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ABSTRACT
The energy consumed by data centers is starting to make
up a significant fraction of the world’s energy consumption
and carbon emissions. A large fraction of the consumed en-
ergy is spent on data center cooling, which has motivated
a large body of work on temperature management in data
centers. Interestingly, a key aspect of temperature manage-
ment has not been well understood: controlling the setpoint
temperature at which to run a data center’s cooling system.
Most data centers set their thermostat based on (conserva-
tive) suggestions by manufacturers, as there is limited un-
derstanding of how higher temperatures will affect the sys-
tem. At the same time, studies suggest that increasing the
temperature setpoint by just one degree could save 2–5% of
the energy consumption.
This paper provides a multi-faceted study of temperature

management in data centers. We use a large collection of
field data from different production environments to study
the impact of temperature on hardware reliability, including
the reliability of the storage subsystem, the memory subsys-
tem and server reliability as a whole. We also use an ex-
perimental testbed based on a thermal chamber and a large
array of benchmarks to study two other potential issues with
higher data center temperatures: the effect on server perfor-
mance and power. Based on our findings, we make recom-
mendations for temperature management in data centers,
that create the potential for saving energy, while limiting
negative effects on system reliability and performance.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability—Tempera-
ture; C.4 [Computer Systems Organization]: Perfor-
mance of Systems—Temperature

Keywords
Data Center, Temperature, Reliability, Performance, En-
ergy, LSE, Hard Drive, Memory, DRAM, CPU, Fans
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1. INTRODUCTION
Data centers have developed into major energy hogs. The

world’s data centers are estimated to consume power equiv-
alent to about seventeen 1,000 MW power plants, equaling
more than 1% of total world electricity consumption, and to
emit as much carbon dioxide as all of Argentina [17]. More
than a third, sometimes up to one half of a data center’s
electricity bill is made up by electricity for cooling [6, 19].
For instance, for a data center consisting of 30,000 square
feet and consuming 10MW, the yearly cost of running the
cooling infrastructure can reach up to $4-8 million [23].

Not surprisingly, a large body of research has been de-
voted to reducing cooling cost. Approaches that have been
investigated include, for example, methods to minimize air
flow inefficiencies [23, 35], load balancing and the incorpo-
ration of temperature awareness into workload placement in
data centers [7, 25, 28, 33], and power reduction features in
individual servers [14, 15].

Interestingly, one key aspect in the thermal management
of a data center is still not very well understood: controlling
the setpoint temperature at which to run a data center’s
cooling system. Data centers typically operate in a temper-
ature range between 20C and 22C, some are as cold as 13C
degrees [8, 29]. Due to lack of scientific data, these values
are often chosen based on equipment manufacturers’ (con-
servative) suggestions. Some estimate that increasing the
setpoint temperature by just one degree can reduce energy
consumption by 2 to 5 percent [8, 9]. Microsoft reports that
raising the temperature by two to four degrees in one of its
Silicon Valley data centers saved $250,000 in annual energy
costs [29]. Google and Facebook have also been considering
increasing the temperature in their data centers [29].

While increasing data center temperatures might seem like
an easy way to save energy and reduce carbon emissions, it
comes with some concerns, the most obvious being its im-
pact on system reliability. Unfortunately, the details of how
increased data center temperatures will affect hardware re-
liability are not well understood and existing evidence is
contradicting. A recent study [35] indicated that in order to
avoid thermal redlining, a typical server needs to have the
air temperature at its front inlets be in the range of 20C –
30C. Every 10C increase over 21C decreases the reliability of
long-term electronics by 50% [24]. Other studies show that a
15C rise increases hard disk drive failure rates by a factor of
two [4, 10]. On the other hand, a recent Google study [26]
suggests that lower temperatures are actually more detri-
mental to disk reliability than higher temperatures.

Other possible concerns of increasing data center temper-
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Figure 1: The monthly probability of LSEs as a function of temperature. In the three plots for individual models each line
corresponds to the measurement from a different data center.

atures include the effect on server performance, as many
servers employ techniques such as CPU or memory throt-
tling when temperatures reach a critical threshold, and the
effect on server energy consumption, as increased temper-
atures will lead to increases in power leakage and higher
(server internal) fan speeds.
The goal of this paper is to provide a better understand-

ing of the issues involved in raising data center temperatures.
As a first contribution, in Section 2 we perform a detailed
study of the effect of temperature on hardware reliability
by analyzing a large amount of field data. The data comes
from three different organizations spanning several dozen
data centers and covers a diverse set of common reliability is-
sues, including hard disk failures, latent sector errors in hard
disks, uncorrectable errors in DRAM, DRAM replacements,
and general node outages. In Section 3 we perform an exper-
imental study using a testbed based on a thermal chamber
and a large set of different workloads to better understand
the effects that temperature has on the performance and
power usage of systems. Finally, in Section 4 we use the re-
sults of our study to derive some insights and guidelines for
running data centers at higher temperatures, while limiting
the impact on system performance and reliability.

2. TEMPERATURE AND RELIABILITY
We begin our study by analyzing a diverse set of field data

collected at different organizations and data centers to bet-
ter understand the effect of temperature on various aspects
of hardware reliability. We first focus on two specific hard-
ware components, hard disks and DRAM, since these are
among the most frequently replaced components in mod-
ern data centers [30, 31]. In Sections 2.1 and 2.2, we study
two common failure modes of hard disks, latent sector er-
rors and complete disk failures, respectively, before moving
to DRAM reliability in Section 2.3. Then, in Section 2.4 we
use data on node outages in data centers to study the effect
of temperature on overall server reliability.

2.1 Temperature and latent sector errors

2.1.1 Background and data
Latent sector errors (LSEs) are a common failure mode,

where individual sectors on a disk become inaccessible, and
the data stored on them is lost (unless the system can use
redundancy mechanisms to recover it). LSEs happen at a
significant rate in the field [5, 26], with 3-4% of all drives
experiencing them at some point in their life, and are ex-
pected to grow more common as disk capacities increase.
While recent work [5] has studied the prevalence and some

statistical properties of LSEs, there is no prior work on how
temperature affects this important error condition.

To study the effect of temperature on the prevalence of
LSEs, we obtained data collected from January 2007 to May
2009 at 7 different data centers (DCs) at Google covering
three different disk models. For each of the disks, we have
monthly reports of the average (internal) disk temperature
and temperature variance in that month, the count of latent
sector errors, the number of read and write operations dur-
ing that month, and the age of the disk. All data were col-
lected by polling the disks’ internal self-monitoring facility
(SMART). The measurement infrastructure and methodol-
ogy Google uses to collect such data are described in Pin-
heiro et al. [26]. The table below summarizes our data:

Model ID #DCs #Disks #Disk Months Avg. monthly
LSE probability

3 3 18,692 300,000 0.0063
4 3 17,515 300,000 0.0177
6 4 36,671 300,000 0.0067

2.1.2 Analysis
Figure 1 (far left) shows for each of the three models the

monthly probability of a disk experiencing an LSE as a func-
tion of the average temperature. The error bars in this figure
(and in all other figures in this work) are computed using
a 95% confidence level; larger bars for higher temperatures
are due to lack of data. Since there are many data center-
specific factors beyond temperature that might affect reli-
ability (workload, humidity, power spikes, handling proce-
dures, etc), we also break down the results for each model
by data center. The three rightmost graphs in Figure 1 show
the monthly LSE probabilities for the three models, where
each line corresponds to a different data center.

As one might expect, we observe a trend of increasing
LSE rates as temperature rises. However, the magnitude
of increase is much smaller than expected based on com-
mon models and estimates, in particular when isolating the
instances of LSEs per model per data center. Models for
the effect of temperature on hardware components usually
assume an exponential increase in failures as a function of
temperature (based on the Arrhenius equation [16]), and
predict roughly doubling failure rates for every 10-15C in-
crease in temperature [4, 10, 35]. Visual inspection of our
graphs shows for only 5 out of the 10 model/data center com-
binations a clear increase in errors with temperature: model
3, data center 2; model 4, data centers 8 and 9; model 6, data
centers 3 and 5. We also observe that the increase in error
rates tends to be linear, rather than exponential, except for
very high temperatures (above 50C).

To formalize our observation above, we fitted two different



Model DC
Monthly Linear fit Exponential fit

Probability a1 a2 SSE b1 b2 SSE

3
2 7.99 · 10−3

−2.726 · 10−2 7.664 · 10−4 2.331 · 10−4 2.561 · 10−1
−1.637 · 10+2 2.402 · 10−4

4 2.93 · 10−3 7.519 · 10−3
−1.055 · 10−4 1.157 · 10−5 6.613 · 10−4 6.192 · 10+1 1.112 · 10−5

6 2.51 · 10−3 7.322 · 10−3
−1.111 · 10−4 2.328 · 10−6 3.730 · 10−4 8.092 · 10+1 2.402 · 10−6

4
7 2.06 · 10−2 6.517 · 10−2

−1.025 · 10−3 1.720 · 10−3 3.624 · 10−3 7.054 · 10+1 1.595 · 10−3

8 2.28 · 10−2
−5.614 · 10−2 1.755 · 10−3 3.994 · 10−4 5.256 · 10−1

−1.429 · 10+2 3.920 · 10−4

9 1.73 · 10−2
−2.346 · 10−2 9.482 · 10−4 6.192 · 10−5 1.955 · 10−1

−1.047 · 10+2 6.218 · 10−5

6

0 1.43 · 10−2 8.730 · 10−3 1.317 · 10−4 1.282 · 10−4 2.543 · 10−2
−2.481 · 10+1 1.275 · 10−4

1 6.67 · 10−3 1.067 · 10−2
−1.356 · 10−4 7.784 · 10−5 4.695 · 10−3 8.477 · 10+0 7.944 · 10−5

3 7.61 · 10−3
−4.752 · 10−3 3.616 · 10−4 2.918 · 10−5 3.131 · 10−2

−4.863 · 10+1 3.235 · 10−5

5 7.10 · 10−3
−1.001 · 10−2 3.934 · 10−4 3.586 · 10−5 1.180 · 10−1

−1.236 · 10+2 3.820 · 10−5

Table 1: Parameters from fitting linear and exponential models to monthly LSE probabilities as a function of avg. temperature.
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Figure 2: The monthly probability of LSEs as a function of variability in temperature, measured by the coefficient of variation.
In the three plots for individual models each line corresponds to the measurement from a different data center.

models to the data. The first is a simple linear model, i.e.
we try to model the error rate y as a function of temperature
t as y = a1 + a2 · t. Since one of the most common models
for effects of temperature on hardware reliability, the Arrhe-
nius model, is an exponential one, we also fit an exponential
model to our data, i.e. we model the failure rate y as a
function of temperature t as follows: y = a1 · e−a2/t. The
detailed results (including values for the parameters a1, a2,
b1, b2, and the corresponding sum of squared errors (SSE))
are presented in Table 1. We find that in all cases the linear
model provides a fit of comparable or even better accuracy,
as measured by the SSE. The only exception is model 3,
data center 2, where the exponential model provides a bet-
ter fit. We attribute this to the sudden increase in LSEs for
temperatures above 50C. When repeating our analysis for
only data points below 50C, also for model 3, data center 2,
the linear model provides a better fit.

Observation 1: For the temperature range that our data
covers with statistical significance (< 50C), the prevalence
of latent sector errors increases much more slowly with tem-
perature, than reliability models suggest. Half of our model/
data center pairs show no evidence of an increase, while for
the others the increase is linear rather than exponential.

In addition to comparing the quality of the linear versus
the exponential fit, it is interesting to look at the slope of
the linear increase in errors (parameter a2), i.e. the rate
at which errors increase. One interpretation of a2 is that
it gives the additional fraction of drives that will develop
LSEs for each 1 degree increase in temperature, e.g. a2 =
0.01 means that for a 1 degree increase in temperature an
additional 1% of the drive population in a data center would
develop LSEs in a given month (that would not have had
LSEs otherwise). We find that for 4 of the 10 model/data
center combinations a2 actually has a small negative value,
indicating a small decrease in error rates with temperature.
For the remaining positive values, it is important to put

the value of a2 in relation to the average probability of a
drive developing an LSE (provided in the third column in
Table 1). Studying the values of a2 for those cases where
it is positive, we see that a2 is always at least an order of
magnitude smaller than the average LSE probability for that
model/data center combination. That means the fraction
of drives in the population that will develop LSEs due to
a one degree increase in temperature, will be an order of
magnitude smaller than the average observed in the dataset.
However, an increase in the range of ten degrees or more in
data center temperature would probably warrant some extra
measures to protect against data loss due to LSEs.

In addition to the average temperature that a drive is
exposed to, another important factor is the variability in
temperature, since large variations in temperature can neg-
atively affect IT equipment. To study the impact of temper-
ature variability on LSEs we plot the monthly LSE proba-
bilities as a function of the coefficient of variation (CoV) 1

(see Figure 2). We chose the CoV, rather than variance or
standard deviation, since it is normalized by the mean. A
positive correlation between LSEs and temperature variance
could just be due to the positive correlation between LSEs
and mean temperature. Figure 2 shows a clear increase in
LSE probabilities with increasing CoV for all models. We
verify those visual trends by fitting a linear model to cap-
ture the relationship between LSEs and the CoV, and find
a positive slope (a2) for all model/data center pairs.

Observation 2: The variability in temperature tends to
have a more pronounced and consistent effect on LSE rates
than mere average temperature.

Our analysis so far has exclusively focused on the proba-
bility of a drive developing LSEs. Another interesting ques-
tion is whether higher temperature leads to a higher number
of LSEs, once a drive starts developing LSEs. To answer

1
Recall that the coefficient of variation is defined as the standard

deviation divided by the mean.
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Figure 3: The quartiles of
number of LSEs for drives
with LSEs as a function of
temperature.
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Figure 4: The monthly
probability of LSEs as a
function of temperature
by drive age.
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Figure 5: The monthly probability of LSEs as a function
of temperature for drives with high and low write loads
(right) and read loads (left).

this question Figure 3 plots for those disk months that have
errors the 25th and 75th percentile, and the mean. (We
only include results for model 6, all others have comparable
trends). We focus on the quartiles, rather than the mean,
since we find the mean number of LSEs to be highly vari-
able and hence easily biased by outliers. We observe that
the line for all quartiles is flat, indicating that hotter drives
with errors do not experience a higher frequency of errors
than colder drives with errors.

Observation 3: Higher temperatures do not increase the
expected number of LSEs once a drive develops LSEs, possi-
bly indicating that the mechanisms that cause LSEs are the
same under high or low temperatures.

Figure 1 provides another interesting observation: The
rate of LSEs for the same model can vary greatly across
data centers. For example, model 3’s error rate is signif-
icantly higher (more than 2x difference) for data center 2
than for the other data centers, and model 6’s error rates
are significantly higher for data center 0 than for other data
centers (again, more than 2x difference). This brings up the
question whether factors, such as environmental conditions
or the age or usage of a drive affect how it reacts to tem-
perature. While we have no data on environmental factors,
such as humidity or the quality of the power, we have infor-
mation on the age of each drive and its utilization and study
the effect of those factors in Figures 4 and 5.
Our study of age and temperature in Figure 4 focuses on

model 6, since the disks for this model span the widest range
in age. We divide the drives into two groups, those that are
less than 18 months old and those that are 18-36 months
old, and plot LSE probabilities as a function of temperature
separately for each group. We find that both lines show
similar trends with no evidence that older drives are more
sensitive to higher temperatures.

Observation 4: Within a range of 0-36 months, older drives
are not more likely to develop LSEs under temperature than
younger drives.

Figure 5 studies the effect of workload intensity. Fig-
ure 5 (left) divides disks into two groups, one with high read
utilization and one with low read utilization, and plots the
LSE probabilities separately for the two groups. We mea-
sure read utilization by the number of read operations per
month and assign a disk to the low read utilization group
if the number of read operations is below the median for
the dataset, and to the high read utilization group other-
wise. Figure 5 (right) performs the corresponding analysis

for write utilization. Results are shown for model 6 only,
but trends were similar for other models as well.

We find that drives with higher utilization are not more
sensitive to higher temperatures. That is an interesting re-
sult beyond the study of temperature effects, as it has been
an open question as to how workload intensity affects LSEs.
Methods that are intended to protect against data loss due
to LSEs, such as running a periodic “scrubber” that reads
the entire disk to proactively detect LSEs, place additional
load on a system, and a concern is that this added load
might increase the rate of LSEs. Our results indicate that
such worries are, likely, unfounded.

Observation 5: High utilization does not increase LSE
rates under temperatures.

To add statistical rigour to Observations 4 and 5, we per-
formed an ANOVA test. The results indicate no correlation
between LSEs and write utilization. There is evidence for
a correlation with read utilization and age, however this is
due to drives with lower read utilization and lower age ex-
periencing slightly increased rates of LSEs.

2.2 Temperature and disk failures

2.2.1 Background and data
Hard disk failures include any kind of disk problems that

are considered serious enough to replace the disk in ques-
tion. Hard disk failures are a serious condition since they
create the potential for data loss and happen at a signif-
icant rate: typically 1-5% of drives in a data center need
to be replaced in a given year [26, 31]. The only existing
work that includes trends for the effect of temperature on
hard disk failures based on field data is the work by Pin-
heiro et al. [26]. Surprisingly, this work found a strong drop
in disk failure rates with increasing temperature, except for
very high temperatures (above 45C). This is in contrast with
common reliability models, which estimate disk failure rates
to increase exponentially with temperature.

The goal of this section is to revisit the question of how
temperature affects disk failure rates. In addition to obtain-
ing a more conclusive answer to this question, we also look
at the question from a broader angle, studying the effect
of utilization, differences between models and data centers,
and the age of a disk. For our study, we have obtained data
on disk replacements collected from January 2007 to May
2009 at 19 different data centers (DCs) at Google covering 5
different disk models. For each disk we know the age of the
disk, the average temperature and average utilization over



Model DC

All temperatures < 50’C Temperatures
Monthly Linear fit Exponential fit Monthly Linear fit Exponential fit
Prob. a1 a2 SSE b1 b2 SSE Prob. a1 a2 SSE b1 b2 SSE

(·10−3) (·10−3) (·10−4) (·10−6) (·10−2) (·10−6) (·10−3) (·10−3) (·10−5) (·10−6) (·10−4) (·10−7)

1
9 2.82 −6.387 1.958 6.357 3.242 −116.7 6.702 2.47 0.02274 5.315 1.844 45.88 −29.34 18.96
13 3.79 −7.253 2.273 5.110 4.057 −116.4 5.241 3.34 0.2640 6.499 1.348 79.08 −41.24 13.52

2
3 3.32 −6.602 2.157 12.30 4.500 −123.3 12.69 2.87 −0.02586 6.384 5.376 94.40 −56.07 55.32
9 3.09 −8.462 2.485 15.56 6.065 −142.5 16.37 2.75 −1.297 8.807 9.901 96.89 −60.98 102.1

4
8 1.07 −0.523 0.3841 1.996 0.7987 −84.98 2.168 1.07 −1.032 5.201 1.421 129.0 −102.4 15.93
15 1.64 −4.042 1.481 5.488 4.093 −128.8 5.607 1.41 −3.813 14.15 5.399 353.2 −123.9 56.82

6

0 0.625 0.5464 0.025 0.3250 0.076 −7.242 0.3340 0.625 0.5464 0.2496 0.325 7.600 −7.242 3.340
1 0.869 0.9486 −0.0183 0.9065 0.06928 7.947 0.9194 0.869 0.9486 −0.1833 0.9065 6.928 7.947 9.194
2 0.919 2.559 −0.455 0.7095 0.0179 54.33 0.8768 0.919 2.559 −4.555 0.7095 1.798 54.33 8.768
3 1.45 −1.172 0.5886 6.440 0.3750 −45.18 7.123 1.20 2.117 −2.123 0.9326 5.812 30.03 9.105

Table 2: Parameters from fitting a linear and an exponential model to monthly disk failures as a function of avg. temperature.
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Figure 6: The monthly probability of a disk failure as a
function of temperature separated by disk model.

the observation period as reported by the drive’s SMART
system, and whether the disk was replaced during the ob-
servation period. While the time period is different from the
study in [26] (there is actually no overlap in time), the mea-
surement methodology and infrastructure used to collect the
data is the same as the one Google used in their study.
The following table provides some summary information.

Model #DCs #Disks #Disk Months Monthly disk
fail prob.

1 5 7972 173,945 0.0028
2 4 5906 143,456 0.0023
3 5 93498 752,579 0.0004
4 3 69421 829,859 0.0011
6 5 95226 2,953,123 0.0012

2.2.2 Analysis
Figure 6 plots the monthly failure rate for each of the

five models averaged across all data centers. Except for one
model (model 3) we observe increasing failure rates with ris-
ing temperature. However, we observe that the increase in
failures with temperature tends to be linear rather than ex-
ponential, except for very high temperatures (above 50C).
We validate this observation by fitting a linear and an expo-
nential model to the data, following the same methodology
as described in Section 2.1. Results are shown in Table 2.
Since the slope of the curves tends to change for very high
temperatures, we also repeated the analysis by including
only data points below 50C (see right half of Table 2). We
find that in all cases the linear model provides a significantly
better fit than the exponential model.
As explained in Section 2.1, when studying the rate at

which failures increase with temperature (as given by the a2

parameter) it is important to put the amount of increase in
failures, in relation to the average failure rate in a system.

When looking at the values for a2 when fitting the linear
model to data points below 50C (see Table 2), we notice
that for all model/data center combinations a2 is by two
orders of magnitude smaller than the average failure rate
(with the exception of one data point, model 4, data center
15). While average monthly failure rates are typically on
the order of 0.1-0.2%, the additional fraction of drives one
would expect to fail for each degree increase in temperature
is on the order of one thousandth of a percent.

Observation 6: For temperatures below 50C, disk fail-
ure rates grow more slowly with temperature than common
models predict. The increase tends to be linear rather than
exponential, and the expected increase in failure rates for
each degree increase in temperature is small compared to
the magnitude of existing failure rates.

We also note that, unlike the Google study [26], we do not
see a general trend for higher failure rates at lower temper-
atures. For example, the Google study reports more than a
50% drop in failure rate when moving from 25 to 35C. We
believe that the reason is the aggregation of data for differ-
ent models and data centers in the same curve in [26]. Since
different drive models run at different temperatures (due to
differences in their design) and different drive models can
also vary greatly in their failure rate, it is possible that the
data points at the lower end of the temperature spectrum
contain more drives of a model that happened to run colder
and have higher failure rates, hence biasing the results.

As was the case for LSEs, we find that for the same
model, the monthly failure probabilities can vary greatly
across data centers, even for the same temperature. (Full
per-data-center graphs for disk failures are included in the
tech-report [13]). This points to other factors, beyond tem-
perature, that have an equally strong or stronger effect on
disk lifetimes and motivates us to study two possible fac-
tors that we have data on: age and utilization. We followed
the same methodology as for LSEs, and divided the drives
for each model into those with high and low read utiliza-
tion, high and low write utilization, and based on age. We
found that the behavior of a drive under temperature did
not change depending on either utilization or age (with sta-
tistically significant data only up to 36 months).

Observation 7: Neither utilization nor the age of a drive
significantly affect drive failure rates as a function of tem-
perature.
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Figure 7: Probability of node outages at LANL due to DRAM problems as a function
of temperature (left) and rack positions as a proxy for temperature (middle, right).
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2.3 Temperature and DRAM reliability

2.3.1 Background and data
In this section, we study how temperature affects the relia-

bility of DRAM, which is one of the most commonly replaced
hardware components in data centers and the most common
hardware related cause of node outages [30, 31]. DRAM has
two different error modes: correctable errors (CEs), where
a bit on a DRAM chip is flipped, but can be corrected with
internal error correcting codes (ECC); and uncorrectable er-
rors (UEs), where multiple bits are flipped, and the number
of erroneous bits is too large for the ECC to correct, caus-
ing a machine crash or shutdown. CEs can be caused, by
external disturbances, such as cosmic rays, or by hardware
defects, such as a stuck bit. UEs usually involve underlying
hardware defects, since it is highly unlikely that cosmic rays
would simultaneously flip a large enough number of bits to
cause an uncorrectable error. Therefore in many data cen-
ters it is a common policy to immediately replace a DRAM
DIMM after the first occurrence of a UE.
Work in [32] looked at correctable errors in DRAM and

showed that their frequency goes up with temperature, but
found that this correlation disappears once one controls for
utilization. In this section, we ask how temperature affects
the long-term reliability of DRAM, rather than the likeli-
hood of transient problems, i.e. do higher temperatures in-
crease the rate at which DRAM wears out and needs to
be replaced. We study the long-term reliability of DRAM
by analyzing data on DIMM replacements, data on node
outages that were attributed to DRAM, and data on un-
correctable errors (since the latter two tend to be indicative
of hardware problems and typically lead to replacement of a
DIMM). We have collected data from three different sources:

Google: Google routinely collects data on the occurrence
of correctable and uncorrectable errors in all of their data
centers, as well as periodic temperature measurements based
on sensors on the motherboard. An overview of Google’s
measurement infrastructure is provided in [32]. For our
study we have obtained data for a sample set of Google’s
systems, comprising a dozen different data centers. The
data centers are based on five different hardware platforms,
where a hardware platform is defined by the motherboard
and memory generation. Details on the hardware platforms
are considered confidential and we hence just refer to them
as Platforms A, B, C, D, E, F.

Los Alamos National Lab (LANL): LANL has made avail-
able data on node outages for more than 20 of their high-
performance computing clusters, including information on

the root cause of an outage and the duration of the outage.
The data can be downloaded from LANL’s web page [1] and
a more detailed description of the data and systems can be
found in [30]. Uncorrectable DRAM errors are one of the
most common root causes for node outages, and in this sec-
tion we use only the subset of the data that consists of node
outages due to DRAM.

For one of LANL’s clusters periodic temperature measure-
ments from a motherboard sensor are available, allowing us
to directly study the relationship between temperature and
outages. We refer to this system as LANL-system-20, since
the ID for this system on LANL’s web page is 20. For an-
other 12 clusters information on the data center layout is
available, including each node’s position in a rack. We use
rack position as a proxy for temperature, since due to the
cooling system design in those clusters the top of the rack
tends to be hotter than the bottom. We have verified that
this is the case by analyzing the data for LANL-system-20,
where actual temperature measurements are available, and
found a difference of 4C between the top and bottom of the
rack. The 12 clusters are based on two different hardware
platforms, which we refer to as LANL-Type-1 and LANL-
Type-2.

LANL-Type-1 comprises seven clusters at LANL totalling
2720 nodes and 20880 processors. The nodes in the system
are SMPs with 4 processors per node and are all based on
the same hardware platform. The data for these systems
spans the years 2002-2008 and corresponds to systems with
IDs 3,4,5,6,18,19, and 20 on the LANL web page.

LANL-Type-2 comprises six clusters at LANL totalling
1664 nodes and 3328 processors. The nodes are SMPs with 2
processors per node and the data for these systems spans the
years 2003-2008. The data is also available at LANL’s web
page and corresponds to the systems with IDs 9,10,11,12,13,
and 14 on the web page.

SciNet-GPC: The SciNet High Performance Computing
Consortium provides computing facilities to researchers in
Canada. Their General Purpose Cluster (GPC) is currently
the largest supercomputer in the country [2]. We obtained
parts replacement data from this system which is manually
entered by an administrator when broken hardware is re-
placed. The replacement log we obtained spans 19 months.
The GPC consists of 3870 IBM iDataPlex nodes grouped
into 45 racks. Each node contains 2 Intel Xeon E5540 CPUs
totaling 8 cores and 16GB of ECC memory.

2.3.2 Analysis
Figures 7 show the monthly probability for node outages

at LANL that are attributed to memory as a function of
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Figure 9: Probability of uncorrectable DRAM errors at
Google as a function of temperature.
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the node’s average temperature. In Figure 7 (left) we us
the data for LANL-system-20, which has actual tempera-
ture measurements, and for Figure 7 (middle,right) we use
the server’s position in a rack as a proxy for temperature
for LANL-Type-1 and LANL-Type-2 systems. We find that
none of the graphs shows clear evidence for increasing rate
of node outages with increasing temperatures.
Results are similar for hardware replacement rates at SciNet.

Figure 8 shows a node’s monthly probability of requiring a
DIMM replacement as a function of its position in the rack.
Again, we see no evidence of higher failure rates for higher
(and hence hotter) rack positions.
Unfortunately, due to the size of the datasets the error

bars in those graphs are relatively high. We therefore turn
to the Google data on uncorrectable errors, which is a larger
data set. Figure 9 (left) shows the monthly probability of
an uncorrectable DRAM error for the five different hardware
platforms at Google. We observe that for two of the models,
model C and model F, error rates remain stable throughout
the available range of temperature data (which is quite large
ranging from 15C to 60C). Maybe surprisingly, model D and
model A show contradicting trends, with the former exhibit-
ing decreasing rates as temperature increases and the latter
showing increasing rates as temperature rises. To investi-
gate the possible cause we break down the data by data
center. Figure 9 (right) shows the resulting breakdown by
data center for model D. We find that the error rates for in-
dividual data centers are mostly flat with temperature, with
the exception of one data center (datacenter-2). It is the
aggregation of data from different data centers that creates
those apparently contradicting trends. Similarly, we observe
for model A that higher temperature points are biased by
one data center that is running at a higher temperature and
tends to have generally higher error rates (even for low tem-
peratures).

Observation 8: We do not observe evidence for increas-
ing rates of uncorrectable DRAM errors, DRAM DIMM re-
placements or node outages caused by DRAM problems as
a function of temperature (within the range of temperature
our data comprises).

2.4 Temperature and node outages
2.4.1 Background and data
Rather than focusing on a particular hardware compo-

nent, this section looks at overall system reliability and avail-
ability as a function of temperature. For our study we
use data from two different sources. The first source com-
prises the LANL datasets LANL-Type-1 and LANL-Type-
2. Rather than focusing on records of node outages due to
DRAM, we now include in our analysis any node outage that
was attributed to a hardware problem. The second dataset
is the SciNet-GPC replacement data, but rather than focus-
ing on DRAM replacements we consider replacements of any
hardware components.

2.4.2 Analysis
Figure 11 shows the effect of temperature on the rate of

node outages at LANL. Figure 11 (left) shows the monthly
probability of a node outages as a function of the node’s
average temperature for system 20 in the LANL data set,
as for this system temperature measurements are available.
Figure 11 (middle, right) show the monthly probability of a
node outages as a function of a node’s position in the rack
(bottom to top position, i.e. colder to hotter) for LANL-
Type-1 and LANL-Type-2 systems. We observe within the
temperature range that our data spans no indication that
hotter nodes have a higher probability of failing than colder
nodes. Results are similar for hardware replacements ob-
served at SciNet (Figure 12): no indication that nodes at
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Figure 13: Probability of node outages by temperature (left)
and by coefficient of variation (right).

the top of the rack experience more hardware replacements
than those at the bottom of the rack.
For the LANL data, we also have information on the

length of a node outage, i.e. how long did it take to bring
the node back up. Figure 10 shows box plots 2 for the total
amount of downtime experienced by a node per month for
system 20. We find that the downtime experienced by hot
nodes does not differ significantly from the downtime expe-
rienced by cold nodes, as both medians and lower and upper
quartiles of downtime tend to be similar.

Observation 9: We observe no evidence that hotter nodes
have a higher rate of node outages, node downtime or hard-
ware replacements than colder nodes.

One might ask whether node outages might be more strongly
affected by variability in temperature, rather than average
temperature. The only dataset that allows us to study this
question is the LANL data for system 20. Figure 13 (right)
shows the monthly probability of a node outage for LANL-
system-20 as a function of the coefficient of variation in tem-
perature. The figure compares the node outage probability
for the top 50% of nodes with the highest CoV and the
bottom 50% of nodes with lowest CoV. We observe that
nodes with a higher CoV in temperature have significantly
increased rates of node outages. For comparison, we also
plotted the probability of node outages as a function of av-
erage temperature in the same way (Figure 13 (left)) and
observe no difference between hot and cold nodes.

Observation 10: We find that high variability in tempera-
ture seems to have a stronger effect on node reliability than
average temperature.

3. OTHER CONCERNS WITH HIGH TEM-
PERATURES

Beyond potentially affecting server reliability, there are
other concerns with raising data center temperatures. Higher
temperatures might affect server performance, increase a
server’s energy consumption, and lead to smaller safety mar-
gins in case of AC or fan failures. We are studying each of
these concerns in the remainder of this section.

3.1 Temperature and performance
While it is widely known that higher temperatures might

negatively affect the reliability and lifetime of hardware de-
vices, less attention is paid to the fact that high tempera-
tures can also negatively affect the performance of systems.
For example, in order to protect themselves against a pos-
sibly increasing rate of LSEs, some hard disk models en-

2
Recall that in a box plot the bottom and top of the box are always

the 25th and 75th percentile, respectively, and the band near the

middle of the box is always the 50th percentile (the median).

able Read-after-Write (RaW) when a certain temperature
threshold is reached. Under RaW, every write to the disk is
converted to a Write Verify command, or a Write followed
by a Verify operation, reading the sector that has just been
written and verifying its contents [36, 37] 3. Also, when CPU
and memory temperatures reach a certain threshold, most
advanced servers employ CPU throttling (dynamic voltage
frequency scaling) and memory throttling (of the memory
bus).

Unfortunately, features such as RaW are often considered
trade secrets and are not well documented. In fact, even
within a company manufacturing hardware those features
and associated parameters are regarded confidential and not
shared outside product groups. The goal in this part of our
work is to investigate experimentally how performance of
different components changes with increasing temperatures.

3.1.1 Experimental setup
To study the performance of a server under increasing

ambient temperatures, we set up a testbed using a thermal
chamber. The thermal chamber is large enough to fit an
entire server inside it, and allows us to exactly control tem-
perature within a range of −10C to 60C with a precision
of 0.1C. How ambient temperature affects the temperature
of server-internal components depends on many factors, in-
cluding the design of the cooling system and the server and
rack architecture. Therefore, instead of directly predicting
the impact of data center ambient temperature on a system,
we present our results as a function of the temperature of
server internal components.

The server we use in our study is a Dell PowerEdge R710,
a model that is commonly used in data center server racks.
The server has a quad-core 2.26 GHz Intel Xeon 5520 with
8MB L3, with 16GB DDR3 ECC memory, running Ubuntu
10.04 Server with the 2.6.32-28-server Linux kernel. We also
equipped the server with a large variety of different hard disk
drives, including both SAS and SATA drives and covering
all major manufacturers:

Manufacturer Model Interface Capacity RPM

Hitachi Deskstar SATA 750GB 7200
Western Digital Caviar SATA 160GB 7200
Seagate Barracuda SATA 1TB 7200
Seagate Constellation SAS 500GB 7200
Seagate Cheetah SAS 73GB 15000
Fujitsu MAX3073RC SAS 73GB 15000
Hitachi Ultrastar SAS 300GB 15000

We use a wide range of workloads in our experiments,
including a set of synthetic microbenchmarks designed to
stress different parts of the system, and a set of macrobench-
marks aiming to model a number of real world applications:

STREAM: A microbenchmark measuring bandwidth of
sequential memory accesses [20]. We used an implementa-
tion from the lmbench suite [21, 34] and benchmarked the
performance of accessing 4gb of memory.

GUPS: Microbenchmark that measures memory random
accesses, in giga-updates-per-second, as defined by the High
Performance Computing Challenge [27]. We tested the per-
formance of 8kb-chunk updates randomly to 4gb of memory.

Dhrystone: A well-known microbenchmark that evaluates
the CPU performance for integer operations [40].

3
Note that Write Verify is not specified in the ATA standard, which

might explain the absence of a performance hit for most SATA drives,

in the following subsections.
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Figure 14: Disk throughput under a synthetic random read
and random write workload, respectively, as a function of
disk internal temperature. Results for sequential read and
sequential write workloads were comparable.

Whetstone: A well-known CPU benchmark for floating-
point performance [11]. Our implementations of Dhrystone
and Whetstone were obtained from the Unixbench suite [22].

Random-Read/Write: A synthetic workload comprised of
independent 64kb read (or write) requests issued back-to-
back at random disk sectors.

Sequential-Read/Write: Since a pure sequential workload
would stress the on-disk cache, we opt for a synthetic work-
load with a high degree of sequentiality, instead. We pick
a random disk sector, and issue back-to-back 64kb read (or
write) requests on consecutive sectors for 8mb following the
initial request.

OLTP-Mem: We configured TPC-C [38], a commonly
used database benchmark modeling on-line transaction pro-
cessing (OLTP), with 30 warehouses resulting in a 3gbmemory-
resident database.

OLTP-Disk: Models the same workload as OLTP-Mem.
To make the workload I/O-bound, we configured the database
with 70 warehouses (7gb), using 4gb RAM.

DSS-Mem: We configured TPC-H [39], a commonly used
database benchmark modeling decision support workloads
(DSS), with a 1gbmemory-resident MySQL InnoDB database.

DSS-Disk: Another TPC-H based workload, this time
configured with a database of 10gb and a 3.4gb buffer pool,
resulting in a disk-bound workload.

PostMark [18]: A common file system benchmark, which
we configured to generate 50− 5000kb files, and modified it
to avoid using the OS cache entirely, so that all transactions
are directed to disk.

BLAST [3]: An application used by computational bi-
ology researchers, acting as a high-performance computing
benchmark that stresses both the CPU and memory. We
used the parallel mpiBLAST implementation [12] and ran
10 representative queries on a 5gb library.

3.1.2 Temperature and disk performance
To study the effect of temperature on disk performance,

we ran our disk-bound workloads against each of the drives
in our testbed, while placing the drive in the heat chamber
and gradually increasing the temperature inside the cham-
ber. The two graphs in Figure 14 show the results for the
random-read and random-write microbenchmarks, as a func-
tion of the drive internal temperatures, as reported by the
drives’ SMART statistics. (Results for sequential-read and
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Figure 15: Throughput under two different I/O intensive
workloads (Postmark, OLTP-disk) as a function of disk in-
ternal temperature.

sequential-write were similar and are omitted for lack of
space). We observe that all SAS drives and one SATA drive
(the Hitachi Deskstar) experience some drop in throughput
for high temperatures. The drop in throughput is usually
in the 5-10% range, but can be as high as 30%. Because of
the fact that the throughput drop for a drive happens con-
sistently at the same temperature, rather than randomly or
gradually, and that none of the drives reported any errors,
we speculate that it is due to protective mechanisms en-
abled by the drive. For example, in the case of the write
workloads (which show a more significant drop in through-
put) this drop in throughput might be due to the enabling
of features such as RaW.

An interesting question is: at what temperature does the
throughput start to drop? We observe in Figure 14 drops
at either around 50C (for the Seagate SAS drives) or 60C
(for the Fujitsu and Hitachi SAS drives). However, these
are disk internal temperatures. When translating them to
ambient temperatures (inside the heat chamber) we observe
a drop in throughput for temperatures as low as 40C (for the
Seagate 73GB and Hitachi SAS drives), 45C for the Fujitsu
and Seagate 500GB SAS drives, and 55C for the Hitachi
Deskstar, ranges that are significantly lower than the maxi-
mum of 50-60C that manufacturers typically rate hard disks
for. (A full graph mapping internal to ambient temperatures
is included in the tech-report [13]). While data centers will
rarely run at an average inlet temperature of 40C or above,
most data centers have hot spots (see Section 3.3), which
are significantly hotter than the rest of the data center, and
which might routinely reach such temperatures.

Figure 15 shows how temperature affects the through-
put of two of our disk-intensive applications, Postmark and
OLTP-disk. We observe similar trends as for the microbench-
marks, with throughput drops at the same temperature point.
However, the magnitude of lost throughput tends to be big-
ger, typically in the 10-20% range, sometimes as high as 40-
80%. The drops observed for DSS-disk looked more similar
in magnitude to those for the synthetic benchmarks.

3.1.3 Temperature and CPU/memory performance
Most enterprise class servers support features to protect

the CPU and memory subsystem from damage or exces-
sive errors due to high temperatures. These include scaling
of the CPU frequency, reducing the speed of the memory
bus, and employing advanced error correcting codes (ECC)
for DRAM. For example, our server supports a continuous
range of CPU frequencies, bus speeds of either 800MHz or
1066MHz, and three memory protection schemes: single-
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Figure 16: The effect of memory error protection and bus
speed on performance (left) and power consumption (right).

error-correction and double-error-detection (SEC-DED), ad-
vanced ECC (AdvEcc), which allows the detection and cor-
rection of multi-bit errors, and mirroring, which provides
complete redundancy. Server manuals tend to be purposely
vague as to when such features are enabled (CPU and mem-
ory bus throttling can be automatically activated by the
server), or possible performance impact. In particular, for
the memory options it is difficult to predict how they affect
performance and power consumption. Since running data
centers at higher temperatures might necessitate the use of
such features more frequently, we use our testbed to study
their impact on performance and power consumption.
For the temperature range we experimented with (heat

chamber temperatures up to 55C, significantly higher than
the 35C inlet temperature at which most servers are rated)
we did not observe any throttling triggered by the server.
To study the effect of different memory features, we man-
ually configure the server to run with different combina-
tions of memory bus speed (800MHz vs. 1066MHz) and
ECC schemes (SEC-DED, AdvEcc, Mirror). The effect on
throughput for the different benchmarks is shown in Fig-
ure 16 (left). Throughput is normalized by the maximum
attainable throughput, i.e. the throughput achieved when
combining a 1066MHz bus speed with the SEC-DED ECC
scheme. The results for the two microbenchmarks designed
to stress the memory (GUPS and Stream) show that drops
in throughput can potentially be huge. Switching to the
lower bus speed can lead to a 20% reduction in through-
put. The effect of the ECC scheme is even bigger: enabling
AdvECC can cost 40% in throughput. The combination
of features can cause a drop of more than 50%. For the
macrobenchmarks modeling real-world applications the dif-
ference in throughput is (not surprisingly) not quite as large,
but can reach significant levels at 3–4%. We also measured
the server’s power consumption (Figure 16 (right)), and
found that the impact of memory configurations on server
power is small (1-3%) compared to the increases we will ob-
serve in the next section during increasing temperatures.

3.2 Increased server energy consumption
Increasing the air intake temperature of IT equipment can

have an impact on the equipment’s power dissipation. Many
IT manufacturers start to increase the speed of internal cool-
ing fans once inlet air temperatures reach a certain threshold
to offset the increased ambient air temperature. Also, leak-
age power of a processor increases with higher temperatures,
and can make up a significant fraction of a processor’s to-
tal power consumption. To study the effect of increasing
ambient temperatures on a server’s power consumption, we
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Figure 17: The effect of ambient temperature on power con-
sumption (left) and server fan speeds (right).

repeated all our earlier experiments with a power meter at-
tached to our server and, in addition, monitored fan speeds.

Figure 17 (left) shows the server’s power usage as a func-
tion of the ambient (thermal chamber) temperature for the
CPU and memory intensive workloads. While the absolute
energy used by different workloads varies widely, we observe
the same basic trend for all workloads: power consumption
stays constant up to 30C and then begins to continually
increase, until it levels off at 40C. The increase in power
consumption is quite dramatic: up to 50%.

An interesting question is whether this increase in power
comes from an increase in fan speed (something that can
be controlled by the server) or from increased leakage power
(which is governed by physical laws). Unfortunately, it is not
possible to measure leakage power directly. Nevertheless,
there is strong evidence that the increase in power is domi-
nated by fan power: Figure 17 (right) plots the fan speed as
a function of the ambient temperature for all workload ex-
periments. We observe that, the temperature thresholds we
notice for which fan speeds increase, line up exactly with the
temperatures at which when power consumption increases.
We also observe that power consumption levels off once fan
speeds level off, while leakage power would continue to grow
with rising temperatures.

Observation 11: As ambient temperature increases, the
resulting increase in power is significant and can be mostly
attributed to fan power. In comparison, leakage power is
negligible.

An interesting observation is that power usage starts to
increase at the same ambient temperature point for all work-
loads, although server internal temperatures vary widely
across workloads, which means fan speeds increase based
on ambient rather than internal temperature. For example,
CPU core temperature is more than 20C higher for BLAST
and OLTP-Mem than for most other workloads. That means
for many workloads the server internal temperatures are still
quite low (less than 40C) when the fan speeds start to in-
crease. In particular, we observe that for an idle server, the
temperature measured at CPU and memory is still at a very
modest 25-30C 4 when the fan speeds start to increase. (The
tech-report [13] contains detailed graphs for CPU and mem-
ory temperatures for all workloads.) This is an important
observation, since most servers in data centers spend a large
fraction of their lives idle.

Observation 12: Smart control of server fan speeds is im-
perative to run data centers hotter. A significant fraction
of the observed increase in power dissipation in our exper-

4
For reference, DRAM, for example, is typically rated for up to 95C.



iments could likely be avoided by more sophisticated algo-
rithms controlling the fan speeds.

3.3 Reduced safety margins
One concern with increasing data center temperatures is

that most data centers tend to have hot spots that are signif-
icantly hotter than the average temperature in the facility.
When raising the temperature setpoint in a data center’s
cooling system, it is important to also keep in mind how
this will affect the hottest part of the system, rather than
just the system average. In addition to hot spots, another
concern are reduced safety margins: most servers are con-
figured with a critical temperature threshold and will shut
down when that threshold is reached, in order to avoid se-
rious equipment damage. As the ambient temperature in a
data center increases, equipment will be operating closer to
the maximum temperature, reducing the time available to
shut down a server cleanly or take protective measures in
the case of data center events, such as AC or fan failures.
To better understand temperature imbalances we ana-

lyzed the differences in temperature within the data cen-
ters in our datasets. We study the distribution of per-disk
temperatures in different data centers at Google (using the
dataset from Section 2.1) and the per-node temperatures
for nodes in LANL’s system 20 (using the dataset from Sec-
tion 2.3). We consider how much hotter the disk/node in
the 95th and 99th percentile of the distribution in the data
center is, compared to the median disk/node.
Interestingly, the trends for temperature imbalances are

very similar across data centers, despite the fact that they
have been designed and managed by independent entities.
We find that for all of Google’s data centers in our study,
and LANL’s system 20, the node/disk in the 95th percentile
is typically around 5 degrees C hotter than the median
node/disk, and that the 99th percentile is around 8–10 de-
grees hotter than the median node/disk. (The tech-report [13]
includes full CDFs of the per node/disk distribution).

Observation 13: The degree of temperature variation across
the nodes in a data center is surprisingly similar for all data
centers in our study. The hottest 5% nodes tend to be more
than 5C hotter than the typical node, while the hottest 1%
nodes tend to be more than 8–10C hotter.

4. SUMMARY AND IMPLICATIONS
Increasing data center temperatures creates the potential

for large energy savings and reductions in carbon emissions.
Unfortunately, the pitfalls possibly associated with increased
data center temperatures are not very well understood, and
as a result most data centers operate at very conservative,
low temperature levels. This work sheds some light on the is-
sues involved in raising data center temperatures, and comes
to some surprising conclusions.
Based on our study of data spanning more than a dozen

data centers at three different organizations, and covering
a broad range of reliability issues, we find that the effect
of high data center temperatures on system reliability are
smaller than often assumed. For some of the reliability issues
we study, namely DRAM failures and node outages, we do
not find any evidence for a correlation with higher tempera-
tures (within the range of temperatures in our datasets). For
those error conditions that show a correlation (latent sector
errors in disks and disk failures), the correlation is much
weaker than expected. For (device internal) temperatures

below 50C, errors tend to grow linearly with temperature,
rather than exponentially, as existing models suggest.

It is important to note that this does not mean that high
temperatures have no effect on hardware reliability or that
the Arrhenius model is flawed. But it might mean that the
effects of other factors dominate failure rates. The Arrhenius
model tries to solely capture the effect of heat on hardware
components without taking into account other possible fac-
tors that impact hardware reliability in the field. Anecdotal
evidence from discussions with data center operators sug-
gests for example that poor handling procedures for equip-
ment are a major factor in the field (which is hard to capture
in measurement data). Our results indicate that, all things
considered, the effect of temperature on hardware reliability
is actually weaker than commonly thought.

We also find that, rather than average temperature, the
variability in temperature might be the more important fac-
tor. Even failure conditions, such as node outages, that did
not show a correlation with temperature, did show a clear
correlation with the variability in temperature. Efforts in
controlling such factors might be more important in keeping
hardware failure rates low, than keeping temperatures low.

We also make some observations that might be helpful
in protecting against temperature-induced hardware issues.
The error mode that was most strongly correlated with high
temperatures are LSEs. Common method for protecting
against data loss due to LSEs include Read-after-Write and
periodic “scrubbing” of the hard disk to proactively detect
such errors. In experiments with our testbed based on a
thermal chamber, we observe evidence that (enterprise class)
hard disks do employ mechanisms, such as RaW, but we find
that they tend to kick in only at very high temperatures and
are associated with significant performance penalties. On
the other hand, we find that one of the concerns often asso-
ciated with scrubbing does not seem to be a valid concern in
practice, which might make scrubbing the better approach
to defend against LSEs: some fear that the extra workload
placed on a drive by the scrub process might lead to early
wear-out of the drive, but we see no correlation between a
drive’s workload intensity and it’s failure probability.

Our encouraging results on the impact of temperature on
hardware reliability move the focus to other potential issues
with increasing data center temperatures. One such issue is
an increase in the power consumption of individual servers as
inlet air temperatures go up. The two most commonly cited
reasons for such an increase are increased power leakage in
the processor and increased (server internal) fan speeds. Our
experimental results show that power leakage seems to be
negligible compared to the effect of server fans. In fact, we
find that even for relatively low ambient temperatures (on
the orders that are commonly found in the hotter areas of
an otherwise cool data center) fan power consumption makes
up a significant fraction of total energy consumption. Much
of this energy might be spent unnecessarily, due to poorly
designed algorithms for controlling fan speed.

We would oversimplify the problem if we tried to make
generalized recommendations or predictions on what exactly
data center temperatures should be and how much energy
precisely could be saved. The answer to these questions will
depend on too many factors, that are data center or applica-
tion specific. However, we see our results as strong evidence
that most organizations could run their data centers hotter
than they currently are without making significant sacrifices



in system reliability. We hope that this paper will motivate
future work in this area and encourage more organizations
to share field data or results from analyzing their data.
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