospore 303 

remained black (i.e. unstained), while the center of the green-stained endospore was well-stained (fig. 304 

S5a). In addition, the staining and observation of endospores mixed with sterilized sediment 305 

demonstrated the extreme difficulty in identifying spores even for the cultivated species (fig. S5c). These 306 

results are consistent with the previous findings according to which endospore abundance assessed by 307 

the chemical quantification of dipicolinic acid exceeded the abundance of cells detected by DNA-308 

staining-based direct counts in subseafloor sediments (18, 59). Moreover, the stainability of endospores 309 

inhabiting the subseafloor environment is expected to be substantially lower than that of cultivated 310 

spores of B. subtilis (1.2%). Therefore, we operationally call the SYBR-stainable cells as “vegetative cells” 311 

in this study.  312 

4.2 Quality assurance and quality control (QA/QC) 313 

QA/QC measures were designed to account for three major sources of contamination during sample 314 

recovery and processing, namely introduction of microbial cells from drilling fluid, from airborne 315 

particles, and from reagents and tools used during sample processing.  316 

Intrusion of seawater and drilling mud during core cutting and recovery - To minimize the risk of drilling-317 

induced contamination, samples for microbiological investigations were taken as intact WRCs from the 318 

pristine, undisturbed parts of the recovered cores. Generally, the upper section of a core was not 319 

sampled to avoid cross contamination from loose borehole materials accumulating on the bottom of the 320 

hole. Undisturbed core intervals were identified based on visual inspection and X-ray CT imaging, which 321 

reveals the structural integrity of sediment cores on a sub-millimeter scale. All surfaces of WRCs, which 322 

had potentially been in contact with drilling fluid, were removed immediately after core retrieval 323 

onboard DV Chikyu to prevent diffusion of potential contaminants from seawater and drilling fluid into 324 

the inner part of the core during storage and transport. WRCs were opened in an anaerobic chamber, 325 
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where core liners were removed and all sediment surfaces were scraped off with sterile ceramic knives, 326 

before the remaining sediment cores were placed into ESCAL bags and temporarily sealed shut. The bags 327 

were removed from the anaerobic chamber, immediately flushed with nitrogen gas to remove H2 gas, 328 

vacuum-sealed, and stored at +4°C. Afterwards, samples were transferred to shore by helicopter in order 329 

to enable prompt processing under clean-room conditions at KCC (see below). On shore, the scraping of 330 

WRC surfaces was repeated to further reduce the contamination risk, and samples for cell enumeration 331 

(~10 cm3) were taken from the very center of the WRCs.  332 

X-ray CT-imaging not only allows one to identify and to avoid core intervals with fractures prone to 333 

contamination, it also enables quantification of core integrity and thus contamination risk for each 334 

selected sample (50). Using automated image and data processing routines, pristine, high-quality areas 335 

can be distinguished from damaged areas based on the characteristic values and distribution patterns of 336 

radiodensity in each 0.625 mm thick slice image recorded as a DICOM file during X-ray CT scanning. The 337 

resulting slice quality (SQ) is a quantitative measure for the relative abundance of drilling induced 338 

fractures in a given slice, with a SQ of 100% indicating the highest possible quality of a slice without any 339 

fractures. SQ has been shown to be an effective quality control measure, and automatic identification 340 

and removal of slices below a given SQ threshold generates quality-controlled downhole radiodensity 341 

profiles closely reflecting geological features (50). A detailed description and evaluation of this new 342 

method and its application during Expedition 370 are given in ref. 50.  343 

During Expedition 370, we determined SQ for all 0.625 mm thick CT slices of the typically ~5-40 cm long 344 

WRC samples selected for cell enumeration, and used the resulting mean slice quality of all CT slices 345 

(mean SQ) as a measure for the core quality of an individual cell count sample. This quantitative 346 

evaluation shows that careful, X-ray CT guided sample selection achieved the highest possible core 347 

quality, i.e. a mean SQ of 100%, in 46% of all WRCs taken for cell enumeration. The prevalence of 348 

excellent core quality in all cell count samples is evident in a typical mean SQ of 99% (median of 152 349 

samples, fig. S6A).  350 

In addition, established routines for contamination testing were applied to monitor the potential 351 

intrusion of drilling fluid into the cores through the use of a chemical tracer (14). In the main pump room 352 

of DV Chikyu, the perfluorocarbon (PFC) tracer perfluoromethylcyclohexane was added to the down-353 

going drilling fluid. After its proper delivery was verified by analysis of drilling fluid captured inside the 354 

core liners, the intrusion of PFC into the core was monitored in ~2 cm3 sediment samples taken from the 355 

exterior, midway, and interior portions of WRCs. During operations, pumping rates and mixing ratios of 356 

drilling mud varied in response to borehole conditions. Consequently, the exact concentration of PFC in 357 

the down-going drilling fluid remains unknown. In order to assess the potential drilling induced 358 

contamination without this information, we determined PFC recovery. PFC recovery normalizes the PFC 359 

concentration measured in the center part of an individual core to the average PFC concentration in the 360 

outer parts of all cores (0.22 ± 0.81 µg cm-3, N = 74), which had been in direct contact with drilling fluid. A 361 

PFC recovery of 0% in the core center represents the lowest risk of drilling induced contamination. 362 

During Expedition 370, PFC recovery was <1% in the majority of samples taken from the interior portions 363 

of WRCs, and the lack of relation between PFC recovery and vegetative cell abundance suggest that 364 

drilling induced contamination is negligible in the high-quality intervals of the sediment cores, which 365 

were selected for microbiological samples (fig. S6B). 366 

Contamination of sediment samples from airborne particles during laboratory work – In order to avoid 367 

introduction of airborne particles, all sample processing was conducted under clean-room conditions. 368 
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Cleaning and subsampling of WRCs, both onboard DV Chikyu and at KCC, were conducted inside 369 

anaerobic chambers (95:5 [v/v] N2:H2 atmosphere; COY Laboratory Products, USA) equipped with a 370 

KOACH T 500-F tabletop air filtration unit (Koken, Ltd. Japan) and a Winstat air ionizer BF-X2MB 371 

(Shinshido Electrostatic Ltd., Japan). The air filtration unit circulates the limited volume of gas inside the 372 

anaerobic chamber quickly, and effectively removes dust particles generated during sample processing. 373 

In this manner, clean air conditions are established that are comparable to the air quality in ISO Class 1 374 

clean environments. The ionizer neutralizes surface charge and reduces static attraction of potentially 375 

contaminating airborne particles. Subsampling yielded a compact subcore (2 cm diameter) that was 376 

aseptically drilled out of the center of the WRCs. All further processing steps, including crushing of 377 

samples into powder, cell separation and filtration were conducted in a super-clean room at KCC. The 378 

super-clean room is equipped with a Floor KOACH Ez that produces horizontal ISO Class 1 quality of 379 

laminar airflow from the end wall of the clean space (60). All of the clean experiments were conducted 380 

upstream, in front of the KOACH clean units, and electronic equipment (centrifuges, refrigerator, and 381 

sonicator) was placed downstream of the clean space. To neutralize the static electricity of the samples, 382 

plastic equipment, and gloves (hands), a bar-type sheath-sensing ionizer (SJ-H180, Keyence, Japan) was 383 

placed approximately 40 cm above the working area of the stainless steel laboratory bench, and the 384 

static elimination capacity was routinely checked with high-precision electrostatic sensors (SK-H055 and 385 

SK-J050, Keyence, Japan) (14).  386 

The presence of airborne particles in the laboratory air of DV Chikyu, in the anaerobic chambers, and in 387 

the super-clean room at KCC was monitored throughout the expedition (14). In the shipboard and shore-388 

based workspaces, the concentration of airborne particles was recorded with a Met One HHPC 3+ 389 

airborne particle counter (Met One Instruments, Inc.; Grants Pass, Oregon, USA) and with a Biotest 390 

particle counter (9303-01BT), respectively. Particle concentrations were determined for three particle 391 

size classes (>0.3, >0.5, >1 μm). In the shipboard and shore-based anaerobic chambers, particle counts 392 

were reduced by up to five orders of magnitude compared to the surrounding laboratory air, and 393 

airborne particle concentrations in the vicinity of the work area of the super-clean room at KCC were 394 

consistently below the detection limit of the particle counter (<1 particle ft-3) (14).  395 

To quantify the concentration of airborne microbial cells that may potentially contaminate cores during 396 

shipboard core handling, cells in 1 L of air were counted from the various workspaces. To this end, 1 L of 397 

air was drawn through a 0.22-μm polycarbonate membrane in a syringe filter housing (Swinnex Filter 398 

Holder, 25 mm, Merck Millipore). Cells on the filter were preserved with formaldehyde fixation solution, 399 

treated with SYBR Green I nucleic acid staining solution, and enumerated as described above. Visual 400 

inspection of the membranes under the microscope revealed submicrometer-scale particle densities 401 

consistent with particle counts in all core processing workspaces. However, in the anaerobic chambers 402 

and in the super-clean room at KCC, none of these particles were cells. Overall, our QA/QC measures 403 

reduced airborne particle contamination to negligible levels.  404 

Introduction of microbial cells and chemical compounds from equipment and chemicals used during 405 

sample processing - During the cutting of cores and processing of samples, sediment came only in 406 

contact with precleaned (with 18 MΩ water) and sterilized tools, such as autoclaved spatulas and 407 

ceramic knives, or precombusted (500°C for 5 h) ceramic pestles and mortars. Tools were replaced 408 

whenever potential contamination by contact with a nonsterile surface was suspected. WRCs were 409 

packed with end caps that had been cleaned with ethanol, dried in a clean bench, and irradiated with UV 410 

light for at least 20 min prior to use. Interior surfaces of the anaerobic chamber were routinely 411 

decontaminated by wiping with RNase AWAY (Thermo Fisher Scientific). In addition, the working surface 412 



 24 

was covered with a fresh sheet of precombusted aluminum foil (500°C for 5 h) each time a new WRC was 413 

processed. The N2 gas used to store samples under anoxic, H2-free conditions was filtered with a 0.22-μm 414 

filter to remove potential contamination.  415 

In order to quantify the remaining contamination risk from reagents, tools and airborne particles, 20 416 

negative controls were included into the sample preparation line at KCC. Negative control membranes 417 

were prepared by passing saline solution through all cell separation and membrane preparation 418 

protocols. On eight out of the 20 negative control membranes, no cells were found in 900 fields of view. 419 

The other 12 controls contained up to 3 cells in 900 fields of view. Considering the ratio of reagents used 420 

per sediment sample, the analytical blank of cell enumeration was 4.2 ± 4.0 cells cm-3 (N = 20). Based on 421 

this analytical contamination risk, the abundance of microbial cells in sediment samples can be reliably 422 

determined above a minimum quantification limit (MQL) of 16 cells cm-3 of sediment (95% confidence 423 

level).  424 

4.3 Remaining contamination risks during Expedition 370 (figs. S6, S7) 425 

Expedition 370 achieved an unprecedented level of sensitivity for life detection, yet cell concentrations 426 

fall below the MQL in 70% of all 138 samples recovered from >350 m depth. The numerous cell counts in 427 

the range of the procedural blank testify to the effectiveness of contamination control during sample 428 

handling. Most strikingly, cell concentrations average 6.0 ± 3.1 cells cm-3 in 32 consecutively taken 429 

samples from the zone between 829 and 1020 mbsf (fig. S6). These samples reflect 21 events for the 430 

cutting and retrieval of sediment cores from Hole C0023A by rotary core barrel (RCB) coring, and 32 431 

events for the selection, cutting, and processing of WRCs in the shipboard laboratories. In all these 432 

samples, cell concentrations do not differ significantly from the procedural blank of 4.2 ± 4.0 cells cm-3 (N 433 

= 20). This observation again suggests that the implemented QA/QC measures reduced the introduction 434 

of microbial cells via drilling fluid and shipboard handling to a negligible level. 435 

Against this background, elevated cell counts in 30% of the samples recovered from >350 m depth call 436 

for a rigorous examination of the remaining contamination risks, such as intrusion of drilling fluids into 437 

sediment cores along natural and drilling-induced fractures. Quantification of core integrity by X-ray CT-438 

imaging does not only confirm the excellent quality of all cell count samples (see above), it also allows 439 

for a quantitative comparison of core quality and cell concentrations in all WRCs taken from Hole 440 

C0023A. Fig. S7A suggests that cell abundances are not related to the amount of fractures in the sampled 441 

core intervals. While ≤16 cells cm-3 were counted in eight samples taken from WRCs with a mean SQ of 442 

only 74-90%, 11 out of 34 samples with the highest possible core quality, characterized by a mean SQ of 443 

100%, yielded vegetative cell counts above the MQL. Cell abundances are not correlated with core 444 

quality (Spearman correlation ρ = -0.0095, p (2-tailed) = 0.929). Consequently, elevated cell counts 445 

cannot be attributed to drilling induced contamination along fractures. This conclusion is further 446 

supported by the lacking relationship between vegetative cell abundance and PFC recovery, which 447 

represents the potential contamination of sediment cores by drilling fluid via advection and diffusion (fig. 448 

S7B). 449 

 450 

5. Endospores 451 

Endospores are a dormant form of some members of the bacterial order Firmicutes. Endospores may 452 

survive under harsh conditions over geological timescales. Endospores contain the bacterial DNA, 453 

ribosomes and large amounts of dipicolinic acid (DPA). In contrast to vegetative cells, endospores cannot 454 
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be visualized with DNA-staining dyes such as SYBR Green I (fig. S5), and thus escape microscopic cell 455 

counting methods. We therefore used the biomarker DPA to determine the abundance of endospores in 456 

the sediments of Site C0023. To facilitate a quantitative comparison of endospores and vegetative cells, 457 

DPA concentrations were converted into endospore numbers per cm3 of wet sediment. Average 458 

concentrations of endospores and vegetative cells were integrated over four depth intervals (table S1), 459 

and the relationship between concentrations of endospores and vegetative cells was examined in a 460 

temporal framework considering the geothermal history of Site C0023 with the help of a mathematical 461 

model.  462 

5.1. Determination of sedimentary dipicolinic acid (DPA) and endospore concentration (Fig. 1B) 463 

Sampling for DPA analysis and cell counting were closely coordinated and guided by X-ray CT imaging 464 

and visual core inspection as described above. In total, 78 WRCs were collected for DPA analysis from 465 

Site C0023. The cored sediment remained inside the core liners after cutting, and each WRC was packed 466 

in a sterile plastic bag and additionally secured in an aluminum bag. Both bags were immediately flushed 467 

with N2 and vacuum-sealed, before the sediment cores were frozen with a Cells Alive System freezer 468 

(CAS, ref. 61) and stored at -20°C until further treatment. 469 

For post-cruise DPA analysis, a ~4-5 cm thick disk of sediment was cut from each frozen WRC, and the 470 

outer 5-mm layer was removed by scraping, using a flame sterilized chisel. Samples were freeze dried 471 

and stored at -20°C. For extraction, a 15-mL polypropylene tube was filled with ~1 g of freeze-dried, 472 

homogenized sediment. 4 mL of Tris buffer (0.2 M; pH = 7.6) was added, because it maximizes the 473 

extraction yield in clayey sediments. After vortexing, samples were autoclaved for 20 min at 121°C to 474 

extract DPA. After cooling down, 80 µL of 2 mM AlCl3 solution was added to precipitate phosphates, 475 

which might otherwise quench the fluorescence signal. Tubes were centrifuged for 10 min at 3000 rpm, 476 

then supernatants were collected, filtered through 0.2-µm cellulose-acetate filters (Chromafil CA-20/15 477 

MS) and stored at -20°C until analysis. Each WRC was extracted in duplicate, and one replicate was 478 

spiked with 200 nM DPA as an internal standard to allow for quantification. WRCs were processed in 479 

random order. Each batch for extraction included eight WRC samples, and two procedural blanks.  480 

For analysis, 600 µL of each sample extract were evaporated to dryness at 50°C under a N2 stream and 481 

afterwards dissolved in 120 µL of a 500 mM NaHSO4 solution (pH = 1.2). Detection of DPA closely 482 

followed the method described by Fichtel et al. (62, 63) using reverse phase high performance liquid 483 

chromatography (HPLC) with fluorescence detection. We employed a Phenomenex Gemini 3-μm C18 484 

column (150 x 2 mm) and a Thermo FLD-3400 RS detector. 100 µL of each sample were injected to a 485 

mobile phase consisting of 50 mM NaHSO4 (pH = 1.2) and acetonitrile (97:3) delivered at a flow rate of 486 

0.5 mL min-1. After 10 min, a 3-min gradient to 65:35 was applied, followed by stable conditions for 1 487 

min, and a reset to initial conditions within 0.5 min. The system was re-equilibrated for 4 min before the 488 

next injection. Fluorescence detection of DPA was achieved by supplying TbCl3 (50 µM) post-column via a 489 

secondary pump at a flow rate of 0.1 mL min-1 (for further details see ref. 64). DPA was identified based 490 

on its characteristic fluorescence (emission at 543 nm after excitation at 271 nm) and retention time. 491 

Quantification of DPA was achieved by comparing the integrated peak area of DPA in the unspiked 492 

sample to the difference of peak areas between the spiked and unspiked sample, which corresponds to a 493 

concentration of 200 nM DPA. DPA abundances were normalized to sediment mass and transferred to 494 

endospore concentrations using the empirically determined conversion factor of 2.24 x 10-16 mol DPA per 495 

endospore (64). Each plotted data point represents the mean of duplicate samples. Standard deviations 496 

average around 18% of the reported mean value.  497 
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Sediment dry weight (dw) endospore concentrations were converted to volumetric concentrations by 498 

multiplying endospores g-1 dw with a grain density of 2.7 g cm-3 (range of 2.68 g cm-3 at 250 mbsf to 2.79 499 

g cm-3 at 1100 mbsf, cf. Fig. 39B in ref. 14) and then multiplied by (1-porosity) of the sample closest in 500 

depth to the endospore sample (MAD data, cf. T06 and T07 in ref. 14). 501 

The detection limit was 2.2 x 104 endospores cm-3. It was defined as the DPA concentration measured in 502 

representative sediment samples with a signal-to-noise ratio of 3. The corresponding peak area equaled 503 

a DPA concentration of 3.1 x 10-3 nmol DPA g-1 dry weight and was converted to endospores g-1 dw and 504 

endospores cm-3 wet weight as described for the samples. For the determination of the detection limit, 505 

transformation to wet weight was based on porosity value of 0.58 from the middle of the core (604.8 506 

mbsf). 507 

5.2 Ratio of endospores relative to vegetative cells (table S1) 508 

In order to determine ratios of endospores to vegetative cells for selected depth intervals of interest, 509 

average concentrations of endospores and vegetative cells for these intervals needed to be determined. 510 

Average concentration values representative of defined depth intervals (cf. table S1) for both variables 511 

were determined by the sum of all integrals between available measurement depths, divided by the 512 

length of the depth interval of interest. The upper interval boundary was either 250 mbsf or 350 mbsf, 513 

i.e., the approximate depth of the uppermost subsurface sample analyzed for endospores and the 514 

approximate depth after the major decline of vegetative cell concentrations (cf. Fig. 1). The lower 515 

interval boundary was either 1177 mbsf (sediment/basement boundary; endospore data were 516 

extrapolated below 1121 mbsf) or 1121 mbsf (lowest endospore sample). In cases in which no cells or no 517 

endospores were detected, we used the analytical blank value of 4.2 ± 4.0 cells cm-3 for vegetative cells 518 

and the detection limit of 2.2 x 104 cm-3 for endospores. As this relatively high detection limit for 519 

endospores could introduce some artificially high endospore to cell ratios, we also computed an 520 

alternative value by setting concentrations in samples with no detection to 4 endospores cm-3, equal to 521 

the analytical blank of the vegetative cell data. As shown in table S1, differences between both 522 

approaches are minor.  523 

5.3 Assessing the significance of the two major endospore peaks in relation to low concentrations of 524 

vegetative cells (fig. S8) 525 

The two major endospore peaks centered around ~400 and ~650 mbsf are prominent features and raise 526 

the question of how they developed in the geological context of Site C0023. Moreover, the orders of 527 

magnitude lower concentrations of vegetative cells relative to endospores and the fact that endospore-528 

forming firmicutes commonly account for only a relatively small fraction of the microbial population (65-529 

69), call for explanatory scenarios in which the vegetative microbial population has been larger and/or 530 

more active in the recent past, at least intermittently. While the elucidation of the exact mechanism 531 

leading to the observed predominance of endospores in deeply buried sediments at Site C0023 goes 532 

beyond the scope of this study, the observation of the two major endospore peaks nevertheless calls for 533 

an examination of their plausibility and significance.  534 

We rule out that the molecular endospore biomarker DPA accumulated throughout the depositional 535 

history, based on its propensity as 2-carboxylated pyridine to decarboxylate upon moderate short-term 536 

heating (19). Moreover, it is striking that the position of the two peaks coincide with the upper growth 537 

temperatures of mesophiles and thermophiles, suggesting a biological rather than geochemical cause. 538 

We therefore constructed a simple quantitative model that explores the accumulation of the observed 539 
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quantities of endospores at Site C0023. For both endospore peaks, we consider as major mechanism 540 

triggering sporulation the relatively rapid heating of the sediment column initiated ~0.4 Ma by the 541 

drastic increase of sediment accumulation rate (38).  542 

For the shallower peak the increase of sediment temperatures to the upper growth temperature of 543 

mesophilic firmicutes provides a conceivable trigger of sporulation. Such a scenario is consistent with the 544 

concomitant decrease of vegetative cells in the same sediment horizon (cf. Fig. 1). For the second, larger 545 

peak, scenarios starting from current concentration levels of vegetative cells, of which only 1-10% may 546 

be endospore-forming Firmicutes (cf. 65-67) or even less (68, 69), appear implausible unless we invoke 547 

past events leading to exponential growth and rapid increase of the population of vegetative cells, 548 

followed by sporulation and decay of this population. While we cannot categorically rule out such a 549 

possibility, it seems inconsistent with the general characteristic of energy starvation encountered by 550 

deeply buried microbial communities as well as the geological setting of the horizon, in which no obvious 551 

triggers of rapid exponential growth are apparent.  552 

Due to the absence of reasonable triggers of exponential growth linked to the stratigraphy, we therefore 553 

consider a mechanism based on the assumption that a background population of thermophilic 554 

endospores (17), too low in size to be detected by our DPA-based biomarker approach, is present in 555 

deeply buried sediments. The feasibility of a corresponding mechanism explaining the quantitative 556 

relationship between endospores and vegetative cells at Site C0023 is explored in figure S8; the 557 

underlying model assumes that the above-mentioned background population of endospores germinates 558 

upon the onset of accelerated geothermal heating of the sediments to form vegetative cells. The 559 

widespread presence of thermophilic endospores has been suggested based on the observation that in 560 

Arctic sediments, thermophilic sulfate-reducing bacterial communities can be activated upon heating of 561 

the sediments to the growth temperature range of thermophiles (17). Persistence of thermophilic 562 

endospores on million-year timescales is also plausible, according to laboratory experiments (70) and 563 

provided that temperatures are not excessively high. We consider that temperatures of 50-75°C 564 

represent the ideal growth range for thermophilic, anaerobic endospore formers, and thus explore the 565 

development of the populations of vegetative cells and endospores upon heating of the sediment to 566 

50°C (fig. S8). This temperature may have been reached about 0.32 Ma in the sediment interval of 633-567 

827 mbsf, representing the more deeply buried endospore peak.  568 

Our model assumes the presence of a background population of 1000 thermophilic endospores cm-3 (red 569 

dashed line; this value is lower than estimated background populations in young Arctic surface 570 

sediments (17) and was arbitrarily chosen to be lower than our detection limit) and initial germination of 571 

vegetative Firmicutes from these endospores at 0.32 Ma, when temperatures reached 50°C; subsequent 572 

growth of the Firmicutes populations lasted for 0.2 My until sediment temperatures in this horizon had 573 

reached 75°C.  574 

Accordingly, we can estimate the concentration of vegetative cells (Cn) and the corresponding 575 

concentration of endospores for the nth generation (Sn) with equations 7 and 8, respectively. From initial 576 

germination of the background population of endospores after reaching 50°C, we assume C0 of 103 cm-3 577 

and S0 of 0 cm-3. We further assume that in each generation, 49% of the cells sporulate and 51% double 578 

by cell division. This corresponds to a 2% increase in population size per generation. The sporulation rate 579 

of 49% was chosen to keep concentrations of vegetative cells as low as possible throughout the 580 

examined time interval, in accordance with the generally low current concentrations of vegetative cells.  581 

 𝐶z = 0.51 × 𝐶zeu × 2  (7) 582 
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 𝑆z = 𝑆zeu + 0.49 × 𝐶zeu × 2  (8) 583 

 𝑇� = f×u6�
z   (9) 584 

Growth was halted at 75°C, as this is the upper growth limit for most thermophilic Firmicutes (71), and 585 

likewise coincides with the in-situ temperature of the major endospore peak (Fig. 1). This model does 586 

not account for the decay of vegetative cells; incorporation of cell decay into the model would 587 

consequently increase the number of required generations and lower the generation time. In line with 588 

the DPA derived endospore data (Fig. 1), we assume endospore concentrations above 75°C to remain 589 

roughly constant until they rapidly decline at temperatures above 90°C. 590 

With this approach, 156 generations were required to arrive at a final concentration S156 of >1x106 591 

endospores within 0.2 My, corresponding to a doubling time Td of 1290 years (equation 9); the 592 

corresponding population of vegetative Firmicutes is 2 x 104 cells cm-3. This modeled final and maximal 593 

concentration is higher than the <103 cells cm-3 observed in the modern-day 50 to 75°C warm interval; 594 

potential reasons include the selection of our model parameters and/or varying concentrations of 595 

background endospore input through the sedimentation history and/or different sedimentary conditions 596 

between the 400-650 mbsf interval corresponding to the Upper Shikoku Basin and the modern 597 

endospore peak within the Lower Shikoku Basin. 598 

 599 

6. Geochemical evidence for microbial activity (Fig. 2) 600 

Sediment pore-water profiles of microbial substrates, intermediates, and products provide insights into 601 

in-situ microbial activity and integrate a variety of processes in time and space. In this study, we present 602 

concentration profiles of sulfate, methane, and acetate together with the carbon isotopic composition 603 

(δ13C) of methane (δ13C-CH4) and acetate (δ13C-acetate) (Fig. 2). We compare the relative abundance of 604 

methane and ethane (expressed as ratio of methane over ethane, C1/C2) as indicator of biogenic vs. 605 

thermogenic methane sources (Fig. 2). Moreover, we calculate Gibbs free energy yields for various 606 

reactions involving methane and acetate, and we employ a diffusion-reaction model for the 607 

interpretation of changes in the carbon isotopic composition of pore-water acetate. In the following, we 608 

provide details on sampling, analytical methods, and our modeling approach. 609 

6.1 Sampling 610 

Shipboard and shore-based gas analyses were conducted on sediment samples that were taken from the 611 

freshly cut core and allowed to degas dissolved gases into the headspace of a tightly closed glass vial 612 

(head space sampling) (14). For shipboard analysis of light hydrocarbon gases (C1-C4), ~5 cm3 of sediment 613 

were transferred into 20 mL headspace vials, which were immediately sealed with a silicone septum and 614 

metal crimp cap. For shore-based analysis of δ13C-CH4, ~5 cm3 of sediment were transferred into 20 mL 615 

headspace vials, and preserved with 5 mL of 1 N NaOH solution before the vials were sealed with butyl 616 

stoppers and crimp caps. Samples were stored at -20°C. 617 

Pore-water sulfate and acetate were analyzed in interstitial water samples extracted from 10 to 80 cm 618 

long WRCs, which were cut from core sections with minimal drilling disturbance, selected as described in 619 

the expedition report (14) and above (cf. section 4.2). Sediment was extruded from the core liners and 620 

prepared for squeezing in a nitrogen-flooded glove bag in order to minimize the oxidation of oxygen-621 

sensitive species. The outer layer of the sediment cores was carefully removed with a ceramic knife to 622 
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avoid contamination from drilling fluid, and the cleaned sediment was filled into the titanium beakers of 623 

the squeezer. Interstitial water was then extracted using a Carver laboratory hydraulic press, which was 624 

not in the glove bag. In general, a force up to 30,000 lb was applied. This maximum force was chosen to 625 

avoid clay mineral dehydration. However, the force was increased to up to 60,000 lb for a few samples 626 

that did not yield sufficient water (reported in Table T13 of the expedition report [14]). The interstitial 627 

water was passed through an Advantec 13 100% alpha cotton cellulose 3-μm filter inside the squeezer 628 

(both prewashed with 18 MΩ water), collected in a 24-mL acid-washed plastic syringe, extruded through 629 

a Millipore Millex-LH hydrophilic 0.45-μm polytetrafluoroethylene (PTFE) disposable filter and collected 630 

into acid-washed high-density polyethylene (HDPE) vials. For shipboard sulfate analysis, an aliquot of the 631 

interstitial water samples was diluted 1:200 with 18.2 MΩ deionized water. Samples for shore-based 632 

analysis of acetate were stored in pre-combusted glass vials at -20°C. All sampling procedures are 633 

described in detail in the expedition report (14). 634 

In the course of the expedition, QA/QC routines revealed a variance in dissolved sulfate concentrations 635 

that, based on a diffusion model, could be attributed to the diffusion of sulfate from the core liner fluid 636 

into the core. The scatter in sulfate concentrations decreased when thicker layers were removed from 637 

the outer surface of sediment cores prior to squeezing. While initially the outer ~3 mm were scraped off 638 

from each sediment surface, 5 mm and finally 7 mm were removed after Core 54R (712.71 mbsf) and 639 

Core 83 R (864.88 mbsf), respectively.  640 

6.2 Analytical methods 641 

Methane and higher hydrocarbons – For shipboard analysis of concentrations of methane and higher 642 

hydrocarbon gases (C2-C4), the headspace vials were placed in an Agilent Technologies 7697A headspace 643 

sampler, where they were heated to 70°C for 30 min before an aliquot of the headspace gas was 644 

automatically injected into an Agilent 7890B GC equipped with a packed column (HP PLOT-Q) and flame 645 

ionization detector (FID). He was the carrier gas (10 cm3 min-1). After injection, the initial column oven 646 

temperature of 60°C was ramped at a rate of 10°C min-1 to 150°C. Chromatographic response of the FID 647 

was calibrated with commercial standards, and the response of the FID was checked on a daily basis as 648 

described in the expedition report (14). Based on the analyzed partial pressures of methane in 649 

headspace gas samples, the concentrations of dissolved pore-water methane were derived using a mass 650 

balance approach (14). The resulting hydrocarbon gas data are reported in Table T21 and T22 of the 651 

expedition report (14). 652 

Sulfate – Shipboard analysis of sulfate was conducted using a Dionex ICS-2100 ion chromatograph. The 653 

column oven was set at 30°C. The eluent solution was 40 mM potassium hydroxide. Aliquots of a 654 

standard (IAPSO Batch 157, salinity = 34.994) were used in all analytical batches. In each batch, every 655 

diluted sample was analyzed twice. Variations due to temperature-dependent changes in the injected 656 

volume and sample dilution were corrected by normalization to chloride, which was determined 657 

independently by titration. An IAPSO standard was analyzed after every fifth analysis for drift correction, 658 

thus yielding an uncertainty of 0.02 mM for sulfate analysis. All methods and raw data are documented 659 

in detail in the expedition report (14, Table T14 in ref. 14). 660 

δ13C-CH4 – The carbon isotopic composition of methane was analyzed on shore by isotope ratio 661 

monitoring gas chromatography/mass spectrometry (irm-GC/MS), using a Thermo Finnigan Trace GC 662 

Ultra connected to a Thermo Finnigan DELTA Plus XP mass spectrometer via a Thermo Finnigan GC 663 

combustion III interface. The Trace GC was equipped with a Carboxen column (30 m length, 0.32 mm 664 

inner diameter). The carrier gas was helium (3 mL min-1), the split ratio ranged from 1:3 to 1:100 665 
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depending on sample concentration, and the temperatures of the GC oven and injector were 40°C and 666 

200°C, respectively. The primary standardization was based on multiple injections of reference CO2 from 667 

a lab tank (δ13C = -34.17 ± 0.1‰ vs. VPDB, 3.0 ± 0.5 V at m/z 44) at the beginning and end of the analysis 668 

of each sample. The analytical precision was better than 0.4‰ (1σ). 669 

Acetate and δ13C-acetate - Concentration and carbon isotopic composition of acetate were analyzed on 670 

shore by isotope ratio monitoring high performance liquid chromatography/mass spectrometry (irm-671 

HPLC/MS) as described previously (25). The analysis involves chromatographic separation of VFAs on a 672 

Thermo Finnigan Surveyor HPLC combined with chemical oxidation of the effluents in a Thermo Finnigan 673 

LC IsoLink interface and subsequent online transfer of the resulting CO2 into a Thermo Finnigan DELTA 674 

Plus XP mass spectrometer via open split. Chromatographic separation was achieved with a VA 300/7.8 675 

Nucleogel Sugar 810H column (300 mm length; 7.8 mm ID; Macherey-Nagel) equipped with a guard 676 

column (CC30/4 Nucleogel Sugar 810H; 30 mm length; Macherey-Nagel), and 5 mM phosphoric acid as 677 

mobile phase with a flow rate of 300 µL min-1. The column was kept at room temperature. The 678 

quantitative analysis of VFAs is based on the linear correlation between signal area of m/z 44 recorded 679 

by irm-LC/MS and injected amount of carbon (72). For carbon isotope analysis of VFAs, primary 680 

standardization on the DELTA Plus XP is based on multiple (three to six) injections of reference CO2 (δ13C 681 

= -34.3 ± 0.1‰ vs. VPDB, 3.5 ± 0.5 V at m/z 44) from a tank before and after the analysis of each sample. 682 

We calculated the 13C/12C ratios of the eluting compounds and the corresponding δ13C-values according 683 

to Ricci et al. (73) and Santrock et al. (74), using ion currents of m/z 44 and m/z 45 integrated over time 684 

for each individual peak and a mean 17O/16O ratio for each chromatographic run that resulted from the 685 

analysis of the CO2 reference peaks. Precision and accuracy were assessed by periodic analysis of 686 

standards as described previously (72). Standard deviations for repeated carbon isotope analysis were 687 

<0.6‰, and mean δ13C values of dissolved VFAs deviated by <0.6‰ from those determined for their salts 688 

by elemental analyzer/isotope ratio mass spectrometer (EA/IRMS). The detection limit for carbon 689 

isotope analysis of acetate was 10 µM, i.e. slightly higher than the detection limit of 5 µM for 690 

quantitative acetate analysis. Samples with acetate concentrations exceeding 1.3 mM were diluted 1:10 691 

with MilliQ water to facilitate accurate analysis. 692 

6.3 Thermodynamic calculations (Fig. S9) 693 

The standard Gibbs energy (∆G0insitu) of sulfate-dependent AOM (CH4 + SO4
2- → HCO3

- + HS- + H2O), 694 

sulfate reduction from acetate (SO4
2- + CH3COO- à HS- + 2HCO3

-), sulfate reduction from hydrogen (4H2 + 695 

SO4
2- + H+ à HS- + 4H2O), methanogenesis from acetate (CH3COO- + H2O à CH4 + HCO3

-), and 696 

methanogenesis from hydrogen (4H2 + HCO3
- + H+ à CH4 + 3H2O) (fig. S9) was calculated using the 697 

SUPCRT/OBIGT software package (75) and reported thermodynamic data (76-78) for in-situ 698 

temperatures estimated from the local geothermal gradient (fig. S4) and a median pressure of 55.8 MPa. 699 

The energy of reactions at non-standard conditions (∆GR) was calculated according to:  700 

	 ∆GR	=	∆G0insitu	+	R	×	T	×	ln	Q (10) 701 

where R (0.008314 kJ mol-1 K-1) is the ideal gas constant, T (in K) is the in-situ temperature, and Q	702 

denotes the activity quotient of the reactants and reaction products. Activities were estimated by 703 

multiplying the measured concentration of the species with activity coefficients calculated from an 704 

extended version of the Debye-Hückel equation (79) for an ionic strength of I = 0.64 and in-situ 705 

temperatures using the Geochemists Workbench® Software (www.gwb.com). In depths where HS- was 706 

below detection, we assumed a molar concentration of 0.1 µmol L-1. 707 
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6.4 δ13C-acetate diffusion-reaction model (Fig. S10) 708 

Profiles of concentrations of acetate and its carbon isotopic compositions (δ13C-acetate) (Fig. 2C) indicate 709 

effective turnover of acetate in up to 60°C hot sediments, minimal utilization of acetate between 60°C 710 

and 100°C, and the presence of a biological acetate sink above 100°C. Dissolved acetate concentrations 711 

([Ac]) are sub-millimolar in sediments of the Upper Shikoku Basin and increase at the transition to the 712 

Lower Shikoku Basin where they remain relatively constant, at 9.2 ± 2.4 mM (Fig. 2). Starting near the 713 

Upper and Lower Shikoku Basin interface, δ13C-acetate is invariable, -18.8 ± 0.5‰, within the 714 

measurement precision (0.6‰) (Fig. 2C). This constancy breaks at the transition between the zone of no 715 

detectable microbial cells and the deep cell-populated zone. Acetate concentrations decrease while δ13C-716 

acetate monotonically increases with depth, reaching a maximum measured value of -7.9‰ at 1101 717 

mbsf. This combination of isotope and concentration data implies catabolic acetate utilization.  718 

The interval of invariable δ13C-values is consistent with production of acetate from isotopically 719 

monotonous organic matter, by thermal degradation and possibly fermentation. In contrast, the deep 720 

increase of δ13C-values is consistent with biological utilization of acetate, which favors the 13C-depleted 721 

acetate isotopologue, leaving the unreacted acetate enriched in 13C (25, 72, 80). At any depth, the 722 

isotopic composition of acetate reflects the composition of the source(s), the isotopic fractionation 723 

associated with consumption, and diffusion, which tends to homogenize variations. For a depth interval 724 

where there is no significant continuing acetate production and over which diffusive transport is limited, 725 

i.e., (L/(Dt)0.5<1 (where D is the effective diffusion coefficient, L is the length scale and t is time), δ13C-726 

acetate is expected to vary linearly with ln ([Ac]/[Ac]0) (where [Ac]0 is the initial acetate concentration), 727 

with a slope of the isotope fractionation, ε. In a diffusive steady state system with either zero or first 728 

order uptake kinetics, concentrations are zero at the boundary and the slope should be ε/2. In systems 729 

where there is diffusion but steady-state has not been reached, the slope is expected to be between 730 

these values.  731 

As expected, if biological uptake caused the acetate depletion in the deep cell populated zone, δ13C-732 

acetate varies linearly as a function of ln ([Ac]/[Ac]0) (fig. S10). With a best-fit slope of -7.7‰, the 733 

corresponding ε value is ranging from -7.7‰ to -15.4‰. This is consistent with the range of 734 

experimentally determined ε values associated with biological acetate utilization (26). 735 

We estimated the magnitude of the uptake with a simple model. First, we estimated the magnitude of 736 

thermogenic production based on acetate concentrations between ~650 and ~940 mbsf. In this zone of 737 

constant δ13C-acetate, which indicates the lack of uptake, concentrations rise rapidly and then 738 

approximately plateau. Since diffusion will only be effective over distances less than approximately 50 m 739 

in this region over the timescales since burial-driven heating began producing acetate 0.4 Ma, this 740 

plateau implies that the presumably dominantly thermogenic production is rapid as the sediment is 741 

heated to the acetate producing temperature window. Production then slows dramatically with further 742 

burial and heating, as otherwise concentrations would significantly rise with depth. The total production 743 

of acetate in each unit of sediment has thus been approximately 9.2 ± 2.4 mM, while in our deepest 744 

sample concentration has been reduced to 3.3 mM, which gives an average depletion rate since the time 745 

of acetate production 0.4 Ma of approximately 5x10-12 to 7x10-12 mol cm-3 y-1. Normalized to the 746 

abundance of cells in the cell populated zone (10-100 cells cm—3), the average uptake rates over the time 747 

since acetate was produced are between 5x10-14 to 7x10-13 mol cell-1 y-1.  748 

 749 
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7. Radiotracer experiments (Fig. 2E) 750 

Metabolic activity of methanogenesis from CO2 was determined in radiotracer experiments to achieve 751 

the highest possible sensitivity. Sediment was amended with seawater medium, traces of hydrogen, and 752 
14C-bicarbonate, and incubated in gas-tight headspace vials at representative in-situ temperatures. At 753 

the end of the experiments, radioactivity of the methane and bicarbonate pool was determined to 754 

quantify the rate of methane production. The resulting methanogenesis rates (MGRDIC) should be 755 

regarded as potential activity. 756 

For radiotracer experiments, one peeled WRC sample (approx. length 10 cm) per investigated core was 757 

transferred to an anaerobic chamber. In the glove box, additional sediment (ca. 2-3 mm) was removed 758 

from the WRC surface with a sterile ceramic knife and discarded. The clean innermost part of the core 759 

was chopped off with the knife to create a mixture of very small sediment chips and powder. 760 

Approximately 5 mL of this sediment was placed into a 20-mL crimp vial to which 5 mL of artificial 761 

seawater medium (sulfate-free, 1 mM NaHCO3) were added (see recipe below). Three replicate vials 762 

were prepared from each WRC. Vials were crimp-sealed with chlorobutyl stoppers (Bellco) and 763 

aluminum crimps. After sealing, the vial headspace was flushed with N2 gas to remove any hydrogen and 764 

other gases present in the atmosphere of the anaerobic chamber. Subsequently, 40 µl N2/H2 gas 765 

(95%/5%) was injected into each vial to provide approx. 130 nM of dissolved hydrogen in the liquid 766 

phase. All vials and stoppers were autoclaved, and solutions were either autoclaved or filtered through 767 

sterile syringe filters (0.22 μm pore size) prior to use. 768 

Radiotracer experiments were conducted in the radioisotope van onboard Chikyu. For the determination 769 

of MGRDIC, about 10 μL of radiolabeled (14C) NaHCO3
- (containing up to 3.7 MBq radioactivity) were 770 

injected through the rubber stoppers, and vials were shaken thoroughly. Samples were incubated at 771 

temperatures within the in-situ range: 40°C for ≤ 360 mbsf, 60°C for 405-585 mbsf, 80°C for 604-775 772 

mbsf and 95°C for ≥ 816 mbsf. After 5-10 days of incubation, microbial activity was stopped by injecting 773 

500 µL 50% NaOH (w/v) into each vial, and vials were shaken and shipped to Aarhus University, 774 

Denmark, for analysis.  775 

The radiotracer experiments were accompanied by a suite of controls. On-board Chikyu, sediment 776 

controls (5 mL sediment mixed with 5 mL artificial, sulfate-free seawater medium) were incubated 777 

without radiotracer addition. Radiotracer was then added after microbial activity was stopped to check 778 

for reactions past incubation. In addition, medium controls (5 mL sterile medium, no sediment) and drill 779 

fluids (5 mL drill fluid, both seawater and high viscosity samples from the mud tank) were incubated with 780 

radiotracer in the same manner as sediment samples to check for non-biological reactions in the medium 781 

and biological reactions in the drill fluid, respectively. Moreover, an additional set of killed sediment 782 

controls was prepared post-cruise by irradiating sediment with 18 kGy. After irradiation, samples were 783 

incubated and processed like regular sediment samples. 784 

Artificial seawater medium for sediment slurry incubations was prepared as follows. The subsequent 785 

salts were added to a 2-L glass bottle: 400 mg KH2PO4, 500 mg NH4Cl, 1 g MgCl2 x 6H2O, 1 g KCl, 300 mg 786 

CaCl2 x 2H2O, 50 g NaCl. The bottle was filled up to 2 L with ultrapure H2O. Some drops of Resazurin 787 

solution (100 mg Resazurin in 100 mL H2O) were added. The bottle was covered (but not completely 788 

closed) with a screw cap and autoclaved. After autoclaving, the medium was purged with N2 gas while 789 

still hot (>60°C). During purging, 10 mL of sterile filtered NaHCO3 solution (84 g NaHCO3 in 100 ml H2O) 790 

were added to the medium. The pH was adjusted to 7.5 with sterile filtered 6.5% HCl (v/v) or NaOH 791 

solution (w/w). The bottle was then closed with a sterile butyl stopper and a screw cap and ~3 mL of 792 
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sterile filtered Na2S solution (1.2 g Na2S in 100 mL H2O) was added through the stopper with a syringe to 793 

reduce the medium. Reduction was confirmed by discoloration of Resazurin. 794 

In each crimped vial, the amount of radioactive methane (14CH4) was determined using a method 795 

involving purging of the headspace, followed by combustion of 14CH4 from the headspace to 14CO2, and 796 

scintillation counting (29). More specifically, the headspace was flushed with CO2-free air at 25 mL min-1 797 

for 20 min. In the evolving gas stream, 14CH4 was oxidized to 14CO2 in a quartz glass tube containing CuO 798 

pellets, heated to 900°C. 14CO2 from the oven exhaust gas was trapped in 5 mL Carbosorb (Perkin Elmer). 799 

The Carbosorb was mixed with 5 mL scintillation cocktail (Permafluor, PerkinElmer) and radioactivity of 800 
14CO2 was quantified on a TriCarb 2900TR liquid scintillation analyzer (PerkinElmer). The entire gas line 801 

was made of glass, which does not absorb CO2, and the gas stream was subjected to a wash-step in 1 M 802 

NaOH before combustion to prevent trace amounts of labeled DIC from penetrating into the oven. The 803 

efficiency of CH4 combustion was tested by adding known amounts of non-radioactive CH4 to a reaction 804 

vessel and following its conversion to CO2 in the exhaust gas. For this, 500 µL of the exhaust gas was 805 

regularly injected into a gas chromatograph equipped with a 0.9-m packed silica gel column of 3.1 mm 806 

inner diameter and a flame ionization detector (SRI 310C, SRI Instruments). Conversion efficiencies were 807 

always >99%.  808 

After extraction of 14CH4, a subsample of the sediment slurry (100 to 250 µL) was transferred into a new 809 

glass vial, crimp capped with butyl rubber stoppers, and acidified with 2 mL of HCl (6 M) to determine 810 

the remaining [14C]-DIC in the sediment. All produced 14CO2 was flushed out of the vial headspace with N2 811 

at 25 mL min-1 for 35 min and trapped in 5 mL Carbosorb. The radioactivity of 14CO2 was counted in 5 mL 812 

scintillation cocktail (Permafluor, PerkinElmer) on a TriCarb 2900TR liquid scintillation analyzer 813 

(PerkinElmer).  814 

MGRDIC were calculated similar to (29): 815 

MGRDIC	=	(ACH4	/	[ACH4	+	ADIC])	×	[DIC]	×	1.08	×	ρ	/	(t	×	m)  (11) 816 

if 817 

ACH4	>	[bc	+	(3	×	σbc)] (12) 818 

where ACH4	is the radioactivity (counts per minute = CPM) of CH4 at the end of the incubation, ADIC is the 819 

radioactivity (CPM) of DIC at the end of the incubation, [DIC] is the amount (pmol) of DIC in the sample 820 

medium based on the DIC concentration in the medium (0.677 mM) and in the natural sediment 821 

porewater, 1.08 is the correction factor for the expected isotopic fractionation (81), ρ is the bulk 822 

sediment density (g cm-3), t is the incubation time (d), m is the sediment mass (g), bc	is the scintillation 823 

counter blank signal and σbc is the standard deviation of the blank signal.14CH4 radioactivity determined 824 

in controls (sediment controls, medium controls, drill fluid, killed sediment controls) was within or close 825 

to levels of scintillation counter blanks. A conservative minimum quantification limit for biological tracer 826 

turnover of 0.094 pmol CH4 cm-3 d-1 was calculated from the average activity measured in the killed 827 

control incubations plus 3 times the standard deviation. The down-hole profile of potential 828 

methanogenesis rates in Fig. 2E shows averages and standard deviations of three replicates (table S2). 829 

 830 
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Fig. S1. Bathymetric map showing IODP Site C0023 drilled by the DV Chikyu in 2016 (IODP Expedition 370) off 

Cape Muroto, Japan, together with previously existing ODP Sites 808 and 1174 drilled by the DV JOIDES 

Resolution in 1990 and 2000, respectively. Inset map shows the location (red square) within the context of the 

general tectonic configuration of the Japanese Island system. (Modified from ref. 14).  
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Fig. S2. Depth profiles of sedimentological properties at IODP Site C0023. (A) Lithostratigraphy, tectonic domains, 

and age information. Major lithological facies (black) are given together with core observations used to constrain 

formation boundaries (modified from ref. 14). Three tectonic domains (red) are separated based on deformation 

structures, i.e. an upper domain that comprises the prism, cut by low angle thrusts, the décollement zone at 758-

796 mbsf, consisting of relatively thin, characteristically brecciated fault zones that are alternating with several 

meter thick intact zones, and an underthrust domain with extensional faulting and no thrust fault zones (14). The 

age model results from biostratigraphic studies based on calcareous nannofossil assemblages (38). (B) Porosities, 

inferred from moisture and density measurements of discrete sediment and rock samples, generally decrease with 

increasing depth. However, a distinct reversal of this trend (dotted line) occurs across and below the décollement 

(modified from ref. 14). (C) P-wave velocities, i.e. the speed at which ultrasonic sound waves pass through intact 

sediment cores in three-dimensional space (x, y, z), inversely reflect the porosity profile in general, except for a 

positive excursion of P-wave velocities from the down-hole trend (dotted line) at ~630 mbsf, pointing to a stiffening 

of the fine to coarse tuff and tuffaceous muds in this interval (modified from ref 15). (D) Equivalent strength (EST) is 

a measure for the in-situ strength of the geological formation, which is deduced from drilling parameters. Positive 

EST excursions from the down-hole trend (dotted line) show distinctly elevated mechanical strength in the tuff-rich 

sediments around ~630 mbsf, while negative EST excursions reveal a mechanically weak zone below the 

décollement (modified from ref. 33). (E) The radiodensity profile was derived from continuous logging of sediment 

cores by X-ray computed tomography (XCT), with average values of quality controlled mean CT number (MCN) in 

lithological intervals logged by visual core description (modified from ref. 50). In general, radiodensity increases 

with depth due to the compaction of mud and mudstones (black symbols). Negative and positive excursions reflect 

and record the presence of porous tuff layers (gray symbols) and dense hydrothermal mineral assemblages (red 

symbols), respectively. Gray shading indicates zones where concentrations of both vegetative cells and 

endospores were below the detection limits of the employed methods in all investigated samples (cf. Fig. 

1). The horizontal dashed gray line indicates the location of the sulfate-methane transition zone (SMTZ) at ~730 

mbsf (cf. Fig. 2).  
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Fig. S3. Heat flow estimate for IODP Site C0023. Measured in-situ temperature vs. thermal resistance, ∑ - ∆9:
;(9):

2<
=56 . 

The slope of the line is equal to –q, the negative of the heat flow, -0.1404 W m-2 (51). The 90% confidence limit of 

the heat flow is 0.005 W m-2. The error bars are the reported uncertainties of the measured temperature, 0.2%. 
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Fig. S4. Temperature profile at Site C0023. In-situ temperatures were determined based upon measured heat flow, 

thermal conductivities and application of the Bullard equation (equation 2) (51). The thick line is the best estimate 

and the thin lines represent the 90% confidence limits. The red triangles are in-situ temperatures measured by 

APCT-3 tool.  
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Fig. S5. SYBR Green I staining of vegetative cells (a) and endospores (b) of Bacillus subtilis NBRC13719. Close-up 

of the spores are shown in white box of (b). In (c), endospores were mixed in sterilized sediment prior to staining by 

SYBR Green I. Typical yellowish endospores, which are difficult to distinguish from sediment particles, are indicated 

by white arrows. Bars are 10 µm (2 µm in the white box of (b)). 
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Fig. S6. Absence of contaminant cells from drilling fluids in low biomass samples recovered from IODP Site 

C0023. Concentrations of microbial cells fluorescently stained with SYBR Green I fall in the range of the analytical 

blank (4.2 ± 4.0 cells cm-3; N = 20) or remain below the minimum quantification limit (MQL) of 16 cells cm-3 in 32 

samples retrieved from 829 to 1020 mbsf. This finding shows that the introduction of contaminant cells was 

negligible during cutting, retrieval and processing of 21 successively taken rotary core barrel (RCB) cores on board 

DV Chikyu. 
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Fig. S7 Impact of drilling on the concentration of vegetative cells in samples from Site C0023. (A) Sample quality 

was assured using X-ray CT imaging for the selection of undisturbed core intervals, and controlled based on a 

quality assessment of individual 0.625 mm thick X-ray CT slice images. A mean slice quality of 100% in the sampled 

~30 cm long core intervals represents the highest possible core quality. The lack of relation between mean slice 

quality and vegetative cell abundance shows that contamination due to the introduction of microbial cells along 

drilling induced fractures is negligible in high quality cores. (B) Established routines for contamination testing were 

applied to monitor the potential intrusion of drilling fluid into the cores with the perfluorocarbon (PFC) tracer 

perfluoromethylcyclohexane. PFC recovery normalizes the PFC concentration measured in the center part of an 

individual core to the average PFC concentration in the outer parts of the cores, which had been in direct contact 

with drilling fluid. A PFC recovery of 0% in the core center represents the lowest risk of drilling induced 

contamination. The lack of a relationship between PFC recovery and vegetative cell abundance indicates the 

absence of contamination due to diffusion or advection of drilling fluids. The dashed line represents the analytical 

blank of cell enumeration (4.2 ± 4.0 cells cm-3). 
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Fig. S8. Validation of the observed accumulation of endospores (> 1x106 endospores cm-3; Fig. 1) within the 

sediment interval corresponding to the major endospore peak between 633-827 mbsf at Site C0023. Depicted is 

the hypothetical temporal history of the concentrations of thermophilic endospores (solid red line) and vegetative 

Firmicutes (solid blue line) in the sediments corresponding to this peak through the time period characterized by 

intensified geothermal heating. Red and blue dashed lines are schematic and do not represent modeling outputs. 

High accumulation rates of trench sediments in the last 0.4 My caused rapid, linear heating of the sediments at a 

rate of ~125°C My-1. Our model assumes the presence of a background population of 1000 thermophilic 

endospores cm-3 (red dashed line; this value is lower than estimated background populations in young Arctic 

surface sediments (17) and was arbitrarily chosen to be lower than our detection limit) and initial germination of 

vegetative Firmicutes from these endospores at 0.32 Ma, when temperatures reached 50°C; subsequent growth of 

the Firmicutes populations lasted for 0.2 My until sediment temperatures in this horizon had reached 75°C. Further 

details on the model parameters are presented in section 5.3 of the supplementary text. This model shows that the 

formation of the large endospore population (>1x106 endospores cm-3) from germination of a small background 

population of thermophilic endospores and subsequent growth is plausible based on a set of reasonable 

assumptions such as a growth temperature range of 50-75°C for thermophiles and doubling time of 1290 years for 

vegetative cells, while still maintaining a relatively low vegetative cell population of below ~2x104 cells cm-3.  

  



 45 

 

 

Fig. S9. Calculated Gibbs free energy yields of methanogenesis from hydrogen, sulfate reduction from hydrogen, 

methanogenesis from acetate, sulfate-dependent AOM, and sulfate reduction from acetate, in sediments at Site 

C0023. 

  



 46 

 

Fig. S10. δ13C-acetate diffusion-reaction model. At the bottom of Hole C0023A, at 961-1101 mbsf, acetate 

concentrations [Ac] decrease and δ13C-acetate varies linearly as a function of ln ([Ac]/[Ac]0), where [Ac]0 is the 

acetate concentration in the overlying stagnant acetate pool (i.e. a measured concentration of 11.7 mM at 929.71 

mbsf, close to the upper range of average acetate concentrations of 9.2 ± 2.4 mM at 593.45-945.21 mbsf, N = 47). 

This relationship indicates biological uptake of acetate. The best-fit slope of -7.7‰ is consistent with the range of 

experimentally determined isotopic fractionation factors associated with biological acetate utilization (26). 
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Supporting tables 

Table S1: Endospore to vegetative cell ratios for different depth intervals. The upper interval boundary was approximated to the 

depth of the shallowest sample analyzed for endospores (250 mbsf) or the depth of the major decline of vegetative cell 

concentrations (350 mbsf). The lower boundary was set by the deepest endospore sample (1121 mbsf) or the 

sediment/basement boundary (1177 mbsf). Additionally, calculations using the endospore detection limit of 2.2 x 104 endospores 

cm-3 are provided together with calculations, using the value of the analytical blank of vegetative cells as hypothetical detection 

limit (DL) for endospores (4 endospores cm-3). 

 Ratio endospores/vegetative cell 

Interval 

DL = 2.2 x 104 

endospores cm-3 

DL = 4 

endospores cm-3 

250 mbsf – 1121 mbsf 120 110 

250 mbsf – 1177 mbsf 120 110 

350 mbsf – 1121 mbsf 8200 7700 

350 mbsf – 1177 mbsf 6500 6100 
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Table S2: Potential methanogenesis rates from dissolved inorganic carbon determined in radiotracer experiments. AVG = 

average, StDEV = Standard deviation. Gray fields indicate average rates below the quantification limit (<0.094 pmol CH4 cm-3 d-1). 

 

Replicate 1 Replicate 2 Replicate 3

Depth           

[mbsf]

Methane 

production

[pmol d
-1

 cm
-3

]

Methane 

production

[pmol d
-1

 cm
-3

]

Methane 

production

[pmol d
-1

 cm
-3

]

AVG Methane 

production

[pmol d
-1

 cm
-3

]

StDev Methane 

production

[pmol d
-1

 cm
-3

]

189 391.53 394.71 464.39 416.88 41.18

206 27.86 35.62 4.49 22.65 16.20

319 1.49 3.59 2.36 2.48 1.06

350 1.08 2.50 0.88 1.49 0.88

405 0.90 0.47 0.30 0.56 0.31

412 0.51 0.98 0.42 0.63 0.30

430 0.57 0.24 0.72 0.51 0.25

443 0.18 0.00 0.00 0.06 0.10

448 0.88 1.30 0.47 0.88 0.41

476 1.55 0.53 0.41 0.83 0.62

486 0.19 0.12 0.05 0.12 0.07

496 0.15 0.14 0.05 0.11 0.06

508 0.00 0.00 0.05 0.02 0.03

538 0.05 0.25 0.13 0.14 0.10

564 1.91 0.89 0.73 1.18 0.64

576 0.00 0.00 0.05 0.02 0.03

585 0.15 0.05 0.05 0.08 0.06

605 0.17 0.14 0.05 0.12 0.06

616 0.21 0.23 0.26 0.24 0.03

633 1.30 1.09 0.71 1.03 0.30

643 1.78 2.24 0.71 1.58 0.79

693 0.32 0.45 0.33 0.37 0.07

718 0.50 0.29 0.29 0.36 0.12

735 0.64 0.58 0.17 0.46 0.26

754 0.19 0.05 0.00 0.08 0.10

775 0.00 0.00 0.09 0.03 0.05

816 0.05 0.11 0.14 0.10 0.05

830 0.00 0.05 0.05 0.03 0.03

850 0.23 0.19 0.16 0.19 0.04

864 0.52 0.47 0.25 0.41 0.15

883 0.33 0.41 0.50 0.41 0.09

901 0.20 0.33 0.16 0.23 0.09

922 0.11 0.05 0.05 0.07 0.04

940 0.18 0.00 0.00 0.06 0.11

961 0.05 0.05 0.00 0.03 0.03

980 0.17 0.00 0.00 0.06 0.10

1003 0.00 0.05 0.00 0.02 0.03

1022 0.14 0.00 0.00 0.05 0.08

1042 0.00 0.00 0.05 0.02 0.03

1066 0.00 0.00 0.00 0.00 0.00

1094 1.96 2.17 1.86 2.00 0.16

1124 2.66 1.55 1.51 1.91 0.65

1177 1.12 1.26 2.11 1.50 0.53


