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Abstract: In a regenerative aluminum smelting furnace, real-time liquid aluminum temperature
measurements are essential for process control. However, it is often very expensive to achieve
accurate temperature measurements. To address this issue, a just-in-time learning-based triple-
weighted regularized extreme learning machine (JITL-TWRELM) soft sensor modeling method is
proposed for liquid aluminum temperature prediction. In this method, a weighted JITL method
(WJITL) is adopted for updating the online local models to deal with the process time-varying problem.
Moreover, a regularized extreme learning machine model considering both the sample similarities
and the variable correlations was established as the local modeling method. The effectiveness of the
proposed method is demonstrated in an industrial aluminum smelting process. The results show that
the proposed method can meet the requirements of prediction accuracy of the regenerative aluminum
smelting furnace.

Keywords: temperature prediction; weighted regularized extreme learning machine; just-in-time
learning; sample similarities; variable correlations

1. Introduction

Aluminum can be made into alloys with various metals; it is widely used in auto-
motive, aviation, and military industries due to its good ductility, plasticity, recyclability,
and oxidation resistance. A regenerative aluminum smelting furnace is important for the
aluminum smelting process, in which the real-time measurement and control of liquid
aluminum temperatures influence the quality of the aluminum. However, on industrial
sites, there are many influencing factors, such as the aging of temperature-measuring
thermocouples and fluctuations in the operating voltage, which bring difficulties to the real-
time measurements of the aluminum liquid temperature. Hence, it is essential to develop a
modeling method to predict the liquid aluminum temperature for quality improvement
of the aluminum. The aluminum smelting process is a typical complex industrial furnace
production process. In recent decades, many studies on industrial furnaces have been
performed (regarding ‘mechanism modeling’) [1–3]. Although the physical meaning of
‘mechanism modeling’ is clear, there are some problems, such as complicated calculations
for industrial furnace systems. At the same time, mechanism models may not be reliable
enough since they usually make simplified assumptions. The furnace temperature, airflow
rate, etc., fluctuate greatly in different working states due to the intermittent working
characteristics of the regenerative aluminum smelting furnace. The real-time update of the
model for the regenerative aluminum smelting furnace is also a problem that needs to be
considered.

To overcome the shortcomings of mechanism modeling, a soft-sensor that makes
full use of the industrial data is proposed [4]. There are many researchers working on
the data-driven modeling of industrial furnaces and similar processes, such as partial
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least squares (PLS) [5], the kernel principal component regression (KPCR) [6], and kernel
partial least squares (KPLS) [7], which have been successfully applied with good results.
However, these methods are generally considered to be global modeling (and trained
offline). Moreover, after these models are put into application, they will face problems,
such as difficulties in model updating. Consequently, to deal with the adaptive update
problem of the model, the moving window technique [8,9], recursive models [10,11], and
the just-in-time learning (JITL) strategy [12,13] are usually used as online adaptive update
strategies. The JITL strategy trains an online local model to predict the query samples by
selecting similar samples from historical samples, so it is more suitable for processes such
as industrial furnaces with state mutations. For example, Chen et al. [14] proposed a least
squares support vector machine temperature prediction model based on JITL to deal with
large temperature change lags in roller kilns. Dai et al. [15] combined the moving window
technique and the JITL strategy as an update strategy to select similar samples in both
time and space dimensions, and they verified the effectiveness of the proposed method
on an industrial kiln. In [16], a locally weighted partial least squares regression (LWPLS)
model was proposed by JITL-based local modeling. In LWPLS, the samples most similar
to the query sample are assigned different weights and selected for local modeling. The
current model will be discarded when the next query sample is available. Then, a new
local PLS model will be established for the model’s online update. However, LWPLS only
considers the sample similarities, not the variable correlations. The data of the aluminum
smelting process often present high-dimensional characteristics and each input variable has
a different degree of influence on the liquid aluminum temperature. Hence, except for the
sample similarities, it is necessary to consider the variable correlations [17–19]. Furthermore,
the accuracy of the JITL strategy depends on the quality of the selected samples. However,
the traditional similarity measurement criteria, such as Euclidean distance and Mahalanobis
distance, only consider the input information without considering the output information,
and often cannot obtain accurate similar samples. Thus, investigating new similarity
measurement criteria is important for the JITL strategy.

In recent years, artificial intelligence algorithms, such as long short-term memory
networks (LSTM) [20–22] and extreme learning machine(s) (ELM) [23–26] have also been
used in soft sensor modeling. The basic assumption for LSTM is that process data are
sampled at even and unified frequencies; it is very difficult to meet these conditions for
’process data measurements’ in industrial processes, especially for quality variables. Hence,
LSTM is unsuitable for some processes with irregular sampling frequencies. ELM is a
single hidden layer neural network with a low algorithm complexity, which does not need
backpropagation to solve iteratively, and has been used in the temperature prediction of
regenerative aluminum smelting processes. Huang et al. [27] proposed an extreme learning
machine furnace temperature prediction model based on the kernel principal component
analysis and showed that ELM has a better effect than the traditional BP neural network. Liu
et al. [28] proposed an ELM model optimized by the restricted Boltzmann machine (RBM)
to solve the random initialization of the input weights and biases in the ELM. Moreover,
ELM has a fast learning speed and is suitable as an online prediction model. For example,
Li et al. [29] built a local online ELM model in combination with a JITL strategy, allowing
the online prediction of polyethylene terephthalate (PET) viscosity without relying on time-
consuming laboratory analysis procedures. However, this ELM-based online prediction
model neither considers sample similarities nor variable correlations, which is unreasonable
in local modeling. Moreover, the original ELM runs the risk of model overfitting. Hence,
a regularized extreme learning machine (RELM) [30] was proposed to solve the model’s
overfitting problem.

Although some research studies have been carried out on ELM, there are few dis-
cussions about sample similarities and variable correlations in RELM, especially in tem-
perature prediction. Based on the above discussions, a soft sensor modeling method of
the JITL-based triple-weighted regularized extreme learning machine (JITL-TWRELM)
was proposed to solve the above problems. Compared with the traditional data-driven
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modeling method described above, the method proposed in this paper not only allows
real-time updating of the model but also obtains more accurate local modeling samples due
to the use of the WJITL strategy, which uses correlation information between the input and
output variables in the sample selection stage. Meanwhile, in the local modeling stage, the
proposed method overcomes the shortcomings of the traditional local modeling method,
which only considers the sample similarities and analyzes the variable correlations, high-
lighting the influences of different variables on the output. The remainder of this article
is structured as follows. Firstly, the regenerative aluminum smelting furnace is briefly
introduced. Secondly, the regularized extreme learning machine (RELM), sample weighted
regularized extreme learning machine (SWRELM), and variable weighted regularized
extreme learning machine (VWRELM) are introduced, respectively. Then, the JITL-based
triple-weighted regularized extreme learning machine (JITL-TWRELM) is described. Next,
the flexibility and effectiveness of the proposed method are validated in the industrial
aluminum smelting processing. Finally, we present the conclusions.

2. Related Methods

Since ELM runs the risk of model overfitting, the regularization method is used to
solve the overfitting problem. Considering sample similarities and variable correlations,
the sample weighted regularized extreme learning machine (SWRELM) and the variable
weighted extreme learning machine (VWRELM) are introduced, respectively. Three related
methods are discussed next. To better understand the derivation of the relevant equations,
the definition of symbols in this paper is shown in Table 1.

Table 1. Definition of symbols in this paper.

Symbols Definition

xn, tn the nth historical input and output variable vectors
βi the output weight of the ith hidden layer unit

β, βS, βV ,βt the output weight vectors in RELM, SWRELM, VWRELM, JITL-TWRELM
T the output vector of RELM

ωi,bi the input weight and bias connecting input layer and ith hidden layer unit

tj,
∧
tt
q

the output corresponding to xj, the output of the query sample in JITL-TWRELM

N the number of training samples
C the regularization coefficient
ξ the training error vector

H, HV , Ht the hidden layer output matrices in RELM, VWRELM, JITL-TWRELM
Ωsn, Ωs, Ωt

s the sample weight of the nth sample, the sample weighted matrix, the sample weighted matrix in JITL-TWRELM
λ the Lagrange multiplier vector
ρ the Pearson correlation coefficient

E(x), E(t) the expectation of the single input variable and output variable
vi the contribution of each variable
V the variable contribution matrix

xv
n, xw

n the variable weighted input sample, the variable weighted local modeling sample
don, dw

on, dtw
on the original Euclidean distance and weighted Euclidean distance, the weighted Euclidean distance in JITL-TWRELM

xq, xw
q the query sample, the variable weighted query sample in JITL-TWRELM

Ωv, Ωl
v, Ωg

v the correlation coefficient matrix, the local correlation coefficient matrix, the global correlation coefficient matrix
ϕ the adjusted parameter

X, Xw the local modeling sample matrix, the variable weighted local modeling sample matrix in JITL-TWRELM

2.1. RELM

As shown in Figure 1, the structure of ELM consists of three parts, which are the
input layer, hidden layer, and output layer [31]. The core idea of ELM is to randomly
select the input weights and hidden layer biases of the network. The output weights
between the hidden layer and output layer are obtained by minimizing the loss function
and solving the Moore–Penrose generalized inverse operation. Owing to the particularity
of the single hidden-layer structure, ELM has a faster learning speed, minimal human
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interference, and it is easier to implement than traditional networks. However, the original
ELM model only considers the empirical risk minimization (ERM) principle, which tends to
result in an overfitting model. To overcome this deficiency, a regularized extreme learning
machine (RELM) was proposed based on empirical risk minimization and structural risk
minimization (SRM) principles and has proven to be a better generalization performance
than ELM.

Figure 1. The structure of ELM.

It is assumed that the nth historical input variable vector and the output variable are
denoted as xn = [xn1, xn2, . . . , xnm] and tn, respectively, where m is the number of input
variables. (xn, tn) is the nth historical sample composed of xn and tn. The output function
of the RELM with L hidden layer neurons can be represented as

L

∑
i=1

βig(ωixT
j + bi) = tj, j = 1, . . . , N (1)

where βi is the output weight of the ith hidden layer unit, ωi = [ωj1, . . . , ωjm], and bi
are the input weight, bias connecting input layer, and ith hidden layer unit, respectively.
xj = [xj1, xj2, . . . , xjm] is the input variable vector, tj denotes the output corresponding to xj,
N is the number of training samples. g(.) is the activation function. Usually, g(.) is set as
the sigmoid function. We re-write Equation (1) in matrix form

Hβ = T (2)

where

H = [h(xT
1 )

T , . . ., h(xT
N)

T ]T =

 g(ω1xT
1 + b1) . . . g(ωLxT

1 + bL)
...

. . .
...

g(ω1xT
N + b1) · · · g(ωLxT

N + bL)

 (3)

β = [β1, . . . , βL]
T (4)

T = [t1, . . . , tN ]
T (5)

Due to ωi and bi being randomly given, to obtain the output weight vector β, the
optimization equation can be represented as

min
1
2
‖β‖2 +

C
2
‖ξ‖2,

s.t.h(xT
j )β = tj + ξ j, j = 1, . . . , N

(6)
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where C represents the regularization coefficient, which can adjust the empirical risk and
structural risk. ξ = [ξ1, . . . , ξN ]

T is the training error vector. By constructing the Lagrange
function, the solution of Equation (6) is

β =


(HT H +

IL
C
)−1HTT, L < N

HT(HT H +
IN
C
)−1T, L > N

(7)

where IL ∈ RL×L, IN ∈ RN×N .

2.2. SWRELM

Not all samples have the same contribution to the output; moreover, the original RELM
considers all samples equally important and does not consider the differences between
different samples. Thus, to obtain a more realistic result, the sample weighted matrix
Ωs = diag(Ωs1, . . . , ΩsN) is added to Equation (6), which is expressed as

min
1
2

∥∥∥βS
∥∥∥2

+
C
2
‖Ωsξ‖2,

s.t.h(xT
j )βS = tj + ξ j, j = 1, . . . , N

(8)

The Lagrange function can be represented as follows:

L(βS, Ωs, λ)

=
1
2

∥∥∥βS
∥∥∥2

+
C
2
‖Ωsξ‖2 −

N

∑
j=1

λ(
L

∑
i=1

h(xT
j )βS−tj − ξ j)

=
1
2

∥∥∥βS
∥∥∥2

+
C
2
‖Ωsξ‖2 − λ(HβS − T − ξ)

(9)

where λ = [λ1, . . ., λN ] denotes the Lagrange multiplier vector. According to the KKT
condition, taking the derivative of Equation (9) and setting the derivative to zero, we have

∂L
∂βS = 0→ (βS)T = λH (10)

∂L
∂ξ

= 0→ CξTΩ2
s + λ = 0 (11)

∂L
∂λ

= 0→ HβS = T + ξ (12)

With Equations (11) and (12), the Lagrange multiplier vector λ can be expressed as

λ = −C(HβS − T)TΩ2
s (13)

Similarly, with Equations (10) and (13), the expression of the output weight vector of
the sample weighted regularized extreme learning machine (SWRELM) is

βS=(HTΩ2
s H +

IL
C
)−1HTΩ2

s T, L < N (14)

Equation (14) is suitable when the number of modeling samples is greater than the
number of hidden neurons. Moreover, in this case, βS has a faster calculation speed [32].

2.3. VWRELM

The original RELM treats all input variables with equal importance, while not all
input variables have the same effect on the output variable, some input variables are more
strongly correlated with the output variable than others. Thus, to reflect the differences of
input variables and obtain better quality-related features, a variable contribution method
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based on the Pearson correlation coefficient was adopted. On this basis, the variable
weighted extreme learning machine (VWRELM) was proposed. The Pearson correlation
coefficient is defined as

ρ =
E(xt)− E(x)E(t)√

E(x2)− E2(x)
√

E(t2)− E2(t)
(15)

where E(x) and E(t) are the expectations of the single input variable and output variable,
respectively. ρ represents the degree of correlation between the two variables; two highly
correlated variables will also have a larger ρ. As a result, the variable contribution can be
defined by ρ. For a training sample (xn, tn), n = 1, . . . , k, where each input sample xn has m
dimensions, the contribution of each variable can be defined as

vi =
|ρi|

m
∑

j=1
|ρi|

, i = 1, . . . , m (16)

where ρi represents the Pearson correlation coefficient between the ith input variable and
the output variable. The variable contribution matrix can be written as

V = diag(v1, . . . , vm) (17)

Hence, taking the variable contribution as the variable weights, and applying the
variable weights to the input sample xn, the weighted input sample can be expressed as

xv
n = xnV = xndiag(v1, . . . , vm) = (xn1v1, . . . , xnmvm) (18)

where xv
n represents the input sample weighted by variable weights. It can be seen from

Equation (18) that each dimension of the input sample is given a different weight, reflecting
the differences between variables. By variable weighting, Equation (3) can be rewritten as

HV = [h((xv
1)

T)T , . . ., h((xv
N)

T)T ]T

=


g(ω1((xv

1)
T)

T
+ b1) . . . g(ωL((xv

1)
T)

T
+ bL)

...
. . .

...

g(ω1((xv
N)

T)
T
+ b1) · · · g(ωL((xv

N)
T)

T
+ bL)

 (19)

when L < N, the output weight vector is

βV = ((HV)T HV +
IL
C
)−1(HV)TT, L < N (20)

3. The Proposed JITL-TWRELM Model

In the previous analysis, the RELM, SWRELM, and VWRELM models have been
established. However, in a multi-data, multivariate prediction model, the different samples
and variables to the predicted outputs are different, especially in the aluminum smelting
process. Table 2 shows the shortcomings of the three methods. Both sample similarities
and variable correlations should be taken into account in RELM. Hence, to obtain a better
model, combined with the weighted JITL strategy (WJITL), a JITL-based triple-weighted
regularized extreme learning machine is proposed.
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Table 2. Shortcomings of the three methods.

Method Shortcomings

RELM Neither sample similarities nor variable correlations are considered, and
the model cannot be updated in real-time.

SWRELM Only the sample similarities are considered, no variable correlations are
considered, and the model cannot be updated in real-time.

VWRELM Only the variable correlations are considered, no sample similarities are
considered, and the model cannot be updated in real-time.

3.1. Weighted Similarity Measurement Criterion

The original Euclidean distance is usually used as a similarity measurement criterion,
expressed as

don =
√
(xq − xn)(xq − xn)

T (21)

where xq ∈ R1×m is the current query sample, xn ∈ R1×m is the nth historical sample,
and don indicates the Euclidean distance between the current query sample and the nth
historical sample. The more similar the historical sample is to the query sample, the
smaller the distance don. However, Equation (21) only uses the input information of the
historical sample and query sample, while the information of the output is not taken into
consideration. Moreover, the calculation of the Euclidean distance can be regarded as the
accumulation of each dimension of the sample. It is easy to see that the importance of each
dimension may be different, with some dimensions contributing more to distance than
others. Hence, inspired by Equation (15), the connections between the input variables and
output variables are established through the correlation analysis. We define a weighted
Euclidean distance as a weighted similarity measure criterion, expressed as

dw
on =

√
(xq − xn)Ωv(xq − xn)

T (22)

where Ωv = diag(ρ1, . . . , ρm). Then, the sample weight is expressed as

Ωsn = exp(
dw

on
ϕ2 ) (23)

where ϕ is the adjust parameter, which can adjust the change rate of weight value with
the sample distance. For a better expression, the JITL strategy that applied this weighted
similarity measurement criterion is called WJITL.

3.2. JITL-TWRELM

A JITL-based triple-weighted regularized extreme learning machine (JITL-TWRELM)
soft sensor method, combined with the WJITL strategy, was established to simultaneously
incorporate sample weights and variable weights. The detailed derivation steps are as
follows.

N(N < H) samples (xn, tn), n = 1, . . . , H from historical samples were selected for
each query sample to local modeling. First, Pearson correlation coefficients between input
variables and output variables of all historical samples were calculated to obtain the
correlation coefficient matrix

Ωg
v = diag(ρg

1 , . . . , ρ
g
m) (24)

To distinguish it from the subsequent derivation, we call Ωg
v the global correlation

coefficient matrix, where ρ
g
i , i = 1, . . . , m is the global correlation coefficient. As a result, the
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weighted Euclidean distance between the query samples and the historical samples can be
obtained by Equation (25).

dtw
on =

√
(xq − xn)Ω

g
v(xq − xn)

T , n = 1, . . . , H (25)

We sort dtw
on , n = 1, . . . , H from small to large, and the first N samples are selected as

modeling samples. The sample weighted matrix is obtained as

Ωt
s = diag(exp(

dtw
o1

ϕ2 ), . . . , exp(
dtw

oN
ϕ2 )) = diag(Ωt

s1, . . . , Ωt
sN) (26)

Then, the Pearson correlation coefficient of N local modeling samples is calculated,
and the local correlation coefficient matrix is obtained as

Ωl
v = diag(ρl

1, . . . , ρl
m) (27)

where Ωl
v is used as the local variable weighted matrix for local modeling samples and the

query sample
Xw = XΩl

v = {xw
n }, n = 1, . . . , N (28)

xw
q = xqΩl

v (29)

where X ∈ RN×m consists of local modeling samples, Xw and xw
q are the variable weighted

local modeling sample and variable weighted query sample, respectively. Thus, the new
local modeling dataset (xw

n , tn), n = 1, . . . , N is used to build the local model. The optimiza-
tion equation for the output weight vector is established as Equation (30)

min
1
2

∥∥βt∥∥2
+

C
2

∥∥Ωt
sξ
∥∥2,

s.t.h((xw
j
)T)βt = tj + ξ j, j = 1, . . . , N

(30)

The output matrix of the hidden layer is

Ht =


g(ω1(xw

1 )
T + b1) . . . g(ωL(xw

1 )
T + bL)

...
. . .

...
g(ω1(xw

N)
T + b1) · · · g(ωL(xw

N)
T + bL)

 (31)

According to Equations (9)–(14), the output weight vector of JITL-TWRELM is

βt=((Ht)T(Ωt
s)

2Ht +
IL
C
)−1(Ht)T(Ωt

s)
2T, L < N (32)

Finally, the prediction output of the query sample is

∧
tt
q =

L

∑
i=1

βtg(ωi(xw
q )

T + bi) (33)

4. Industrial Case
4.1. Process Description of the Regenerative Aluminum Smelting Furnace

An industrial regenerative aluminum smelting furnace and its internal structure are
shown in Figure 2a and Figure 2b, respectively. The regenerative aluminum smelting
furnace consists of a furnace chamber, regenerative burner (including burner and ceramic
sphere accumulator), reversing valve, flue gas pipe, etc. The regenerative burners are
arranged in pairs, and the two opposite burners are a group (A and B). Normal temperature
air from the blower enters burner B through the reversing valve and is heated as it flows
through the hot ceramic sphere accumulator. Then, the normal temperature air is heated to
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a temperature close to the furnace chamber (generally 80% to 90% of the furnace chamber
temperature). The heated high-temperature air enters the furnace chamber and then rolls up
the flue gas around the furnace to form a thin oxygen-poor high-temperature airflow with
an oxygen content lower than 21%. Then, the mixture of the oxygen-poor high-temperature
air and the injected flue gas is ignited to smelt the aluminum material. At the same time, the
high-temperature flue gas passes through burner A, the heat is stored in the cold ceramic
sphere accumulator, and then the flue gas is discharged at a temperature lower than 150 °C
through the flue gas pipe. When the stored heat reaches saturation, the reversing valve is
reversed, and the regenerative burner A and B change their combustion and heat storage
working states, and so on, resulting in energy savings (and reducing emissions).

(a)

(b)

Figure 2. (a) An industrial regenerative aluminum smelting furnace; (b) the internal structure of the
regenerative aluminum smelting furnace.

4.2. Model Establishment

To construct the model for the prediction of the liquid aluminum temperature,
12 secondary variables were chosen as the input variables, which are shown in Table 3.
These input variables were measured by the sensor. The measurement ranges and errors of
the sensors are shown in Table 4. The sampling interval of each sampling point was five
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minutes. There were 4400 data samples collected for modeling, of which, 4000 samples
were used as historical data for training, and 400 samples for model testing. To better test
the effectiveness of the proposed method, two groups of data (D1 and D2) from different
periods were used as the testing dataset, with 200 samples in each group.

Table 3. Input variables for the model in the aluminum smelting process.

Input Variable

1 Material temperature
2 Furnace pressure
3 12 # combustion airflow
4 12 # combustion air pressure difference
5 34 # combustion airflow
6 34 # combustion air temperature
7 34 # combustion air pressure difference
8 34 # gas air-fuel ratio
9 B1 # exhaust gas temperature

10 B2 # exhaust gas temperature
11 B3 # exhaust gas temperature
12 B4 # combustion air temperature

Table 4. Sensor measurement range and error.

Sensor Type Measurement Range Measurement Error

Pressure meter 0–15,000 Pa 1%
Flow meter 0–15 m3/h 1.5%

Thermocouple 0–1300 °C 1%

The flowchart of JITL-TWRELM model is shown in Figure 3. To validate the perfor-
mance of JITL-TWRELM, the six methods listed below were employed for comparison.

• Method 1: JITL-RELM (it applies the original JITL strategy and original RELM).
• Method 2: JITL-SWRELM (it applies the original JITL strategy and sample weights on

RELM).
• Method 3: WJITL-RELM (it applies the WJITL strategy and original RELM).
• Method 4: JITL-VWRELM (it applies the original JITL strategy and local variable

weights on RELM).
• Method 5: JITL-DWRELM (it applies the WJITL strategy and sample weights on

RELM).
• Method 6: JITL-TWRELM (it applies the WJITL strategy, sample weights, and local

variable weights on RELM).

The detailed step-by-step procedure of the proposed method is as follows.
Step 1: Prepare the input and output variables of the historical samples and perform

the standardization.
Step 2: Determine the number N of training samples selected from the total historical

samples, the parameter ϕ for the sample weight calculation, the hidden neuron number L,
and the regularization coefficient C of the regularized extreme learning machine.

Step 3: Analyze the global correlation between the input variables and output variables
of all historical samples. The global correlation coefficient matrix Ωg

v is calculated for the
sample similarity measurement.

Step 4: Calculate the weighted Euclidean distances between the current query samples
and the training samples; N samples closest to the current query sample are selected as
local modeling samples.

Step 5: Analyze the local correlation between input variables and output variables of
the local modeling samples. The local correlation coefficient matrix Ωl

v is determined.
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Step 6: The JITL-TWRELM model is established, and the output of the current query
sample is predicted.

Step 7: Before the next query sample arrives, the previous model is discarded and a
new model is constructed based on the next query sample, enabling real-time updating of
the model.

Figure 3. The flowchart of JITL-TWRELM model.

To evaluate the performance of the proposed method, four indices, including mean
absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) are used in the performance evaluation,
which are as follows:

MAE =
1

NT

NT

∑
i=1
|yi − ŷi| (34)

RMSE =

√√√√ 1
NT

NT

∑
i=1

(yi − ŷi)
2 (35)

MAPE =
1

NT

NT

∑
i=1
|yi − ŷi

yi
| (36)
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R2 = 1−

NT
∑

i=1
(yi − ŷi)

2

NT
∑

i=1
(yi − ȳi)

2
(37)

where NT denotes the number of samples used for testing, yi and ŷi denote the values of
the actual output variable and predicted output, respectively, ȳi denotes the mean value
of the actual output variable. It is essential to have small MAE, RMSE, and MAPE, and
large R2 for a prediction model.

Before establishing the JITL-TWRELM model, four parameters need to be determined.
By trial and error experiments on dataset D1, N was set as a proper value of 200, which
has a good prediction accuracy without increasing the computational burden. Similarly,
the parameters ϕ and L are set to 0.3 and 20, respectively. Table 5 shows the prediction
accuracy of the model under the different regularization coefficients. It can be seen that
when C = 150, the model has a better effect.

Table 5. Comparison of the modeling accuracy with C.

C MAE RMSE MAPE R2

140 15.0884 18.6443 0.020354 0.98666
150 14.7273 17.9456 0.019897 0.98764
160 15.3797 19.5019 0.020879 0.98541
170 15.5217 20.4519 0.021023 0.98395
180 15.8944 20.1194 0.021629 0.98447
190 16.0543 19.8318 0.021839 0.98491
200 17.1959 22.2015 0.023265 0.98109

4.3. Results and Discussion

To reduce the effect of randomness on the results, we took the average of ten tests
as the final result. The prediction error indices of the six methods on two groups of the
testing samples are shown in Table 6. We use testing dataset D1 as an example; in general,
the proposed method (method 6) performed better than the other five methods on all
four indices. Despite using the JITL strategy, the original method (method 1) had the
worst performance on all indices. Methods 2, 3, 4, and 5 also achieved higher prediction
accuracies than method 1, as neither the sample weights nor variable weights were used
in method 1. Method 2 emphasizes the importance of the samples and introduces sample
weights to reflect the effects of different samples on the output. Contrasted with the original
JITL strategy, method 3 uses a weighted similarity measurement criterion; samples that are
more similar to the query sample were selected to set up the local model, resulting in a more
accurate prediction. Different from the previous methods, method 4 considers the local
variable weights before establishing the model; the variable weights can be used to improve
the influence of output-related variables and reduce that of irrelevant variables in feature
extraction [33]. Although methods 2 to 4 have good prediction accuracy improvements,
these methods only consider certain types of weighting strategies, such as individual
sample weights or variable weights. Hence, method 5 introduces the sample weights
and the WJITL strategy, and the R2 is improved from 0.89453 to 0.97690 compared with
method 1. Meanwhile, based on methods 4 and 5—method 6 has the smallest MAE, RMSE,
and MAPE, and the highest R2 among all methods. The R2 of method 6 is improved from
0.97690 to 0.98764 compared with method 5. Correspondingly, the proposed method 6
has good prediction accuracy on D2, the R2 reached 0.97427, which is 0.072 higher than
method 1.
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Table 6. The indices of the six methods of two groups of testing datasets.

Dataset Method MAE RMSE MAPE R2

D1

JITL-RELM 43.0278 52.4279 0.062519 0.89453
JITL-SWRELM 38.1265 47.9605 0.052589 0.91174
WJITL-RELM 32.7444 42.7606 0.044443 0.92984

JITL-VWRELM 38.0149 46.1055 0.054197 0.91843
JITL-DWRELM 20.7980 24.5347 0.029768 0.97690
JITL-TWRELM 14.7273 17.9456 0.019897 0.98764

D2

JITL-RELM 26.7981 36.1509 0.035878 0.90223
JITL-SWRELM 26.3624 33.526 0.03657 0.91174
WJITL-RELM 27.4121 34.5595 0.044443 0.91065

JITL-VWRELM 24.3605 31.4511 0.032461 0.92600
JITL-DWRELM 16.2472 22.2734 0.021632 0.96289
JITL-TWRELM 14.8733 18.5463 0.019646 0.97427

To more intuitively demonstrate the performances of these six methods, the detailed
prediction results for each method on D1 and D2 are shown in Figures 4 and 5, in which
(a–f) shows the prediction results of the six methods, respectively. It is easy to see that the
prediction of JITL-TWRELM matches well with the curve of the actual measurement of the
furnace temperature, while the prediction curve of JITL-RELM cannot track with the real
output curve in some samples. In addition, although the other four methods have certain
improvements, they still do not achieve the desired effects. In summary, the flexibility and
effectiveness of the proposed methods are validated.

(a) (b)

(c) (d)

(e) (f)

Figure 4. The detailed prediction results of six methods on D1; (a) method 1; (b) method 2;
(c) method 3; (d) method 4; (e) method 5; (f) method 6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The detailed prediction results of six methods on D2; (a) method 1; (b) method 2;
(c) method 3; (d) method 4; (e) method 5; (f) method 6.

The liquid aluminum temperature of the regenerative smelting furnace is generally
controlled by feedback. The thermocouple is set in the furnace chamber, and if the tem-
perature is detected to be lower than the set value, the regenerative burner starts to work.
In a real industrial site, the temperature measurement performance of the thermocouple
used to measure the temperature of aluminum liquids is often affected by voltage fluc-
tuations and the aging of the protective jacket. Old thermocouples need to be replaced
frequently, resulting in increased costs. The proposed method in this paper only requires
the establishment of a historical database in the industrial site, and whenever a new query
sample arrives, the modeling sample is selected from the historical database for modeling,
and the prediction results of the aluminum liquid temperature can be obtained. As can be
seen from Table 6, the MAEs of the proposed method 6 are 14.7273 and 14.8733 for the two
test sets, respectively. Comparing the temperature range and measurement error of the
thermocouple in Table 4, the accuracy of the proposed soft measurement model is close
to the actual sensor, with a close to 2% error at the maximum temperature measurement
range, but the efficiency and costs are more advantageous than the sensor. Therefore, the
method proposed in this paper is significant for reducing production costs and improving
product quality.

5. Conclusions

This paper mainly deals with the estimation of the liquid aluminum temperature in the
regenerative aluminum smelting furnace. A JITL-TWRELM soft sensor modeling method
is proposed. In this method, both the sample similarities and the variable correlations are
considered in RELM to deal with the differences between samples and variables. Each
modeling sample is assigned different weights according to the similarity calculation, and
each dimension of the sample is also assigned a corresponding weight according to the
correlation analysis, which improves the accuracy of the modeling compared with the
original RELM. Furthermore, a weighted similarity measurement criterion is proposed for



Processes 2022, 10, 1972 15 of 16

JITL to select similar samples for local modeling. Compared with the original JITL strategy,
more similar modeling samples are selected for each query sample, enhancing the accuracy
and reliability of the local modeling dataset. The flexibility and effectiveness of JITL-
TWRELM were validated through the industrial aluminum smelting process. The industrial
applications show that the proposed method can effectively deal with the nonlinear and
time-varying problems in the regenerative aluminum smelting process and achieve a higher
accuracy of temperature prediction compared with the other five methods.

For each query sample, the model needs to be updated once, although some adjacent
query samples do not need to update the model so frequently. Selective updating of the
model will improve the modeling efficiency. Therefore, developing a selective update
strategy will be the focus of future work.
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