
Okanagana striatipes (Haldeman) and Oka-
nagana utahensis Davis share sagebrush fields
of the western United States. Okanagana utah-
ensis is described as resembling O. striatipes
but is slightly larger and darker in color (Davis
1919). The 2 species are active in adult form
during June and July (Davis 1919). Both O.
striatipes (Davis 1930) and O. utahensis (Davis
1919) have been associated with sagebrush
(Artemisia spp.). Although the cicadas may sing
from other plant species, a species of sagebrush
is always present in the habitat and appears to
be the host plant for both species. Cryptic col-
oration makes the cicadas very difficult to see
when perched on sagebrush (Davis 1932).

Acoustic behavior of the 2 species is also
similar. Both species, for example, are solitary
animals when calling. Frequency ranges of the
calling songs appear to overlap. Okanagana
striatipes produces a calling song of medium
pitch and average duration (Beamer and Beamer
1930, Davis 1930), whereas the song of O. utah-
ensis is a long, shrill cry (Davis 1919) or a con-
tinuous song (Davis 1921).

Most male cicadas produce acoustic signals
to attract females. Acoustic interference between

species inhabiting the same environment has
been shown in insects (Perdeck 1958, Ulagaraj
and Walker 1973, Morris and Fullard 1983,
Latimer and Broughton 1984, Bailey and Mor-
ris 1986, Greenfield 1988, Römer et al. 1989,
Schatral 1990), frogs (Schwartz and Wells 1983,
Schwartz 1993), and birds (Cody and Brown
1969, Ficken et al. 1974, Popp et al. 1985).
Cicada calls also have been shown to cause
acoustic interference in frogs (Paez et al. 1993).
It has been suggested that temporal separation
(Wolda 1993, Gogala and Riede 1995, Riede
1995, Riede 1997) or frequency separation
(Gogala and Riede 1995, Riede 1996) occurs in
cicada communities to decrease acoustic inter-
ference.

The important song parameter in cicada
long-distance communication has been shown
to be call frequency (Doolan and Young 1989)
or call intensity (Daws et al. 1997). Because
the songs of O. utahensis and O. striatipes
appear to overlap in frequency and the calls
are of similar intensity (Sanborn and Phillips
1995), the potential for acoustic interference
exists between these cicadas sharing the same
habitat.
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Although the songs of O. striatipes and O.
utahensis appear to differ in their temporal
patterns, the potential for acoustic interfer-
ence between the species still exists due to
characteristics of the cicada auditory system
and the species recognition process. The audi-
tory system of cicadas usually shows a peak
sensitivity at the frequency of the species call-
ing song but is sensitive to a wide range of fre-
quencies (Katsuki and Suga 1958, 1960, Hagi-
wara and Ogura 1960, Katsuki 1960, Enger et
al. 1969, Popov 1969, 1981, Simmons et al.
1971, Young and Hill 1977, Schildberger et al.
1986, Huber et al. 1990; but see Popov et al.
1985, Popov and Sergeeva 1987, Fonseca 1993
for exceptions). In fact, Huber et al. (1990)
showed that the auditory system in Magicicada
cassinii (Fisher) is more sensitive to the call of
M. septendecim (L.) than the auditory system
of M. septendecim. Physical properties of the
sound-production system prevent O. striatipes
and O. utahensis from altering the frequency
of their calling songs to prevent acoustic inter-
ference. Since one species is probably capable
of hearing the other quite well, temporal pat-
terns of the song must act to separate the
species.

Popov and Shuvalov (1974) described cicada
auditory receptors as a specialized system in
the analysis of amplitude-modulation patterns.
However, these receptors respond to a wide
range of temporal patterns; they are not an
integral part of the conspecific signal recog-
nizer (Huber 1983). Pringle (1954, 1956) sug-
gested the frequency of a cicada song acts as
an information carrier, while the species-
specific information is carried in temporal pat-
terns of the song (Hagiwara and Ogura 1960,
Moore 1961, Frings and Frings 1977, Huber
1984, Joermann and Schneider 1987). Since
auditory receptors respond to a wide variety of
signals, auditory neural pathways must be re-
sponsible for filtering out species-specific calls.

The primary response to a conspecific song
is based on the spectral content of the song
(Huber et al. 1979). Nerve fibers respond to
natural calling and courtship sounds with a
specificity dependent on carrier frequency,
rhythm, and transient content of the pre-
sented sound (Huber et al. 1980). Cicada audi-
tory nerves respond synchronously to the tem-
poral pattern of a conspecific song while the
response to allospecific calls is not clearly

related to song activity (Pringle 1954, Katsuki
and Suga 1960, Schildberger et al. 1986, Huber
et al. 1980, 1990). Cicada auditory receptors
are sensitive to intensity changes (Hagiwara
and Ogura 1960, Katsuki 1960, Katsuki and Suga
1960) and are especially sensitive to transient
stimuli found in calling songs (Huber et al.
1979, 1980). Amplitude modulations within the
call elicit groups of spikes in the auditory nerve
(Huber et al. 1980). Interneurons are respon-
sible for filtering the auditory input to the brain,
and apparently these interneurons react only
to conspecific calls (Huber et al. 1980, Huber
1984).

Okanagana striatipes and O. utahensis are
synchronous in time of activity during the
year, location of activity, utilization of host
plants, and possession of similar acoustic behav-
ior. These similarities expose the 2 species to
interspecific competition for physical and
acoustic resources within their environment.
We try to determine with this study whether
there are differences in acoustic signals pro-
duced by the species and the possible role of
thermal requirements for singing in the 2
species that may act as physiological mecha-
nisms to permit synchronous sympatry.

MATERIALS AND METHODS

Animals

The species Okanagana striatipes and O.
utahensis were studied in Cortez, Montezuma
County, Colorado, USA. Animals were random-
ly sampled for data collection in the field and
for specimen collection for laboratory experi-
mentation. Experiments were performed in
early July, approximately in the middle of the
emergence period for each species, during
1982, 1983, 1984, 1986, 1988, and 1989. The
species were active in an almost pure flat of
Great Basin sagebrush (Artemisia tridentata).
We placed the animals captured for laboratory
experimentation in a cardboard carton on ice
with a plant specimen and a wet paper towel
to prevent dehydration. Live weights were
measured with a Cent-O-Gram triple beam
balance sensitive to ± 5 mg.

Song Analysis

We recorded calling songs of both species
on 1/4 inch audio tape using a Uher 4000
Report Monitor portable tape deck and an
Electro-Voice RE 55 dynamic microphone. 
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Songs were recorded at a tape speed of 19 cm
⋅ sec–1. Recordings were analyzed with Mac-
Speech Lab II (GW Instruments, Somerville,
MA) and a Macintosh computer. Recordings
were digitized at a sampling rate of 40 kHz,
and a narrow band FFT was used to deter-
mine peak frequency. Figures 1–4 were gener-
ated with a Kay Elemetrics Corporation Digi-
tal Sona-graph 7800 using an intermediate
bandwidth analysis filter and a Sona-graph
Printer 7900.

Temperature Responses

In the laboratory we recorded insect body
temperatures at the minimum temperature for
controlled flight, maximum voluntary tolerance
or shade-seeking temperature, and tempera-
ture of heat torpor. Minimum flight and heat
torpor temperatures represent body tempera-
ture limits of full activity since cicadas with
body temperatures beyond this range are tor-
pid. Maximum voluntary tolerance temperature
represents a thermoregulatory point (Heath
1970). Procedures we used to determine ther-
mal responses were the same as those used in
previous cicada studies (Heath 1967, Heath
and Wilkin 1970).

Temperatures were measured with a Phys-
itemp Model BAT-12 digital thermocouple
thermometer and a type MT 29/1 29 gauge
hypodermic microprobe copper/constantan ther-
mocouple that had been calibrated to a National
Institute of Standards and Technology mercury
thermometer. Body temperatures were mea-
sured by inserting the probe midway into the
dorsal mesothorax. When an animal was ori-
ented for insertion of the probe, we handled it
by grasping the wingtips between the thumb
and forefinger. This procedure prevented con-
ductive heat transfer between the insect and
the experimenter. All body temperatures were
recorded within 5 seconds of the insect per-
forming the activity of interest.

To determine the minimum flight tempera-
ture, we repeatedly tossed a pre-cooled animal
vertically 1–2 m. As the animal warmed, it
began attempts at flight. Initially, it produced
small wing movements with the wings folded
against the body. As body temperature in-
creased, the wings were extended and normal
flight movements of the wings began. The ani-
mals sometimes glided as they warmed before
they could fly efficiently. When an animal made

a controlled flight or landing, we recorded body
temperature.

Maximum voluntary tolerance was deter-
mined by placing a pre-cooled animal on a
vertical surface and warming the insect with a
heat lamp. The heat lamp was placed 45–50
cm from the vertical surface, and the insect
was placed in the center of the beam emanat-
ing from the lamp. Animals basked in the heat
produced by the heat lamp until their body
temperature reached the maximum voluntary
tolerance temperature. When body temperature
corresponding to maximum voluntary tolerance
was reached, the animals walked or flew out of
the central portion of the heat lamp. When an
animal began to move, we measured body
temperature.

Temperature of heat torpor was determined
by placing an animal in a cardboard container
and heating the insect with a heat lamp. The
container prevented the specimen’s escape dur-
ing heating. Body temperature of the insect was
measured when motor control ceased due to
increase in body temperature. Heat torpor
temperature is not a lethal temperature, and
animals recover after their body temperature
has decreased to the temperature range normal-
ly experienced.

Field Temperatures

We recorded body temperatures of singing
animals in the field. Animals were captured in
an insect net, which contracted around the
animal to prevent movement. The temperature
probe was inserted through the net into the
dorsal mesothorax of the animal to measure
body temperature. This procedure prevented
conductive heat transfer between the experi-
menter and the animal that could have altered
insect body temperature. All body temperature
measurements were made within 5 seconds of
capture. Species identification of each specimen
was made after measuring body temperature.

Thermoregulation in ectothermic cicadas
can be modeled as a coupled on-off regulator
(Heath et al. 1971a). When body temperature
is below a certain set point, the animal remains
exposed to solar radiation. Whenever the body
temperature exceeds this set point, the cicada
retreats to shade. The degree of radiant heating
is altered by changing activity location. The
insect can obtain a similar result by changing
body orientation with respect to the sun.
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We collected behavioral data on body orien-
tation at the same time that body temperatures
were recorded in the field to determine if the
cicadas behaviorally thermoregulate. Orienta-
tion of the animals with respect to the sun can
be interpreted as an indication of “preferred”
thermal state. Animals with their bodies posi-
tively oriented to the sun are positioned to
maximize radiant heat gain and can be thought
of as attempting to elevate body temperature.
Negatively oriented animals have minimized
heat gain from solar radiation and may be
viewed as trying to maintain or decrease body
temperature. An animal that is oriented with
the side of the body toward the sun may be
thought of as being near its “preferred” body
temperature. Side-orientation permits the ani-
mal to increase or decrease body temperature
slowly, depending upon the rate of radiant heat
input and the rate of heat loss to the environ-
ment.

Information on calling activity was obtained
by determining which species were singing at
different times of the day. Species determina-
tion was made through animals captured for
body temperature measurements and from
calls being produced by uncaptured animals.

All statistics are reported as mean ± 1 stan-
dard error.

RESULTS

The species involved in the present study
are medium-sized cicadas. Live weight deter-
mined for O. striatipes (386.76 ± 10.510 mg, 
n = 17) is significantly smaller (t = –7.905, df
= 52, P << 0.0001) than measured weight of
O. utahensis (582.70 ± 16.025 mg, n = 37).

The calling song of O. striatipes is a contin-
uous train of constant-amplitude sound pulses
(Fig. 1C). The song begins as a train of sylla-
bles of varying duration and interburst inter-
vals (Fig. 1A). Syllables begin to fuse together
(Fig. 1B) until sound pulses become a continu-
ous train, producing the calling song. Fre-
quency spread of the song is approximately 7
kHz to 12 kHz. Peak sound energy in the power
spectrum is 9.74 ± 0.345 kHz (n = 7, range
8.56–10.27 kHz). Expansion of the time wave
(Fig. 2) shows sound pulses are produced at a
rate of approximately 247 ± 42 pulses ⋅ sec–1

(n = 7, range 181.6–321.9).
The calling song of O. utahensis is composed

of a train of syllables (Fig. 3). Each syllable

(Fig. 4) is composed of about 26 individual
sound pulses (26.1 ± 0.34, n = 21, range 23–29).
The syllables are 87.0 ± 1.6 msec in duration
(n = 21, range 75.6–107.2) and separated by
6.3 ± 0.62 msec (n = 20, range 3.6–12.57). The
pulse repetition rate is 300.96 ± 17.81 sec–1

within each syllable (n = 21, range 251.9–
325.8). Sound energy of the call is distributed
between 6 kHz and 11 kHz. There is an in-
crease in intensity and a change in the empha-
sized frequency midway through the syllable.
Peak energy is at 8.85 kHz (8.85 ± 0.07 kHz, 
n = 21, range 8.20–9.36) near the beginning of
a syllable and 9.13 kHz (9.13 ± 0.07 kHz, n =
21, range 8.36–9.64) when the intensity in-
creases midway through a syllable. Sound
energy is concentrated in a more narrow fre-
quency range or is more sharply tuned during
the earlier portion of the call.

Table 1 summarizes temperature responses
of O. striatipes and O. utahensis. Minimum flight
temperatures are approximately equal (t =
–0.0888, df = 52, P = 0.4986). Mean maxi-
mum voluntary tolerance and heat torpor tem-
peratures are not significantly different (t =
–0.7983, df = 54, P = 0.2142 and t = –0.8137,
df = 52, P = 0.2098, respectively).

Figure 5 compares the number of each
species singing in a given body temperature
range. Mean body temperatures of singing
animals for each species are significantly dif-
ferent (t = –7.0385, df = 56, P << 0.00001),
with O. utahensis singing at higher body tem-
peratures than O. striatipes. Body tempera-
tures of singing animals range from 33.5°C to
37.8°C in O. striatipes and from 34.9°C to
40.2°C in O. utahensis.

The relationship between maximum volun-
tary tolerance temperatures and mean singing
temperatures is different for each species
(Table 2). Okanagana striatipes sings at a body
temperature approximately equal to and not
significantly different from (t = –0.6773, df =
34, P = 0.2514) the maximum voluntary toler-
ance temperature of the species. However, O.
utahensis sings at a body temperature signifi-
cantly greater than the maximum voluntary
tolerance temperature determined for the
species (t = –5.3755, df = 72, P << 0.0001).

Both O. striatipes and O. utahensis are ecto-
thermic behavioral thermoregulators. Solar
radiation is used to elevate body temperature
for activity. Shuttling movements between
sunny and shaded perches and changes in
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body orientation are then used by both species
to regulate body temperature during activity.
O. striatipes at lower body temperatures (33–
34°C) illustrated in Figure 5 were positively
oriented to the sun. Animals with highest body
temperatures (36–37°C) were negatively ori-
ented or side-oriented. Animals in the central
body temperature range (34–36°C) were posi-
tively oriented, side-oriented, or negatively
oriented. Most (7 of 9) O. striatipes with body
temperatures below the recorded mean singing

temperature (35.87°C) for the species were
positively oriented. Animals with body tem-
peratures greater than the mean were found in
all possible states of orientation. These data
suggest the animals were actively regulating
body temperature around the mean tempera-
ture recorded.

Okanagana utahensis showed a similar pat-
tern of orientation with respect to the sun.
Animals with lower body temperatures (34–
37°C) were positively oriented while animals
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Frequency spread of the song is approximately 7 kHz to 12 kHz. The song begins as a train of syllables varying in dura-
tion and interburst interval (A). Syllables become longer and begin to fuse together (B) until the sound pulses produce
the continuous calling song (C).



at the upper end of the distribution (39–41°C)
showed negative or side-orientation. The dif-
ference between the species is that O. utahen-
sis remains positively oriented at a tempera-
ture range (36–37°C) when O. striatipes has
positioned itself to decrease radiant heat gain.
Although both species are behavioral thermo-
regulators, O. utahensis regulates body temper-
ature at a higher temperature than O. striatipes.

Acoustic activity of the 2 species differs
throughout the day, producing a partial tem-
poral separation of acoustic activity that is
dependent on species-specific thermal prefer-
ences. Both species show an initial burst of
activity in the morning when ambient condi-
tions are sufficient to elevate body tempera-
ture to the species-specific level required for
singing. Okanagana striatipes begins to sing
before O. utahensis. The lower body tempera-
ture required for singing gives O. striatipes a
period of about 20–30 minutes in the morning
when it is the only cicada species calling. When
ambient conditions are sufficient to elevate
body temperature in O. utahensis, this species
begins to sing as well. Singing in O. striatipes
begins to decline as O. utahensis proceeds
through its initial peak of acoustic signaling,
which lasts 2.5 to 3 hours. As ambient temper-
ature (Ta) continues to rise during the after-
noon, O. utahensis continues sporadic signal-
ing while activity in O. striatipes decreases.
Okanagana striatipes then resumes activity to
a greater degree as Ta falls in the late afternoon
while activity in O. utahensis is suppressed by
falling body temperature.

Although these generalizations of the call-
ing activity in the 2 species hold true, activity
patterns can be altered by ambient conditions.
Singing activity in both species is inhibited by
extremely high ambient temperatures. Similar-
ly, on a mostly cloudy day, O. striatipes sang to
a greater degree than normal, and O. utah-
ensis sang to a lesser degree than normal in
the early afternoon. Clouds not only prevented
Ta from rising to a level that would passively
raise body temperature high enough for singing,
but also prevented O. utahensis from using radi-
ant heat to elevate body temperature. On the
other hand, O. striatipes was able to elevate
body temperature a sufficient amount and con-
tinued calling while activity was suppressed in
O. utahensis due to the ambient conditions.

DISCUSSION

Thermal requirements of O. striatipes and
O. utahensis represent a possible mechanism
to decrease the potential for acoustic interfer-
ence. Laboratory temperature responses of the
2 species are approximately equal (Table 1).
This would be expected in 2 animals sharing a
habitat because they are exposed to the same
environmental conditions. However, the mean
body temperature of singing O. utahensis is
significantly greater than the mean body tem-
perature of singing O. striatipes (Table 2). It
appears O. utahensis “prefers” or requires a
higher body temperature to coordinate singing
activity.

Crawford and Dadone (1979) suggested that
temperature sets limits on the ability of cicadas
to coordinate motor control of singing. The
rate of action for potential firing in the timbal
nerve is temperature dependent (Wakabayashi
and Hagiwara 1953, Wakabayashi and Ikeda
1961). Raising thoracic temperature during
activity in Cystosoma saundersii causes the song
cycle period to change (Josephson and Young
1979), and the change in body temperature in
Tibicen winnemanna (Davis) during endother-
mic warming is responsible for changes in
acoustic activity of that species (Sanborn 1997).
These data suggest the ability of the cicada
nervous system to coordinate calling songs is
temperature dependent.

Cicadas perform complex activities, such as
singing, over a small temperature range. The
temperature range may represent the maxi-
mum range over which the cicada can adjust
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calling song. Sound pulses are produced at a rate of about
182 sec–1 during the full song.



its rate of activity to compensate for the direct
effect of temperature on metabolic processes
(Heath et al. 1971b). The body temperature
range of singing ectothermic cicadas has been
reported as 25.0–31.8°C in Magicicada cassinii
(Heath 1967), 32.2–41.5°C in Tibicen chloro-
merus (Walker) (Sanborn 2000), 35.0–40.8°C
in Diceroprocta olympusa (Walker) (Sanborn
and Maté 2000), 33.5–43.0°C in Cacama val-
vata (Uhler) (Heath et al. 1972), 38.0–41.9°C
in Okanagodes gracilis Davis (Sanborn et al.
1992), and 39.0-41.8°C in Okanagana hesperia
(Uhler) (Heath 1972). Body temperatures of
singing O. striatipes were measured between
33.5°C and 37.8°C. Body temperatures of call-
ing O. utahensis ranged from 34.9°C to 40.9°C,
both within the range of body temperatures
reported for other cicadas to coordinate sing-
ing activity. The range is also similar to the
body temperature range of singing in endo-
thermic cicada species (Sanborn et al. 1995a,
1995b, Sanborn 2000).

Comparison of the data in the singing tem-
perature histogram (Fig. 5) suggests the species
select different body temperature ranges when
singing. Orientation of the species with respect
to the sun also suggests different thermal pref-
erences. Okanagana striatipes begins thermo-
regulatory behaviors to decrease body temper-
ature while at the same body temperatures O.
utahensis continues to maximize radiant heat
gain. Comparison of maximum voluntary tol-
erance temperatures and mean singing tem-

peratures of each species illustrates a differ-
ence in thermal activity of the species. Okana-
gana striatipes sings at a body temperature
approximately equal to the maximum voluntary
tolerance temperature of the species, while O.
utahensis sings at a body temperature signifi-
cantly greater than the maximum voluntary
tolerance temperature determined for the
species. Although maximum voluntary toler-
ance temperatures are approximately equal
between species, O. utahensis selects a higher
body temperature range for activity. Singing at
body temperatures greater than the maximum
voluntary tolerance temperature has also been
described in the cicada Diceroprocta apache
(Davis) (Heath and Wilkin 1970).

Singing at temperatures above an upper
thermoregulatory point suggests O. utahensis
requires an elevated body temperature for the
singing mechanism to function properly. Oka-
nagana utahensis may require a higher body
temperature due to the song parameters of the
species. Amplitude modulations within sylla-
bles, production of syllables themselves, and/or
greater pulse repetition rate of the O. utahen-
sis song may require a higher body tempera-
ture for coordination than that required by 
O. striatipes to coordinate a continuous, unmod-
ulated song. Okanagana utahensis produces
sound pulses at a rate of approximately 300
sec–1 compared to 250 sec–1 in O. striatipes.
Since timbal muscle contraction kinetics are
temperature dependent (Josephson and Young
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Fig. 3. Okanagana utahensis calling song. The song is composed of a train of syllables with sound energy between 6
kHz and 11 kHz.



1979, 1985, Josephson 1981, Young and Joseph-
son 1983, Sanborn 2001), the greater pulse
repetition rate may require a higher timbal
muscle temperature for the timbal to contract
at the frequency necessary to produce the call-
ing song.

Temperature requirements affect daily activ-
ity cycles of the 2 species. It is through this
temporal separation of species activity that dif-
ferences in singing body temperature become
important. The lower body temperature of sing-
ing O. striatipes permits the species to sing in
the morning and late afternoon when O. utah-
ensis is potentially unable to raise body tem-
perature to the range necessary for acoustic
activity. Similarly, the higher body tempera-
ture required by singing O. utahensis permits
acoustic activity during the heat of the day
when O. striatipes is forced to retreat to shaded
sites. Thus, thermal requirements act to sepa-
rate reproductive activity temporally and to
reduce or eliminate acoustic interference be-
tween the species. Thermal separation of activ-
ity has been described in ants (Cros et al.
1997), beetles (Colombini et al. 1994, Fallaci
et al. 1997), and flies (Gaugler and Schutz 1989,
Schutz and Gaugler 1992) that share a habitat.

Cicadas have developed several behavioral
and physiological methods to minimize acoustic

interference, competition for environmental re-
sources, and interspecific interactions. Cicadas
using similar songs for communication or sim-
ilar host plants can avoid interspecific compe-
tition through geographic separation (Pringle
1954, Fleming 1971), microhabitat segregation
(Schedl 1986, Riede 1997), temporal separation
of calling times (Hayashi 1975a, Wolda 1993,
Gogala and Riede 1995, Riede 1995, 1997) or
time of year the species are active (Young
1981a, 1981b), or maximizing communicatory
differences (Fleming 1971, Walker 1974).

Okanagana striatipes and O. utahensis, how-
ever, are similar morphological species using
the same host plant; they are active in the
same place at the same time of year; males of
both species are solitary animals when calling;
they produce mating calls that overlap in fre-
quency; and both are diurnally active. They
are species that contradict the general patterns
used by cicadas to avoid interspecific competi-
tion, and yet they are able to share an environ-
ment while using the same resources, both
physical and acoustic.

The songs of cicadas act as an isolating
mechanism between species (Alexander 1957,
Alexander and Moore 1958, Moore and Alex-
ander 1958, DuMortier 1963, Haskell 1974,
Bennet-Clark 1975, Fleming 1975, 1984). When
related sympatric species share an environ-
ment, selection should minimize signal differ-
ences within a species and maximize differ-
ences between species (Alexander 1967, Walker
1974, Young 1981a). In general, sympatric spe-
cies differ markedly in calling song structure
and/or frequency (Pringle 1954, Alexander
1956, 1957, 1967, Moore and Alexander 1958,
Alexander and Moore 1962, DuMortier 1963,
Fleming 1971, 1984, Walker 1974, Young 1981a).
However, O. striatipes and O. utahensis possess
similar songs and acoustic behavior.

The overlap of calling song frequency in O.
striatipes and O. utahensis is probably due to
the similar size of the animals. The frequency
of a cicada’s song is determined by the natural
period of timbal vibration, which is then mod-
ified by several body parts (Pringle 1954, Moore
and Sawyer 1966, Popov 1975, Popov et al.
1985, Huber et al. 1990, Bennet-Clark and
Young 1992, Fonseca 1996, Bennet-Clark 1997,
1999) and scaled to body size (Daniel et al.
1993, Bennet-Clark and Young 1994). Because
the 2 cicadas are physically similar in size, 
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Fig. 4. Expanded time wave of the Okanagana utahensis
calling song. Syllables are composed of approximately 26
individual sound pulses produced at the rate of 300 sec–1.
Syllables are about 87 msec in duration and separated by
6.3 msec. Intensity increases and dominant frequency
changes midway through the syllable produced by lateral
abdominal movements.



timbal size is probably similar in the species
and call frequencies also should be similar.
The slightly larger size, together with a slight-
ly larger timbal, of O. utahensis is probably re-
sponsible for the lower emphasized frequency
of the call.

Calling song temporal patterns have been
suggested as a means of separating many sym-
patric species of cicadas. Four species of Maori-
cicada are thought to remain isolated by the
pulse-repetition frequency of their calling songs
(Fleming 1971). Jiang (1985) suggested that
the number of sound pulses, pulse length, and
repetition frequency of amplitude-modulated
pulse trains separate Acutivalva choui Yao, Aola
bindusara (Distant), and Linguvalva sinensis
Chou and Yao. All 3 species inhabit the same
location, sing only from 0630 to 0645 hours,
and produce calls of similar frequency. The
sympatric sibling species Platypleura mayteno-
phila Villet and P. hirtipennis (Germar) (Villet
1987) overlap in calling song frequency but
differ in temporal pattern (Villet 1988). Nakao
and Kanmiya (1988) showed that there are sig-
nificant differences in the songs produced by
the cicada Meimuna kuroiwae Matsumura over
its entire range. Meimuna kuroiwae is a syn-
onymized species of what were originally 7 in-
dependent species (Hayashi 1975b) and should
probably be classified as separate species based
on their calling songs.

Temporal patterns of the songs of the 2
species we studied are markedly different.
Okanagana striatipes produces a continuous
train of constant-amplitude sound pulses (Fig.
1). The song of O. utahensis is a train of sylla-
bles that exhibit an amplitude-modulation pat-
tern within each syllable (Fig. 3). Temporal
patterns of the songs probably facilitate segre-
gation of the 2 species during interspecific
interactions.

Abdominal movements also may produce
the amplitude modulation seen in O. utahensis
syllables. The cicada abdomen acts as a res-
onating structure, increasing the volume of the
sound produced (Pringle 1954, Moore and Saw-
yer 1966, Young 1972, Simmons and Young
1978, Bennet-Clark 1999). When the abdomen
is tuned to the natural period of timbal vibra-
tion, the intensity of the song increases (Pringle
1954). The observed increase in intensity may
also be facilitated by changes in abdominal
position. By altering the gap between the
opercula and the tympana, the tension placed
on the timbals, tympana, and folded membrane
is changed, causing an increase in sound
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TABLE 1. Temperature responses (°C) of Okanagana striatipes and Okanagana utahensis from Cortez, Colorado.

O. striatipes O. utahensis
Behavior (mean ± sx–) (mean ± sx–)

Minimum flight temperature 20.66 (± 0.348) 20.71 (± 0.313)
n = 17 n = 37

Maximum voluntary tolerance
temperature 35.46 (± 0.571) 36.03 (± 0.404) 

n = 17 n = 37

Heat torpor temperature 45.52 (± 0.605) 46.08 (± 0.375) 
n = 17 n = 37

All interactions P > 0.2.

Fig. 5. Distribution of body temperatures of singing
Okanagana striatipes (solid bars) and O. utahensis (striped
bars). Mean body temperature of singing O. striatipes is
35.87 ± 0.257°C (mean ± sx–, n = 19). Mean body tempera-
ture of singing O. utahensis is 38.62 ± 0.242°C (n = 39).
Mean singing temperatures are significantly different (t =
–7.0385, df = 56, P << 0.0001).



intensity (Pringle 1954, Weber et al. 1987, Vil-
let 1988, Young 1990). Another possibility for
the increased intensity could be increased activ-
ity in the timbal tensor muscle during the syl-
lable (Hennig et al. 1994). Altering the size of
the opercula-tympanal distance may also pro-
duce change in the emphasized frequency with-
in O. utahensis syllables as described in many
species of cicadas (Allard 1946, Young 1972,
Joermann and Schneider 1987, Sanborn 1997).

Although cicada auditory receptors react to
allospecific calls, the response of the auditory
neurons to different portions of the calls could
help to separate O. striatipes and O. utahensis.
Amplitude modulation, intensity changes, and
syllables of the O. utahensis calling song rep-
resent stimuli to which the cicada auditory
system has already been shown to be sensitive
(Hagiwara and Ogura 1960, Katsuki 1960, Kat-
suki and Suga 1960, Huber et al. 1979, 1980).
Production of syllables by O. striatipes prior to
production of the calling song may negate any
benefit O. utahensis has in possessing a song
constructed of syllables.

Temporal patterns of the full calling songs
may be sufficient in isolating O. striatipes and
O. utahensis, but the overlap in frequency could
cause acoustic interference between the 2 spe-
cies. Walker (1986) collected 2 species of cicadas
attracted to synthetic cricket calls. Doolan and
Young (1989) showed that the call frequency of
Cystosoma saundersii Westwood is important
in eliciting steering behavior in tethered fe-
males. The correct temporal pattern of the
species song is necessary for the females to
exhibit courtship behavior. If O. striatipes and
O. utahensis possess a similar 2-step recogni-
tion process, simultaneous calling could cause
females to waste time and energy in interspe-
cific interactions. In addition, females flying to
males of the wrong species could be exposing
themselves to predation. Flying C. saundersii 

females fall victim to bird predation when fly-
ing to a calling male (Doolan and MacNally
1981). Different thermal requirements of each
species decrease the chance of acoustic inter-
ference between these closely related species
of Okanagana.

We therefore suggest that O. striatipes and
O. utahensis are able to share the same envi-
ronment by (1) producing calling songs of dif-
ferent temporal patterns and (2) utilizing dif-
ferent thermal requirements that permit and/or
facilitate temporal separation of the day.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assis-
tance of Polly K. Phillips in the field. The study
was supported in part by a traineeship from
USPHS GMSO7143 to AFS. Aaron Ellinson
made helpful comments on the manuscript.

LITERATURE CITED

ALEXANDER, R.D. 1956. A comparative study of sound
production in insects with special reference to the
singing Orthoptera and Cicadidae of the eastern
United States. Doctoral dissertation, Ohio State Uni-
versity, Columbus.

______. 1957. Sound production and associated behavior
in insects. Ohio Journal of Science 57:101–113.

______. 1967. Acoustical communication in arthropods.
Annual Review of Entomology 12:495–526.

ALEXANDER, R.D., AND T.E. MOORE. 1958. Studies on the
acoustical behavior of seventeen-year cicadas (Hom-
optera, Cicadidae, Magicicada). Ohio Journal of Sci-
ence 58:107–127.

______. 1962. The evolutionary relationships of 17-year
and 13-year cicadas, and three new species (Hom-
optera, Cicadidae, Magicicada). Miscellaneous Pub-
lications of the Museum of Zoology, University of
Michigan 121:1–59.

ALLARD, H.A. 1946. Synchronous singing of 17-year cicadas.
Proceedings of the Entomological Society of Wash-
ington 48:93–95.

BAILEY, W.J., AND G.K. MORRIS. 1986. Confusion of phono-
taxis by masking sounds in the bushcricket Cono-

446 WESTERN NORTH AMERICAN NATURALIST [Volume 62

TABLE 2. Comparison of maximum voluntary tolerance temperatures (°C) and field singing temperatures (°C) of
Okanagana striatipes and Okanagana utahensis.

Maximum voluntary Singing
tolerance temperature temperature

Species (mean ± sx–) (mean ± sx–)

Okanagana striatipes 35.46 (± 0.571) 35.87 (± 0.257)b
n = 17 n = 19

Okanagana utahensis 36.03 (± 0.404)a 38.62 (± 0.242)ab

n = 37 n = 39
a,bP << 0.001.



cephalus brevipennis (Tettigoniidae: Conocephaline).
Ethology 73:19–28.

BEAMER, L.D., AND R.H. BEAMER. 1930. Biological notes
on some western cicadas. Journal of the New York
Entomological Society 38:291–305.

BENNET-CLARK, H.C. 1975. Sound production in insects.
Science Progress (Oxford) 62:263–283.

______. 1997. Tymbal mechanics and the control of song
frequency in the cicada Cyclochila australasiae.
Journal of Experimental Biology 200:1681–1694.

______. 1999. Resonators in insect sound production: how
insects produce loud pure-tone songs. Journal of
Experimental Biology 202:3347–3357.

BENNET-CLARK, H.C., AND D. YOUNG. 1992. A model of
the mechanism of sound production in cicadas. Jour-
nal of Experimental Biology 173:123–153.

______. 1994. The scaling of song frequencies in cicadas.
Journal of Experimental Biology 191:291–294.

CODY, M.L., AND J.H. BROWN. 1969. Song asynchrony in
neighboring bird species. Nature (London) 222:
778–780.

COLOMBINI, I., L. CHELAZZI, M. FALLACI, AND L. PALESSE.
1994. Zonation and surface activity of some tenebri-
onid beetles living on a Mediterranean sandy beach.
Journal of Arid Environments 28:215–230.

CRAWFORD, C.S., AND M.M. DADONE. 1979. Onset of
evening chorus in Tibicen marginalis (Homoptera:
Cicadidae). Environmental Entomology 8:1157–1160.

CROS, S., X. CERDÁ, AND J. RETANA. 1997. Spatial and
temporal variations in the activity patterns of Medi-
terranean ant communities. Ecoscience 4:269–278.

DANIEL, H.J., C. KNIGHT, T.M. CHARLES, AND A.L. LARKINS.
1993. Predicting species by call in three species of
North Carolina cicadas. Journal of the Elisha Mitchell
Scientific Society 109:67–76.

DAVIS, W.T. 1919. Cicadas of the genera Okanagana, Tibi-
cenoides, and Okanagodes, with descriptions of sev-
eral new species. Journal of the New York Entomo-
logical Society 27:179–223

______. 1921. An annotated list of the cicadas of Colorado
with descriptions of a new species. Journal of the
New York Entomological Society 29:43–57.

______. 1930. The distribution of cicadas in the United
States with descriptions of new species. Journal of
the New York Entomological Society 38:53–73.

______. 1932. Additional records of North American
cicadas with descriptions of new species. Journal of
the New York Entomological Society 40:241–264.

DAWS, A.G., R.M. HENNIG, AND D. YOUNG. 1997. Phonotaxis
in the cicadas Cystosoma saundersii and Cyclochila
australasiae. Bioacoustics 7:173–188.

DOOLAN, J.M., AND R.C. MACNALLY. 1981. Spatial dynam-
ics and breeding ecology in the cicada, Cystosoma
saundersii: the interaction between distribution of
resources and interspecific behavior. Journal of Ani-
mal Ecology 50:925–940.

DOOLAN, J.M., AND D. YOUNG. 1989. Relative importance
of song parameters during flight phonotaxis and
courtship in the bladder cicada Cystosoma saundersii.
Journal of Experimental Biology 141:113–131.

DUMORTIER, B. 1963. Ethological and physiological study
of sound emissions in arthropods. Pages 583–654 in
R.G. Busnel, editor, Acoustic behavior of animals.
Elsevier Publishing Company, Amsterdam.

ENGER, P.S., D.J. AIDLEY, AND T. SZABO. 1969. Sound recep-
tion in the Brazilian cicada Fidicina rana. Journal of
Experimental Biology 51:339–345.

FALLACI, M., I. COLOMBINI, L. PALESSE, AND L. CHELAZZI.
1997. Spatial and temporal strategies in relation to
environmental constraints of four tenebrionids inhab-
iting a Mediterranean coastal dune system. Journal
of Arid Environments 37:45–64.

FICKEN, R.W., M.S. FICKEN, AND J.P. HAILMAN. 1974. Tem-
poral pattern shifts to avoid acoustic interference in
singing birds. Science 183:762–763.

FLEMING, C.A. 1971. A new species of cicada from rock
fans in southern Wellington, with a review of three
species with similar songs and habitat. New Zealand
Journal of Science 14:443–479.

______. 1975. Adaptive radiation in New Zealand cicadas.
Proceedings of the American Philosophical Society
119:298–306.

______. 1984. The cicada genus Kikihia (Hemiptera,
Homoptera): I. The New Zealand green foliage
cicadas. National Museum of New Zealand Records
2:191–206.

FONSECA, P.J. 1993. Directional hearing of a cicada: bio-
physical aspects. Journal of Comparative Physiology
172A:767–774.

______. 1996. Sound production in cicadas: timbal muscle
activity during calling song and protest song. Bio-
acoustics 7:13–31.

FRINGS, H., AND M. FRINGS. 1977. Animal communica-
tion. 2nd edition. University of Oklahoma Press,
Norman. 207 pp.

GAUGLER, R., AND S.J. SCHUTZ. 1989. Environmental
influences on hovering behavior of Tabanus nigrovi-
tatus and T. conterminus (Diptera: Tabanidae). Jour-
nal of Insect Behavior 2:775–786.

GOGALA, M., AND K. RIEDE. 1995. Time sharing of song
activity by cicadas in Temengor Forest Reserve, Hulu
Perak, and in Sabah, Malaysia. Malayan Nature
Journal 48:297–305.

GREENFIELD, M.D. 1988. Interspecific acoustic interac-
tions among katydids (Neoconocephalus): inhibition-
induced shifts in diel periodicity. Animal Behaviour
36:684–695.

HAGIWARA, S., AND K. OGURA. 1960. Analysis of songs of
Japanese cicadas. Journal of Insect Physiology 5:
259–263.

HASKELL, P.T. 1974. Sound production. Pages 353–410 in
M. Rockstein, editor, The physiology of the Insecta.
Volume 2. Academic Press, New York.

HAYASHI, M. 1975a. On the species of the genus Meimuna
Distant (Homoptera, Cicadidae) of the Ryukyus. II.
Geographic and individual variations and mode of
coexistence. Kontyû 43:412–421.

______. 1975b. On the species of the genus Meimuna Dis-
tant (Homoptera, Cicadidae) of the Ryukyus. I. Syn-
onymy and description of the species. Kontyû 43:
281–298.

HEATH, J.E. 1967. Temperature responses of the periodi-
cal “17-year” cicada, Magicicada cassini (Homoptera,
Cicadidae). American Midland Naturalist 77:64–67.

______. 1970. Behavioral regulation of body temperature
in poikilotherms. Physiologist 13:399–410.

HEATH, J.E., J.L. HANEGAN, P.J. WILKIN, AND M.S. HEATH.
1971a. Thermoregulation by heat production and

2002] HABITAT SHARING IN OKANAGANA SPP. 447



behavior in insects. Journal de Physiologie 63:
267–270.

______. 1971b. Adaptation of the thermal responses of
insects. American Zoologist 11:147–158.

HEATH, J.E., AND P.J. WILKIN. 1970. Temperature responses
of the desert cicada, Diceroprocta apache (Homoptera,
Cicadidae). Physiological Zoology 43:145–154.

HEATH, J.E., P.J. WILKIN, AND M.S. HEATH. 1972. Temper-
ature responses of the cactus dodger, Cacama val-
vata (Homoptera, Cicadidae). Physiological Zoology
45:238–246.

HEATH, M.S. 1972. Temperature requirements of the
cicada, Okanagana striatipes beameri: a study from
Flagtaff, Arizona. Plateau 45:31–40.

HENNIG, R.M., T. WEBER, T.E. MOORE, F. HUBER, H.-U.
KLEINDIENST, AND A.V. POPOV. 1994. Function of the
tensor muscle in the cicada Tibicen linnei. Journal of
Experimental Biology 187:33–44.

HUBER, F. 1983. Neural correlates on orthopteran and
cicada phonotaxis. Pages 108–135 in F. Huber and
H. Markl, editor, Neuroethology and behavioral
physiology: roots and growing pains. Springer-Ver-
lag, Berlin.

______. 1984. The world of insects: periodical cicadas and
their behavior. Alexander von Humbolt Stiftung Mit-
teilungen 43:24–31.

HUBER, F., H.-U. KLEINDIENST, T.E. MOORE, K. SCHILD-
BERGER, AND T. WEBER. 1990. Acoustic communica-
tion in periodical cicadas: neuronal responses to
songs of sympatric species. Pages 217–228 in F.G.
Gribakin, K. Weise, and A.V. Popov, editors, Sensory
systems and communication in arthropods: including
the first comprehensive collection of contributions
by Soviet scientists. Advances in Life Sciences. Birk-
häuser Verlag, Basel.

HUBER, F., D.W. WOHLERS, AND T.E. MOORE. 1980. Audi-
tory nerve and interneuron responses to natural
sounds in several species of cicadas. Physiological
Entomology 5:25–45.

HUBER, F., D.W. WOHLERS, J.D.L. WILLIAMS, AND T.E.
MOORE. 1979. Struktur und funktion der Horbahn
von singzikaden (Homoptera: Cicadidae). Verhand-
lungen der Deutschen Zoolischen Gesellschaft
72:212.

JIANG, J. 1985. A study of the song characteristics in
cicadas at Jinghong in Yunnan Province (China). [In
Chinese.] Acta Entomologica Sinica 28:257–296.

JOERMANN, G., AND H. SCHNEIDER. 1987. The songs of four
species of cicada in Yugoslavia (Homoptera: Cicadi-
dae). Zoologischer Anzeiger 219:283–296.

JOSEPHSON, R.K. 1981. Temperature and the mechanical
performance of insect muscle. Pages 19–44 in B. Hein-
rich, editor, Insect thermoregulation. John Wiley and
Sons, New York.

JOSEPHSON, R.K., AND D. YOUNG. 1979. Body temperature
and singing in the bladder cicada, Cystosoma saun-
dersii. Journal of Experimental Biology 80:69–81.

______. 1985. A synchronous insect muscle with an oper-
ating frequency greater than 500 Hz. Journal of
Experimental Biology 118:185–208.

KATSUKI, Y. 1960. Neural mechanism of hearing in cats
and insects. Pages 53–75 in Y. Katsuki, editor, Elec-
trical activity of single cells. Igakushion, Hongo,
Tokyo.

KATSUKI, Y., AND N. SUGA. 1958. Electrophysiological
studies on hearing in common insects in Japan. Pro-
ceedings of the Japanese Academy 34:633–638.

______. 1960. Neural mechanism of hearing in insects.
Journal of Experimental Biology 37:279–290.

LATIMER, W., AND W.B. BROUGHTON. 1984. Acoustic inter-
ference in bushcrickets: a factor in the evolution of
singing insects? Journal of Natural History 18:
599–616.

MOORE, T.E. 1961. Audiospectrographic analysis of sounds
of Hemiptera and Homoptera. Annals of the Ento-
mological Society of American 54:273–291.

MOORE, T.E., AND R.D. ALEXANDER. 1958. The periodical
cicada complex (Homoptera: Cicadidae). Proceedings
of the 10th International Congress of Entomology I:
349–355.

MOORE, T.E., AND R.T. SAWYER. 1966. The mechanism of
cicada timbal action (Insecta: Homoptera: Cicadi-
dae). American Zoologist 5:509.

MORRIS, G.K., AND J.H. FULLARD. 1983. Random noise and
cogeneric discrimination in Conocephalus (Orthop-
tera: Tettigoniidae). Pages 73–96 in D.T. Gwynne and
G.K. Morris, editors, Orthopteran mating systems.
Sexual competition in a diverse group of insects. West-
view Press, Boulder, CO.

NAKAO, S., AND K. KANMIYA. 1988. Acoustic analysis of the
calling songs of a cicada, Meimuna kuroiwae Mat-
sumura in Nansei Islands, Japan: part I. Physical
properties of the sound. [In Japanese.] Kurume Uni-
versity Journal 37:25–46.

PAEZ, V.P., B.C. BOCK, AND A.S. RAND. 1993. Inhibition of
evoked calling of Dendrobates pumilio due to acoustic
interference from cicada calling. Biotropica 25:
242–245.

PERDECK, A.C. 1958. The isolating value of specific song
patterns in two sibling species of grasshoppers (Chor-
thippus brunneus Thunb. and C. biguttulus L.). Behav-
iour 12:1–75.

POPOV, A.V. 1969. Comparative studies of the communica-
tion sound signals and some principles of the organi-
zation of the acoustical system in cicadas and Or- 
thoptera. [In Russian.] Trudy Vsenoiuznoe Entomo-
logicheskow Obshchestvo 53:182–221.

______. 1975. The structure of the tymbals and the char-
acteristics of the sound signals in singing cicadas
(Homoptera, Cicadidae) in the southern regions of
the USSR. Entomological Review, Washington 54:
7–35.

______. 1981. Sound production and hearing in the
cicada, Cicadetta sinuatipennis Osh (Homoptera, Cica-
didae). Journal of Comparative Physiology 142A:
271–280.

POPOV, A.V., I.B. ARONOV, AND M.V. SERGEEVA. 1985. Call-
ing songs and hearing in cicadas from Soviet Central
Asia. Journal of Evolutionary Biochemistry and Phys-
iology 21:451–462.

POPOV, A.V., AND M.V. SERGEEVA. 1987. Sound signaliza-
tion and hearing in the Baikal cicada, Cicadetta yezo-
ensis (Homoptera, Cicadidae). Zoologicheski Zhur-
nal 66:681–691.

POPOV, A.V., AND V.F. SHUVALOV. 1974. Time-characteris-
tics of the communicative sounds and their analysis
in the auditory system of insects. Acustica 31:
315–319.

448 WESTERN NORTH AMERICAN NATURALIST [Volume 62



POPP, J.W., R.W. FICKEN, AND J.A. REINHARTZ. 1985. Short-
term temporal avoidance of interspecific acoustic
interference among forest birds. Auk 102:744–748.

PRINGLE, J.W.S. 1954. A physiological analysis of cicada
song. Journal of Experimental Biology 31:525–560.

______. 1956. Insect song. Endeavour 15:68–72.
RIEDE, K. 1995. Räumliche und zeitliche Strukturierung

tropischer Rufemeinschaften. Verhandlungen der
Deutschen Zoolischen Gesellschaft 88:45.

______. 1996. Diversity of sound-producing insects in a
Bornean lowland rain forest. Pages 77–84 in D.S.
Edwards, W.E. Booth, and S.L. Choy, editors, Tropi-
cal rain forest research—current issues. Kluwer Aca-
demic Publishers, Dordrecht.

______. 1997. Bioacoustic diversity and resource parti-
tioning in tropical calling communities. Pages 275–
280 in H. Ulrich, editor, Tropical biodiversity and
systematics. Proceedings of the International Sym-
posium on Biodiversity and Systematics in Tropical
Ecosystems, Bonn, 1994. Zoologisches Forschungs
institut und Museum Alexander Koenig, Bonn.

RÖMER, H., W. BAILEY, AND I. DADOUR. 1989. Insect hear-
ing in the field. III. Masking by noise. Journal of
Comparative Physiology 164A:609–620.

SANBORN, A.F. 1997. Body temperature and the acoustic
behavior of the cicada Tibicen winnemanna (Hom-
optera: Cicadidae). Journal of Insect Behavior 10:
257–264.

______. 2000. Comparative thermoregulation of sympatric
endothermic and ectothermic cicadas (Homoptera:
Cicadidae: Tibicen winnemanna and Tibicen chloro-
merus). Journal of Comparative Physiology 186A:
551–556.

______. 2001. Timbal muscle physiology in the endother-
mic cicada Tibicen winnemanna (Homoptera: Cica-
didae). Comparative Biochemistry and Physiology
130A:9–19.

SANBORN, A.F., J.E. HEATH, AND M.S. HEATH. 1992. Ther-
moregulation and evaporative cooling in the cicada
Okanagodes gracilis (Homoptera: Cicadidae). Com-
parative Biochemistry and Physiology 102A:751–757.

SANBORN, A.F., J.E. HEATH, M.S. HEATH, AND F.G. NORIEGA.
1995a. Diurnal activity, temperature responses, and
endothermy in three South American cicadas (Hom-
optera: Cicadidae: Dorisiana bonaerensis, Quesada
gigas and Fidicina mannifera). Journal of Thermal
Biology 20:451–460.

______. 1995b. Thermoregulation by endogenous heat
production in two South American grass dwelling
cicadas (Homoptera: Cicadidae: Proarna). Florida
Entomologist 78:319–328.

SANBORN, A.F., AND S. MATÉ. 2000. Thermoregulation and
the effect of body temperature on call temporal
parameters in the cicada Diceroprocta olympusa
(Homoptera: Cicadidae). Comparative Biochemistry
and Physiology 125A:141–148.

SANBORN, A.F., AND P.K. PHILLIPS. 1995. Scaling of sound
pressure level and body size in cicadas (Homoptera:
Cicadidae; Tibicinidae). Annals of the Entomological
Society of America 88:479–484.

SCHATRAL, A. 1990. Interspecific acoustic interactions in
bushcrickets. Pages 152–165 in W.J. Bailey and
D.C.F. Rentz, editors, The Tettigoniidae: behaviour,
systematics and evolution. Crawford House Press,
Bathurst.

SCHEDL, V.W. 1986. Zur morphologie, ökologie und ver-
breitung der singzikade Cicadetta podolica (Eichw.)
(Homoptera: Auchenorrhyncha, Tibicinidae). Annalen
des Naturhistorischen Museums in Wien 88/89 B:
579–585.

SCHILDBERGER, K., H.-U. KLEINDIENST, T.E. MOORE, AND

F. HUBER. 1986. Auditory thresholds and acoustic
signal processing in the CNS of periodical cicadas.
Page 126 in N. Elsner and W. Rathmayer, editors,
Sensomotorik: Identifizierte Neurone. Beiträge zur
14. Göttinger Neurobiologentagung, Georg Thieme
Verlag, Stuttgart.

SCHUTZ, S., AND R. GAUGLER. 1992. Thermoregulation
and hovering behavior of salt marsh horse flies
(Diptera: Tabanidae). Annals of the Entomological
Society of America 85:431–436.

SCHWARTZ, J.J. 1993. Male calling behavior, female dis-
crimination and acoustic interference in the neo-
tropical treefrog Hyla microcephala under realistic
acoustic conditions. Behavioral Ecology and Socio-
biology 32:401–414.

SCHWARTZ, J.J., AND K.D. WELLS. 1983. An experimental
study of acoustic interference between two species
of neotropical treefrogs. Animal Behaviour 31:
181–190.

SIMMONS, J.A., E.G. WEVER, AND J.M. PYLKA. 1971. Peri-
odical cicada: sound production and hearing. Sci-
ence 171:212–213.

ULAGARAJ, S.M., AND T.J. WALKER. 1973. Phonotaxis of
crickets in flight: attraction of male and female crick-
ets to male calling songs. Science 182:1278–1279.

VILLET, M. 1987. Three new platypleurine cicadas (Hom-
optera: Cicadidae) from Natal, South Africa. Journal
of the Entomological Society of Southern Africa 50:
209–215.

______. 1988. Calling songs of some South African cicadas
(Homoptera: Cicadidae). South African Journal of
Zoology 23:71–77.

WAKABAYASHI, T., AND S. HAGIWARA. 1953. Mechanical and
electrical events in the main sound muscle of cicada.
Japanese Journal of Physiology 3:249–253.

WAKABAYASHI, T., AND K. IKEDA. 1961. Interrelation be-
tween action potential and miniature electrical oscil-
lation in the tymbal muscle of the cicada. Japanese
Journal of Physiology 11:585–595.

WALKER, T.J. 1974. Character displacement and acoustic
insects. American Zoologist 14:1137–1150.

______. 1986 Monitoring the flights of field crickets
(Gryllus spp.) and a tachanid fly (Euphasiopteryx
ochracea) in north Florida. Florida Entomologist
69:678–685.

WEBER, T., T.E. MOORE, F. HUBER, AND U. KLEIN. 1987.
Sound production in periodical cicadas (Homoptera:
Cicadidae: Magicicada septendecim, M. cassini). Pro-
ceedings of the 6th Auchenorrhyncha Meeting, Turin,
Italy, 7–11 September 1987:329–336.

WOLDA, H. 1993. Diel and seasonal patterns of mating calls
in some neotropical cicadas. Acoustic interference?
Proceedings of the Koninklijke Nederlandse Akade-
mie van Wetenschappen. Biological, Chemical, Geo-
logical, Physical and Medical Sciences 96:369–381.

YOUNG, A.M. 1981a. Notes on the population ecology of
cicadas (Homoptera: Cicadidae) in the Cuesta Angel
forest ravine of northeastern Costa Rica. Psyche 88:
175–195.

2002] HABITAT SHARING IN OKANAGANA SPP. 449



______. 1981b. Notes on seasonality and habitat associa-
tions of tropical cicadas (Homoptera: Cicadidae) in
premontane and montane tropical moist forest in
Costa Rica. Journal of the New York Entomological
Society 89:123–142.

YOUNG, D. 1972. Neuromuscular mechanisms of sound
production in Australian cicadas. Zeitschrift für Ver-
gleichende Physiologie 79:343–362.

______. 1990. Do cicadas radiate sound through their ear-
drums? Journal of Experimental Biology 151: 41–56.

YOUNG, D., AND K.J. HILL. 1977. Structure and function of
the auditory system of the cicada, Cystosoma saun-

dersii. Journal of Comparative Physiology 117A:
23–46.

YOUNG, D., AND R.K. JOSEPHSON. 1983. Pure-tone songs
in cicadas with special reference to the genus Magi-
cicada. Journal of Comparative Physiology 152A:
197–207.

Received 18 January 2001
Accepted 21 September 2001

450 WESTERN NORTH AMERICAN NATURALIST [Volume 62


