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Temperature-Resilient Time Synchronization

for the Internet of Things
Atis Elsts, Member, IEEE, Xenofon Fafoutis, Member, IEEE, Simon Duquennoy,

George Oikonomou, Robert Piechocki and Ian Craddock, Fellow, IEEE

Abstract—Networks deployed in real-world conditions have to
cope with dynamic, unpredictable environmental temperature
changes. These changes affect the clock rate on network nodes,
and can cause faster clock de-synchronization compared to
situations where devices are operating under stable temperature
conditions. Wireless network protocols such as Time-Slotted
Channel Hopping (TSCH) from the IEEE 802.15.4-2015 standard
are affected by this problem, since they require tight clock
synchronization among all nodes for the network to remain
operational. This paper proposes a method for autonomously
compensating temperature-dependent clock rate changes. After
a calibration stage, nodes continuously perform temperature
measurements to compensate for clock drifts at run-time. The
method is implemented on low-power IoT nodes and evaluated
through experiments in a temperature chamber, indoor and
outdoor environments, as well as with numerical simulations. The
results show that applying the method reduces the maximum syn-
chronization error more than 10 times. In this way, the method
allows reduce the total energy spent for time synchronization,
which is practically relevant concern for low data rate, low energy
budget TSCH networks, especially those exposed to environments
with changing temperature.

I. INTRODUCTION

There is a growing need to make low-power wireless

networks more reliable and more predictable in order to

open them up to a wider range of Internet of Things (IoT)

applications, such as industrial [1], automotive, and e-health

applications. Time-Slotted Channel Hopping, as specified in

the IEEE 802.15.4-2015 standard [2], is a Medium Access

Control (MAC) protocol that offers high reliability and pre-

dictability through channel hopping and time-synchronized

operation. Because of these properties, TSCH has attracted

attention both from the industry and the academia.

TSCH networks deployed in real-world conditions [3] –

in particular, in industrial conditions [4] – have to cope

with dynamic and unpredictable temperature changes, which
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affect hardware clock rates. To maintain connectivity in spite

of changing clock rates, nodes either have to relax their

synchronization requirements (i.e., increase the TSCH guard

time), or increase re-synchronization traffic – both of which

increase their energy usage requirements [5]. This problem

is particularly relevant in low data rate, low energy budget

applications, e.g. where packets are transmitted every few

minutes. Under these conditions, the energy requirements for

keeping the network synchronized tend to exceed the energy

requirements for data transmission.

This paper proposes adaptive, temperature-resilient

time synchronization: a method to counteract temperature-

dependent clock frequency changes. The method consists

of three main elements: (1) one-time calibration of the

effect of temperature on hardware clocks, (2) continuous

temperature measurements, and (3) continuous temperature-

dependent drift compensation relative to the network

coordinator. Unlike existing work on temperature-resilient

TSCH synchronization [6] [7], the proposed method does not

require sending more packets when temperature is changing –

instead, nodes compensate the effects of temperature locally

and maintain stable clocks. Our method is therefore well

suited for networks where the number of packets must be

minimized, or high a priori predictability (e.g., of energy

consumption) is required, and the nodes are equipped with

temperature sensors.

We present a thorough characterization of the effects of

temperature of clocks, with analytic results and simulations,

to motivate our design. Empirical temperature and clock

drift measurements inside a temperature chamber are used as

the input for these simulations and the analytic model. The

simulation results are validated with a controlled experiment

in the temperature chamber, as well as by a 15 h experiment

indoors and a 15 h experiment outdoors where nodes are

exposed to direct sunlight. The results show that the algorithm

almost always keeps the TSCH network synchronized using

the default settings and 10 min resynchronization interval, and

that it more than ten times reduces the required number of

synchronization packets.

The algorithm is implemented for SPES-2 [8], a low-

power IoT node based on the Texas Instruments CC2650

System-on-Chip (SoC) and equipped with a common off-the-

shelf HDC1000 temperature sensor [9]. The implementation

builds on the Contiki TSCH code [10], and on the high-

accuracy energy-efficient adaptive synchronization for TSCH

for CC2650 described by Elsts et al. in [11].

Section II clarifies the qualitative and quantitative differ-

https://github.com/IRC-SPHERE/elsts2017-temperature-data
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ences compared to related work; Section III includes a math-

ematical model of time synchronization in TSCH networks

and analyzes the causes of synchronization errors. Section IV

describes the empirical investigation of temperature-dependent

clock drift in a controlled environment, and Section V presents

the adaptive temperature-resilient time synchronization algo-

rithm. Section VI describes the design and evaluation of

a simulator for estimating expected synchronization errors

from the empirical data, while Section VII describes the

experimental setup and evaluation results.

II. RELATED WORK

Time synchronization in low-power and lossy network is

often done using a dedicated protocol, for example, FTSP [12]

or Glossy [13]. However, unlike TSCH, these protocols are not

standardized and interoperable, require additional implemen-

tation effort, add to the complexity of the system, and often

are not optimized for low radio duty cycles.

Adaptive synchronization for TSCH is first described by

Stanislowski et al. [6] and was initially implemented in the

OpenWSN networking stack. The authors show robustness

and high accuracy of their method in indoor, outdoor, and

temperature oven experiments: 91µs using 10 messages per

10 minutes during stable temperature. However, when changes

in temperature are detected, the authors disable adaptive time

synchronization and send a keepalive message immediately.

Chang et al. [14] similarly perform indoor, outdoor, and

“sudden change” experiments and achieve less than 100µs

error, but have a high number of messages (600 per 10

minutes) for the sudden change experiment. In a further work,

Chang et al. [7] investigate how TSCH synchronization is

improved by adapting message exchange frequency depending

on synchronization quality; they report less than 300µs error

by sending 3.5 messages per 10 minutes on average (when To

is stable).

As opposed to the present work, both Stanislowski and

Chang require that keepalive messages are sent from the

downstream node to the upstream. Furthermore, the frequency

of these messages is environment-dependent, therefore the

medium may be excessively polluted by traffic during rapid

environmental condition changes, and the performance of the

system (e.g., the required energy budget) cannot be reliably

predicted before deployment.

Elsts et al. [11] substantially reduce synchronization errors

in TSCH networks without compromising energy efficiency.

The system achieves that by using high-resolution clocks for

scheduling of TSCH operations and estimating synchroniza-

tion errors, while continuing to use low-resolution timing

during low-power mode, made possible by hardware-supported

synchronization between the node’s low-frequency and high-

frequency clock subsystems. The authors report less than 2µs

worst-case error on point-to-point links by synchronizing 150

times per 10 minutes on the average.

Masood et al. [15] present DISTY, a dynamic stochastic

time synchronization mechanism. Their algorithm is based on

Kalman filter, and achieves remarkably low drift prediction

error, which in theory could be used to implement a high-

accuracy time synchronization protocol: for 80 lost packets,

corresponding to 320 seconds without synchronization, DISTY

has <30 clock tick synchronization error (with 4 MHz clocks

as in our setup that would equal to <8 µs). It is extensively

tested in temperature-varying conditions with good results.

However, DISTY lacks a real implementation on low-power

sensor nodes, and that might be challenging, as the calibra-

tion stage of the algorithm requires solving multiple linear

regressions with O(nm2) time complexity (where n = 100
and m = 22 in the setup presented by the authors) and the

continuous operation requires “many computations and higher-

energy requirements” according to the authors.

DiStiNCT [16] is a time synchronization scheme for dis-

tributed wireless sensor networks that are based on imprecise

timers (i.e. errors of up to 15 000 ppm). The authors present

a power-efficient and computationally simple solution that

achieves ms-level time synchronization (one transmission per

3 seconds). Qiu et al. [17] present R-Sync, a robust time

synchronization scheme for the Industrial IoT that focuses on

identifying isolated nodes that have lost their synchronization

and pull them back in the network. Dong et al. [18] present

a secure time synchronization scheme that is resilient to sybil

attacks (i.e. nodes illegitimately claim multiple identities).

None of the above works take into account the temperature-

dependent clock drifts.

III. ANALYTIC MODEL

A. Background on TSCH

Due to its time-slotted nature, TSCH requires that all

nodes in the network are tightly synchronized. The nodes

synchronize their clocks with the coordinator node’s clock

when joining the network, and keep them synchronized while

remaining operational. To avoid partitioning of the network,

synchronization is always done from upstream to downstream;

in particular, each downstream node marks one or more nodes

as its time sources. Note that using multiple upstream nodes

when they are available (e.g., in dense networks) could help

to increase the synchronization quality by averaging out the

errors; however, in practice, the existing TSCH open-source

implementations (OpenWSN [6] and Contiki [10]) allow to

have just a single upstream node as the time source.

Two synchronization methods are defined in the stan-

dard [2]: (1) message-based, where the downstream node

synchronizes its clock upon the reception of a message from a

time source, and (2) ACK-based, where the downstream node

corrects its clock using a field in the ACK frame received from

a time source.

Both TSCH control messages and data messages are used

for synchronization. For example, a downstream node is

resynchronized upon each data packet sent to and successfully

acknowledged by its time source node. However, for low data

rate applications, data packets are not sufficiently frequent

to maintain the synchronization; thus, explicit synchroniza-

tion packets need to be transmitted. This leads to link-layer

protocol overhead, i.e. nodes transmit more synchronization

packets than data packets, and motivates the need to increase

the maximum resynchronization period.
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Fig. 1: Maximum resynchronization period depending on the drift
amplitude |δ|.

B. Maximum resynchronization period

According to the IEEE 802.15.4 standard, a node must

start transmitting each MAC-layer frame exactly τo (transmis-

sion offset) microseconds after the start of a timeslot. This

transmission is preceded by the transmission of the PHY-

layer preamble and the Start-of-Frame Delimiter (SFD), which

cumulatively takes τp microseconds.

TSCH incorporates a guard time to deal with the loss of

synchronization. To account for both positive and negative

clock drift, the receiver wakes up before the expected start

of frame transmission offset and keeps the radio on for at

least τg microseconds, waiting for reception of an SFD. In

the standard, the guard time is equally spaced around the

transmission offset τo, i.e., the node starts listening at τo−
τg
2

and ends listening at τo +
τg
2

. It follows that the effective

guard time in an implementation that follows the standard to

the letter is the asymmetric, since it does not account for the

reception of a frame preamble (τp).

Given guard time τg , the maximal desynchronization for

clocks slower than the reference clocks is equal to emax− =
τg
2
− τp, while for clocks faster: to emax+ =

τg
2

. The IEEE

802.15.4 standard values (τg = 2.2ms, τp = 160µs) result in

emax− = 0.94ms and emax+ = 1.1ms.

Due to timing errors, TSCH node clocks drift at a rate δ.

The synchronization error e after time interval ∆t is:

e = |δ|∆t. (1)

For TSCH to operate without packet loss due to synchroniza-

tion errors the following inequality needs to hold: e ≤ emax−,

therefore from Eq. 1 one can calculate the maximum resyn-

chronization period for a given guard time (τg):

∆t ≤
τg − 2τp
2|δ|

. (2)

Fig. 1 plots the maximum transmission period for various drift

amplitudes. As the drift amplitude increases, more frequent

packet transmissions are required to maintain the nodes syn-

chronized.

C. Clock drift due to production spread

Deviation of oscillator crystals from their nominal frequency

due to production spread is one of the main reasons for clock

drift. The bounds of this deviation (±ǫf ppm) are typically

specified by the manufacturer.

Let us assume that the timings of a sender, u, and a

receiver, v, are scheduled using crystals with frequency errors

ǫu ∈ [−ǫf , ǫf ] and ǫv ∈ [−ǫf , ǫf ] respectively. The worst

case scenario is when one of the crystals operates with +ef
error, whilst the other operates with −ef error. As a result,

the relative drift due to production spread is:

δf =
( 1

1 + ǫu
−

1

1 + ǫv

)

≈ ǫu − ǫv, where |δf | ≤ 2ǫf . (3)

For example, a TSCH link between nodes that use the a crystal

oscillator with ǫf = ±20 ppm must be able to tolerate a drift

of up to δf = 40 ppm in the worst case scenario.

D. Clock drift due to differences in operating temperature

Crystal oscillators are also characterized by a temperature-

dependent error that depends on the shape of the crystal.

Crystal oscillators are typically manufactured in such a way

that their frequency dependence on temperature is quadratic.

Indeed, a crystal resonates close to its nominal frequency at

T0 = 25 oC, but slows down at temperature T at a rate of

B(T − T0)
2, where B is the parabolic coefficient. The worst

case scenario for a TSCH link is when one of the crystals

operates at a temperature T0, whilst the other operates at a

temperature T . The temperature-specific drift δT in this worst

case scenario is:

δT =
( 1

1−B(T − T0)2
− 1

)

≈ B(T − T0)
2 . (4)

For the 32.768 kHz crystal oscillator FC-135 (T0 = 25 oC,

B = −0.04 ppm [19]), the temperature-dependent clock drift

is ≤ 1 ppm in room temperatures (20 to 30 oC), whereas at

−5 oC the drift for this crystal rises up to δT = 36 ppm.

E. Other sources of clock drift

The synchronization error cannot be detected with perfect

accuracy due to inaccuracies in packet timestamps, packet

transmissions, scheduling of the TSCH state machine, and

granularity of the units of the timestamps. These problems are

source for additional clock drifts, denoted by δo. As shown

in [11], δo is very important for maintaining microsecond-

level accuracy synchronization. Yet, it is inversely proportional

to the period of synchronization (∆t) [11]; hence, it is less

significant in applications that generate data infrequently.

Another possible origin of clock drift is the switching of

clock sources. In particular, during the active mode, TSCH

timing is often based on a high-frequency oscillator, while

during low-power modes, the only available active clock

source is a low-frequency one, such as the FC-135 oscillator.

However, this paper avoids that problem by resynchronizing

these two local time sources on each wakeup [11].

F. Avoiding the transmission of synchronization messages

In a practical scenario, the various sources of clock drift

are combined. In fact, they can be aggregated or cancel out,

depending on the direction of the drift.

δ = δf + δT + δo . (5)
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Eq. 1 indicates an inversely proportional relationship between

the clock drift (δ) and the period of synchronization (∆t). In

other words, assuming a fixed guard time, a TSCH network

has two ways of maintaining the synchronization: either the

period of synchronization needs to match δ; or, the drift needs

to be compensated in software. Clearly, the second alternative

is more desirable because of efficiency reasons, in particular

for TSCH in applications that exchange data messages infre-

quently and consequently need dedicated control messages for

synchronization. For example, assuming ∆t = 600 sec and the

default TSCH guard time (τg = 2.2ms, e ≤ 0.94ms), the

clock drift needs to be compensated in software so that the

effective drift is |δ| ≤ 1.57 ppm.

Related works have proposed algorithms for measuring

and compensating the clock drift due to production spread

(δf ) [6] and measurement inaccuracies (δo) [11]. This article

complements the related work with a mechanism to measure

and compensate the temperature-dependent clock drift (δT ).

IV. EXPERIMENTAL STUDY AND CALIBRATION

A. Setup

Temperature chamber TAS LT 600 (Fig. 3) is used to

investigate the drift dynamics under To changes. Three sensor

nodes are placed inside the chamber, while the network

coordinator node is placed outside, where the temperature

stays stable. All nodes synchronize directly to the coordinator,

which transmits synchronization messages once per second.

Nodes in the chamber have USB connections with a laptop,

which is used to log synchronization errors. The errors are

logged upon each packet reception, while resynchronization

is done only once every 10 min in order to simulate a less

frequent exchange of packets.

B. Calibration

A calibration step is first performed to learn drift values

under various temperature settings. The nodes are cooled down

to −5 oC, then heated up to +60 oC during a calibration period

of 2 h 40 min. Upon reception of each synchronization message

each node calculates, saves, and logs over the serial interface

the average drift values during the last 12 sec, as well as the

corresponding To. The HDC1000 temperature sensor, which

has an accuracy of ±0.2 oC, is read once per second by a

background process. The measurement of the empirical drift

is based on the FC-135 crystal oscillator. Thus, he timing

Fig. 3: The temperature chamber.
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Fig. 4: Calibration results for drift depending on To. The narrower
line is a fit of the parabola from the analytic model (B = −0.02,
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the absolute error).
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measurements have a quantization error of up to 30.5µs [11].

Calibration data (Fig. 4) validate the parabolic shape of

the temperature-dependent error curve; however, the parabolic

coefficient B of the datasheet corresponds to a worst case

scenario, and thus cannot be used in place of empirical mea-

surements if good results are desired (i.e., < 1.57 ppm drift,

see Section III-F). Indeed, Fig. 4 shows that the dependence

is smaller than specified by the datasheet (B = −0.04 vs

B ≈ −0.02 empirically) and the shape of curve does not

exactly match that of a quadratic parabola.

Fig. 5 shows the result of equating the drift amplitude,

δ, with the empirical drift of Fig. 4 on Eq. 2, and demon-

strates the maximum resynchronization period required for

maintaining time synchronization. The peaks identify the

circumstances when the drift due to production spread and

the temperature-dependent drift cancel out. The horizontal

dashed line corresponds to a resynchronization threshold of

10 minutes. Node 1 performs particularly well in temperatures

between 10 oC and 40 oC. Node 2 and Node 3, on the other

hand, require more frequent synchronization even in room

temperatures. The results highlight the fact that every indi-

vidual node is unique. Therefore, temperature compensation

based on datasheet estimates is insufficient for effective time-

synchronization. Instead, using the proposed temperature-

resilient time synchronization algorithm, each node measures

and compensates for its individual drift behavior.

V. ADAPTIVE TEMPERATURE-RESILIENT TIME

SYNCHRONIZATION

A. The algorithm

Algorithm 1 describes the essential operation of the adap-

tive temperature-resilient time synchronization method. (For

simplicity, the synchronization on ACK is not shown.) The

combined empirical data from drift estimates and temperature

readings (Fig. 4) are used to construct a node-specific lookup

table with average drift values per each point in the oC scale.

In the code, isCalibrationStage is an external parameter that

determines whether the calibration is finished; STOREDRIFT

Algorithm 1 Adaptive temperature-resilient synchronization

⊲ Initialization section; executed when joining the TSCH network
function ONJOINTSCHNETWORK

δestimated ← 0 ⊲ Initialize the drift estimate
tsync ← TIMENOW( ) ⊲ Initialize the last synch. time

end function

⊲ Executed on every active timeslot
function ONACTIVETSCHTIMESLOT(tsi, isRxi)

⊲ tsi – the start of the i-th timeslot
⊲ isRxi – whether the i-th timeslot is for Rx

esync ← 0 ⊲ Reset synchronization error
T ←MEASURETEMPERATURE( ) ⊲ Get current temperature

if isRxi then ⊲ On reception timeslot
p← TRYRECEIVEPACKET( )
⊲ Check if packet was received and is usable for timesync
if p 6= NULL AND ISTIMESOURCE(p.src) then

⊲ The drift learning step
texpected ← tsi + TschTxOffset
tactual ← p.SFDtimestamp
tnow ← TIMENOW( ) ⊲ Get current time
esync ← tactual − texpected ⊲ Set the sync error
∆sync ← tnow − tsync

δcurrent ← esync ÷∆sync

δestimated ← MOVINGAVERAGEADD(δcurrent)

if isCalibrationStage = TRUE then
STOREDRIFT(T , δestimated)

end if
tsync ← tnow

end if
else ⊲ On transmission timeslot

TRYTRANSMITPACKET(GETPACKET( ))
end if

⊲ Find the time and type of the next active timeslot
(tsi+1, isRxi+1)← TSCHFINDNEXTTIMESLOT(tsi)

if isCalibrationStage = FALSE then
δT ← LOOKUPDRIFT(T )
∆t← tsi+1 − tsi ⊲ Time to next active timeslot
cT ← ∆t× δT ⊲ Temperature compensation
chistory ← ∆t× δestimated ⊲ History-based compens.

⊲ Correct for the error and for both compensations
tscorr ← tsi+1 − (esync + cT + chistory)

else
⊲ Correct for the error only

tscorr ← tsi+1 − esync

end if
⊲ Reschedule this function for the next active timeslot

SCHEDULE(ONACTIVETSCHTIMESLOT, tscorr , isRxi+1)
end function

and LOOKUPDRIFT handle the operations related to the

lookup table that is a mapping between temperature and drift.

Upon each resynchronization event, the node learns the

timing error of the local clock, therefore is able to estimate the

local clock drift by dividing the error in clock ticks with the

number of ticks passed since the last time synchronization. To

remove errors caused by imprecise measurements, a moving

average filter is applied on several recently learned drift values,

resulting in a more accurate cumulative estimate [11].

In the calibration stage, the estimated drift is stored in

the lookup table. Once this stage is completed, the lookup

table is used to obtain ctemperature — the compensation for
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the temperature drift. ctemperature is used continuously, even

during the slots when no packet is received from a time source.

However, when a packet is received, it is used to dynamically

adjust for the second-order error, i.e., the difference between

the actual drift and the drift in the table, and to calculate a new

value of chistory , the history-based compensation. The sum of

these two compensations (ctemperature + chistory) is used to

adjust tsi+1, the time of the next timeslot (Fig. 6).

The implementation uses error-accumulation free fixed-

point arithmetic, and stores drift and time with high granularity

(in units of 1

1024
ppm and 1

1024
µs respectively) to achieve

high accuracy [11]. Lastly, since the TSCH timeslot operation

is done in an interrupt context, lengthy function calls must

be avoided; therefore the temperature sensor is read by a

background process and MEASURETEMPERATURE rapidly

returns the most recently read value instead of physically

accessing the sensor.

B. Online calibration

The requirement to use a temperature chamber might make

the system impractical to use in certain conditions. However,

a simple extension of the algorithm allows to replace the

separate calibration step by online calibration, performed on

demand. A sketch of that extension follows.

Here, the last calibration time is stored in an array, with

separate for each temperature value (e.g., for each oC). Each

time a node encounters a specific temperature value it is not yet

calibrated for, it enters a calibration mode. During this mode,

time synchronization is performed more frequently or the

guard time is increased. After learning the drift for this specific

temperature value, the node records the drift, and the current

time as the last calibration time for the current temperature.

Then it reverts back to a more energy-efficient mode of

operation. In this way, the node only ever needs to calibrate for

temperature values it encounters in the real environment. This

online calibration may be periodically repeated, e.g., because

the aging of the oscillator crystal changes its drift.

VI. SIMULATOR

A simulator is designed to validate the analytic results and

show the behavior of Algorithm 1. The simulator takes a

series of temperature values and a lookup table with calibration

data (per-temperature drifts) as its two inputs and models the

behavior of a receiver node exposed to these environmental

conditions.

The input temperature values are assumed to be the ground

truth of the air temperature around the node, and the lookup

table of drifts – the ground truth of the temperature-dependent

clock frequency changes. In order to generate synchronization

errors, four principal classes of errors are introduced in the

simulator:

• Errors in temperature measurements. The HDC1000 temper-

ature sensor has ±0.2 oC accuracy [9], therefore a random

uniform error in this range is added to its readings.

• Delay in drift estimation and inertia in temperature. The

calibration reports the average drift during the last 12 sec

(Section IV-B). Furthermore, the crystal oscillator can be

assumed to be heating up more slowly than the air around

the node as measured by the sensor, and lagging a short

time behind it. Therefore, for drift reported at time t, the

simulations use To at t− 10 seconds as the operating To of

the oscillator.

• Sub-degree differences in temperature that are not captured

by the compensation table as the implementation uses a

table with granularity of 1 oC. The compensation algorithm

rounds down the measured temperature T to the nearest

integer T ′, which is then used to obtain the drift estimate

d(T ′). However, the simulations use linearly weighted com-

bination of d(T ′) and d(T ′ + 1) as the effective drift at

temperature T .

• Errors in time measurements. According to analytic mod-

els [11], time is measured with accuracy of one timer tick

(0.25µs in our setup), therefore a random uniform error in

this range is added to the synchronization error calculated

upon packet reception.

The results (using input data from Section IV) are shown in

Fig. 7. Each simulation is re-run three times in order to show

the small effects from randomness.

Figures 7c and 7d show an order-of-magnitude improvement

in synchronization quality after applying Algorithm 1. The

maximum synchronization error (|errmax|) is 12.7 ms in the

baseline TSCH (Fig. 7a), but only 0.7 ms when temperature-

based compensation is enabled (Fig. 7d): an difference of

more than 10 times. Counterintuitively, disabling history-based

compensation in Algorithm 1 gives the smallest average error

(Fig. 7d). This happens because otherwise second-order errors

arise from the interaction of the two drift compensation mech-

anisms. However, there are some practical reasons for enabling

history-based compensation. In particular, aging processes of

oscillator crystals change their drift, therefore the lookup

tables will eventually become outdated unless the calibration

is periodically repeated (e.g., once per year).

Figure 8 shows that the algorithm is relatively robust to

temperature dynamics as long as the rate of temperature

change stays realistically small.

VII. EXPERIMENTAL EVALUATION

A. Synchronization accuracy: controlled experiment

An experiment in the temperature chamber is performed in

order to validate the simulation results. The setup in Fig. 2

is replicated. After cooling down the nodes to −5 oC the

system is started up; then the chamber’s temperature setting

is incremented in three steps of +20 oC, stopping for 30 min

between subsequent increments (at +15, +35 and +55 oC).
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(a) Baseline TSCH, no compensation. |err|max = 12.7ms,
|err|mean = 2.58ms
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(b) With history-based compensation. |err|max = 8.2ms,
|err|mean = 1.36ms
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(c) With temperature-based compensation and history-based compensa-
tion (Algorithm 1). |err|max = 1.32ms, |err|mean = 0.11ms
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(d) With temperature-based compensation only. |err|max = 0.72ms,
|err|mean = 0.08ms

Fig. 7: Simulation performance; each simulation repeated 100 times, the average error plotted with thick black line, the distribution of
errors shown as a colored area. Here and in further figures: synchronization period is 10 min; the horizontal lines mark the standard TSCH
desynchronization thresholds. In (a), the network would desynchronize in 51 seconds in the worst case, in (b): in 106 seconds, in (c): in
9 min 19 seconds. (d) always stay within the synchronization interval (its estimated desynchronization period is 15 minutes), as does (c) in
the majority of simulations. Note the different y-axis scales.
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Fig. 9: Experimental results in the chamber. Settings as in Fig. 7c.
The nodes stay within the interval at all times: |err|max = 0.88ms,
|err|mean = 0.11ms.

The results (Fig. 9) closely repeat the simulations (Fig. 7c).

Firstly, they both show a similar pattern of synchronization

errors. Secondly, the disagreement in the average error ob-

served in simulations and experiments is only 5 %. The system

remains within the guard-time boundaries of the standard

TSCH settings when synchronizing once every 10 minutes.

Furthermore, it can be seen that once the temperature is stable

at +55 oC, the synchronization accuracy iteratively improves

because of the history-based drift compensation.
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Fig. 10: Experimental results, 15 h indoors. Settings as in Fig. 7c.
|err|max = 0.26ms, |err|mean = 0.017ms.

B. Synchronization accuracy: indoor and outdoor experiments

To evaluate longer-term operation of the system in realistic

conditions, one 15 h indoor experiment and one 15 h outdoor

experiment are performed with a similar setup.

The indoor experiment (Fig. 10) shows relatively stable tem-

perature and low synchronization errors (|err|max = 0.26ms).

Here, the resynchronization interval could be increased by 3.5

times to more than 30 min. It also shows that the maximum

synchronization error in room temperature is heavily depen-

dent on the node.

The outdoor experiment was undertaken on the 19th June

2017 in the UK. According to meteorological data, it was one

of the warmest days of the year. The experiment included

one period when the nodes, except the coordinator node, were

exposed to direct sunlight. During the experiment the nodes

were protected only by light off-the-shelf plastic casing (see

[8]). The temperature curve shows stable increase during the

morning heat-up phase, after which a plateau of > 45 oC

is reached. However, during this plateau, significant rapid

variations in temperature are present, caused by minor clouds

and wind, and the synchronization errors are much larger than

during the stable heat-up phase. Then, after being shadowed

by a larger cloud, the temperature on the nodes drops sharply

(more than 8 oC change per 5 minutes) below <40 oC. Only

during this rapid change the guard time limit is breached; a

synchronization frequency of 6 minutes would be sufficient

to stay within it. Afterwards the nodes are shadowed by a

building and the system remains stable until the end of the

experiment.

The results stress the importance of real-world experiments,

as the node outdoor temperature dynamics show unexpectedly
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Fig. 11: Experimental results, 15 h outdoors. Settings as in
Fig. 7c (except history buffer size: 1 sample). |err|max = 1.51ms,
|err|mean = 0.055ms.
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Fig. 12: Charge consumption breakdown in a 600-second period.
The options a, b, c, and d correspond to the four methods in Fig. 7: (a)
default TSCH, (b) adaptive time synchronization [6], (c) adaptive time
synchronization combined with the proposed temperature-resilient
synchronization, and (d) the proposed temperature-resilient synchro-
nization. The application receives five packets in each desynchro-
nization period. Radio and CPU results estimated from current level
measurements with a RocketLogger [20] device; time is measured in
software; sensor current consumption taken from datasheet [9].

high randomness, and confirm direct sunlight as a particularly

difficult environment for time-synchronized networks.

C. Energy efficiency

Figure 12 shows the charge required for synchronization

in a 600-second period on the SPES-2 platform depending

on the synchronization method. “Sensor” refers to the charge

requirements of the HDC1000 temperature sensor, sampled

once per second; “CPU” to the cost of running the adaptive and

temperature compensation algorithms, also once per second;

“Radio” to the energy costs for receiving TSCH EB synchro-

nization packets (36 bytes each).

The number of packets per 600 seconds is dependent on the

desynchronization period, which in turn is dependent on the

method. Note that assuming a realistic 80 % link-layer packet

reception rate, the application needs to try to receive more

than one packet per each desynchronization period in order to

receive at least one successfully with high probability. These

experiments assume that > 99.9% probability of remaining

synchronized in a single desynchronization period is required,

therefore five packet reception attempts must be scheduled.

Consequently, within the 10-min period, method (a) requires

receiving 59 packets, while (d): just 3.3 packets on the

average.

The results show that even though reading the temperature

sensor adds a constant overhead to the system, the temperature

compensation helps to increase the overall system efficiency

in this scenario. The relative efficiency would be further

increased in a multihop network formed by energy-constrained

nodes, as in this case not only the costs for reception of

synchronization packets, but also the costs for retransmission

would have to be taken into account. Furthermore, the rela-

tive efficiency would be further increased if the overlaying

application makes use of the temperature sensor. In that

case, the proposed algorithm could leverage these temperature

measurements, not requiring any additional sensing.

VIII. CONCLUSION

This paper proposes adaptive temperature-resilient time

synchronization, a method for improving time synchronization

accuracy in TSCH networks exposed to large dynamic changes

in temperature. The results show that this method reduces syn-

chronization message frequency by up to 10 times compared

to baseline TSCH. With one synchronization message per ten

minutes, the system shows a 0.26 ms maximal synchronization

error indoors and a 0.88 ms error in a temperature chamber

where the network undergoes a 60 oC change in temperature.

In both experimental settings, all nodes stay within the stan-

dard TSCH guard time that bounds the maximum error to

0.94 ms. In outdoor settings and direct sunlight where the

rate of change exceeds 8 oC per five minutes, a 6-minute

synchronization period is sufficient to achieve the same result.

Finally, both the calibration stage and the continuous operation

stage of the method has low computational and sensing

requirements, therefore can be easily implemented on low-

power Internet of Things nodes equipped with common-off-

the-shelf temperature sensors.
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synchronization protocol,” in Proc. 2004 2nd international conference

on Embedded networked sensor systems. ACM, 2004, pp. 39–49.
[13] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network

flooding and time synchronization with Glossy,” in Proc. 2011 10th

International Conference on Information Processing in Sensor Networks

(IPSN). IEEE, 2011, pp. 73–84.
[14] T. Chang and Q. Wang, “Adaptive compensation for time-slotted

synchronization in wireless sensor network,” International Journal of

Distributed Sensor Networks, 2014.
[15] W. Masood, J. F. Schmidt, G. Brandner, and C. Bettstetter, “DISTY: Dy-

namic Stochastic Time Synchronization for Wireless Sensor Networks,”
IEEE Trans. Ind. Informat., 2016.

[16] J. A. Boyle, J. S. Reeve, and A. S. Weddell, “DiStiNCT: Synchronizing
Nodes With Imprecise Timers in Distributed Wireless Sensor Networks,”
IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 938–946, 2017.

[17] T. Qiu, Y. Zhang et al., “A Robust Time Synchronization Scheme
for Industrial Internet of Things,” IEEE Trans. Ind. Informat., vol. PP,
no. 99, pp. 1–1, 2017.

[18] W. Dong and X. Liu, “Robust and Secure Time-Synchronization Against
Sybil Attacks for Sensor Networks,” IEEE Trans. Ind. Informat., vol. 11,
no. 6, pp. 1482–1491, Dec 2015.

[19] “FC-135R / FC-135 kHz range crystal unit,” https://support.epson.biz/
td/api/doc check.php?dl=brief FC-135R en.pdf.

[20] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele,
“Measurement and Validation of Energy Harvesting IoT Devices,”
in Proc. 2017 Design, Automation & Test in Europe Conference &

Exhibition (DATE 2017), 2017.

Atis Elsts (M’17) received his doctoral degree in
computer science from the University of Latvia,
in 2014, based on research done at the Institute
of Electronics and Computer Science (IECS/EDI,
Riga, Latvia). Since 2016 he is a researcher in
the SPHERE interdisciplinary research collaboration
at University of Bristol. Prior to that, he was a
researcher at Uppsala University (2014-2015) and at
the Swedish Institute of Computer Science (SICS,
2015). His scientific interests focus on experimental
research in Networked Embedded Systems, includ-

ing network protocols, time synchronization, operating systems and tools.
He is a maintainer of the Contiki-NG operating system for the Internet of
Things (IoT).

Xenofon Fafoutis (S’09-M’14) received a PhD de-
gree in Embedded Systems Engineering from the
Technical University of Denmark in 2014; an MSc
degree in Computer Science from the University
of Crete in 2010; and a BSc in Informatics and
Telecommunications from the University of Athens
in 2007. Since 2014, he is a researcher with the
University of Bristol and a core member of the
EPSRC SPHERE interdisciplinary research collab-
oration. His research interests lie in Networked
Embedded Systems as an enabling technology for

Digital Health, Smart and Healthy Cities, and the Internet of Things (IoT).

Simon Duquennoy is a research scientist at RISE
SICS (Sweden). He obtained his PhD from Universit
de Lille 1 (France) in 2010, and was then granted
an ERCIM Alain Bensoussan fellowship for a post-
doc at SICS. He then obtained then a permanent
researcher position at SICS, in addition to which he
worked at Inria (France) in 2016-2017. His research
focuses on communication in the IoT, MAC, rout-
ing, security, dependability, and embedded systems
design. He is a TPC member of internationally rec-
ognized conferences (ACM SenSys, ICDCS, EWSN,

and MASS). He has over 35 peer-reviewed papers including many at flagship
venues (ACM SenSys, ACM/IEEE IPSN, ACM TOSN and ACM Emsoft).
Simon has experience as a principal investigator in several European and
national projects. He is a co-founder of Contiki-NG, an open-source operating
system for the IoT. Further, he is active in standardization through the IETF
6TiSCH, 6LO and LWIG Working Groups.

George Oikonomou received the MSc Degree in In-
formation Systems and the PhD degree in computer
science from the Athens University of Economics
and Business, Athens, Greece, in 2002 and 2009
respectively. He is currently a Lecturer with the
Department of Electrical and Electronic Engineer-
ing at the University of Bristol. He has previously
worked as a Research Associate at the Faculty of
Engineering, University of Bristol and at the Com-
puter Science department, Loughborough University,
UK. His current research focuses on energy-efficient

networking for networks of severely constrained wireless embedded devices
and the Internet of Things. Dr Oikonomou is a co-founder, steering group
member and maintainer of Contiki-NG, and an active developer of the Contiki
open source embedded operating system for the Internet of Things.

Robert Piechocki received an MSc degree from
Technical University of Wroclaw (Poland) in 1997
and a PhD degree from the University of Bristol in
2002. He is currently a reader in Advanced Wireless
Access and a member of Communications Systems
and Networks group. His research interests span the
areas of Statistical Signal Processing, Information
and Communication Theory, Wireless Networking,
Body and ad-hoc networks, Ultra Low Power Com-
munications and Vehicular Communications. He has
published over 100 papers in international journals

and conferences and holds 13 patents in these areas. For the SPHERE project
Robert is leading the development of wearable and wireless technologies.

Ian Craddock (M’09-SM’10-F’16) is currently a
full Professor with the University of Bristol (UK)
and Director of the flagship “SPHERE” centre
(www.irc-sphere.ac.uk) comprising approximately
100 researchers and clinicians working on IoT tech-
nology for health. He has been working in healthcare
technology for 15 years and founded a company
that is currently completing trials of a CE-marked
breast imaging device based on his research. He
has published over 150 papers and serves on the
healthcare strategy board for the UKs largest en-

gineering funder. He is also separately employed by Toshiba as Managing
Director of their Telecommunications Research Lab in Bristol, responsible
for a portfolio of both internal and collaborative communications, IoT and
smart city research.

www.ti.com/lit/ds/symlink/hdc1000.pdf
https://support.epson.biz/td/api/doc_check.php?dl=brief_FC-135R_en.pdf
https://support.epson.biz/td/api/doc_check.php?dl=brief_FC-135R_en.pdf

	Introduction
	Related work
	Analytic model
	Background on TSCH
	Maximum resynchronization period
	Clock drift due to production spread
	Clock drift due to differences in operating temperature
	Other sources of clock drift
	Avoiding the transmission of synchronization messages

	Experimental study and calibration
	Setup
	Calibration

	Adaptive temperature-resilient time synchronization
	The algorithm
	Online calibration

	Simulator
	Experimental evaluation
	Synchronization accuracy: controlled experiment
	Synchronization accuracy: indoor and outdoor experiments
	Energy efficiency

	Conclusion
	References
	Biographies
	Atis Elsts
	Xenofon Fafoutis
	Simon Duquennoy
	George Oikonomou
	Robert Piechocki
	Ian Craddock


