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TEMPERATURE SURGES IN CURRENT-LIMITING CIRCUIT DEVICES*

A. C. FOWLER, I. FRIGAARD-$, AND S. D. HOWISON’

Abstract. This paper studies the problem of heat transfer in a thermistor, which is used as a switching
device in electronic circuits. The temperature field is coupled to the current flow by ohmic heating in the
device, and the problem is rendered highly nonlinear by a very rapid variation of electrical conductivity
with temperature. Approximate methods based on high activation energy asymptotics are developed to
describe the transient heat flow, which occurs when the circuit is switched on. In particular, it is found that
a transient "surge" phenomenon (akin to thermal runaway, but self-saturating) occurs, and we conjecture
that this phenomenon may be associated with cracking of thermistors, which sometimes occurs during
operation.

Key words, thermal runaway, thermistor, Joule heating, high activation energy asymptotics

AMS(MOS) subject classification. 80A99

1. Introduction. This paper is concerned with heat and current flow in a circuit
device called a thermistor. In appearance, this is a cylinder of typical radius 5 mm and
typical thickness 2 mm, connected into its circuit via wires soldered to the top and
bottom; these surfaces are covered with a thin conducting sheet of metal acting as a
contact (see Fig. 1).

The essential feature of a thermistor is that it is made from a ceramic material
whose electrical conductivity varies strongly with temperature. There are two kinds:
negative temperature characteristic (NTC) thermistors, whose electrical conductivity
o- increases with temperature T, and positive temperature characteristic (PTC) thermis-
tors, for which cr decreases with T [1]; we discuss only the latter. (Here, positive and
negative refer to materials whose resistivity is an increasing or decreasing function of
temperature, respectively; conductivity is the inverse of resistivity.) The decrease in r
is rapid, with a typical change being four orders of magnitude as T increases from
100C to 200C (see Fig. 2).

There are many applications of thermistors; here we discuss their use as a fuse.
In the circuit of Fig. 3, a short circuit is represented by closing the switch S, causing
a current surge driven by the external voltage Vo to pass through the circuit resistance

Ro and the thermistor, thereby heating it. The consequent decrease in the electrical
conductivity causes the current to fall until equilibrium is reached, with all the heat
generated within the thermistor being lost to its surroundings. In a well-designed
thermistor, the final current should be a small fraction of the initial surge.

There are several problems of practical interest. First, it is often required to "tailor"
a thermistor to a particular desired set of response characteristics, such as the switching
time (the time taken for the current to fall to 1/e times its initial value) and the final
current. It is of interest to determine how these characteristics depend on design
parameters such as, for example, size, aspect ratio, surface heat transfer, external
resistance. Second, if V0 is too large, the thermistor can crack. It is suspected that this
cracking is caused by thermal stresses, and it is therefore important to find where large
temperature gradients may occur.
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FIG. 1. A thermistor.
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FIG. 2. Typical variation of conductivity with temperature for a PTC thermistor. The temperature where
tr is half its maximum value is designated the switching temperature. The diagram also gives an upside-down
representation off(u) (see (2.5)).

The first step towards an answer to these questions is to set up a model for the
heat and current flow in the thermistor, coupled with the current flow in the circuit.
This we now do; in 2-4 we analyse it in the parameter regime of interest and describe
a numerical solution, and in 5 (Conclusion) we summarise our results and relate
them to other work on the problem.
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\
thermistor

FIG. 3. Electrical circuit configuration.

Let q(x, t) and T(x, t) be the electric potential and temperature, respectively, and
r(T) the electrical conductivity. Then, in the thermistor -H < z < H, 0 <- r < ro, q and
T satisfy

(1.1) 7 (cr(T)Tq) 0,

OT
(1.2) pc= kV2T+ o( T)lVu,],

ot

where p, c, k are the density, specific heat, and thermal conductivity, respectively, and
r, z are cylindrical polar coordinates. Equation (1.1) represents conservation of charge
(the current density is -o-(T)Tq), and the last term in (1.2) is the Joule heating caused
by the current.

As boundary conditions for T and , we take

(1.4) aq_0 on r=ro,-H<z<H,
Or

with

(1 5) k
aT
+h(x)(T-Ta)=O
On

on all the boundary. Here qo is to be determined from the circuit equation, and the
whole top and bottom surfaces are equipotentials by virtue of the thin metal layer on
them; Ta is the ambient temperature and h(x) is a heat transfer coefficient that will
be different on different parts of the thermistor. In particular, the heat transfer will be
greater to the solder than to the air.

Finally, we use Kirchhoff’s law for the circuit: if I(t) is the current and there are
no capacitances or inductances, then

(1.6) Vo 2qo+ IRo.

(1.3) q=+/-qo on z=+H,O<=r<ro,
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However, we also have

(1.7) I 27r r(T)
z=H

r dr,

which follows from (1.1) and the definition of the current; so, eliminating I and qo,
(1.3) can be written as

1.8) q + - Vo 2 zrRo o’(T) r dr on z + H.
dO z=H

Equations (1.1), (1.2), (1.4), (1.5), and (1.8) constitute the dimensional model for the
heat and current flow within the thermistor.

2. Nondimensionalisation. We nondimensionalise the model given in 1 by scaling
the variables as follows:

(2.1)
(=(Vo/2)qS, T- Ta =(AT)ti, x=H,

t--(H2p/k)T,

Here T is the ambient (e.g., room) temperature, and if T, is the temperature at which
o- first decreases (see Fig. 2), then AT T,-T---100 K is typical both of the tem-
perature range over which the conductivity drops and of the temperature difference
between the hot thermistor and its environment; o-t is the ambient (room temperature)
conductivity. In terms of these scales, the corresponding dimensionless version of the
model, dropping the overbars, is

(2.2a)

(2.2b)

with

(2.3a) q + 1 (2/x/a 2) cr r dr
Oz

on z=+/-l,

(2.3b) 00___, 0 on r a,
Or

OU
(2.3c) --+flu=0 onz=+l r=a,

Or/

where

(2.4) a ro/H, hH/k, IX vrHRooca2/2, 3’ ot:V/4kA T.

The variation of o- with u given in Fig. 2 can be represented as

(2.5) r exp [-f(u)/ e],

where the data suggests e-- 10-. For example, we could choose

u<l,
(2.6) f(u)= u-l, l<u<2,

1, u> 2,

as a crude representation (see 5).
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(2.7)

Typical values of the parameters are

p 5.6 x 10 kg m-3,

k 2W K71 m-1,

Ro 50- 500 f,

ro 5 x 10-3 m,

AT=100K.

c 540 J kg-1 K-1,

ru 2 m-1 --1,

Vo 250 V,

H= 10-3 m,

Values of h are less certain, but we might take

h 102W m-2 K-1 on thermistor/solder interfaces,
(2.8)

h 10W m-2 K-1 on thermistor/air interfaces

(a typical average measured value is 40W m-2 K-1, but the solder is much more
conductive than air). With these values, we find that

(2.9) a--- 5, --- 4-40, 3’" 150, /3 10-1(top)- 10-2(sides).

One important feature is the large value of % While or---1, this causes rapid ohmic
heating of the whole device to occur. As u increases through the switching temperature,
o- drops rapidly, and we can expect the temperature to reach equilibrium after a further
rise. Our aim is to find this limiting temperature and the consequent current.

Several authors have worked on versions of the thermistor problem. There is
general agreement that the field equations are (2.2), but for various reasons (including
mathematical convenience), the boundary conditions (2.3) differ with each author. In
particular, many previous treatments have taken Ix 0. We always assume that Ix > 0,
and defer until 5 a review of other work.

3. "Large activation energy asymptotics": One-dimensional analysis. Since the heat
transfer coefficient is very small (/3 10-) at the sides, we expect that the temperature
and potential fields will be approximately one-dimensional. This is accentuated by the
relatively large aspect ratio (a 5), and will be a uniformly accurate approximation
since we have derivative boundary conditions at the sides. We thus seek solutions as
functions of z and only. It then follows from (2.2a) that

06(3.1) cr= C(t),
Oz

and application of (2.3a) together with (2.5) leads to the following problem for the
temperature field u:

b C exp [f(u)/e] dz,

(3.2) C= Ix+ exp[f(u)/e] dz

u, Uzz + yC exp [f(u)/ e].

When the device is operating satisfactorily, and with a function f(u) such as that in
(2.6), we can expect that the steady maximum temperature u* is at z =0, and that
u*> 1. In a steady state, we expect a thin hot region near z =0 where u u*, the
maximum value of u, and a thick "warm" region where 1 -<_ u < u*. ("Cold" will mean
u < 1.) The value of u* is to be found.
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We define

(3.3)

so that u satisfies

(3.4) u, Uzz +

A=exp[f(u*)/e]>> 1,

TA exp [{f(u)-f(u*)}/e]
[IX + A o exp [{f(u)-f(u*)}/e] dz]2"

The precepts of large activation energy asymptotics are based on solving (3.4) in the
limit as e 0. We note that there are other large and small parameters T, Ix,/3 in the
problem, and, to be specific, we conduct the initial discussion on the basis that these
are all O(1). Further simplifications may ensue if further approximations are made
(such as that/3 << 1)" these can be taken as special cases of our initial assumptions.

Steady state. Experience with large activation energy asymptotics suggests that in
a steady state there will be a thin hot region where u- u *-- e, and thus z e, also.

In the hot region, put

(3.5) z e, u u* + ew/f’(u*),

so that, to leading order, (3.4) is (with O/Ot =0)

(3.6) 0 w + e (Ix/Tf’(u*)) + e d

provided that we choose

(3.7) A Tf’( u*)/ e

and assuming that Ix =< T. This is reminiscent of a problem treated by Pearson 14] (see
also Ockendon and Ockendon [13]) in variable viscosity shear flow. Equation (3.7)
implies that the maximum temperature u* is given by

(3.8) u* "---’f-l[ e In

for example, the exponential law (2.6) gives us

(3.9) u* 1 + e In (T/e).

The outer problem (z-- O(1)) is purely conductive, since the ohmic heating term there
is e- exp [-O(1/e)]<< 1.

Transient. The transient approach to the steady state may be described in a similar
way. We must solve (3.4), i.e.,

yexp[f(u)/e]
(3.10) u, Uzz + [Ix +o exp [f(u)/e] dz] 2’

with uz 0 on z 0, u +/3u 0 on z 1. This is an interesting problem in its own right
and bears some similarity to problems studied by Lacey 10]. Here we sketch a possible
scenario.

There is an initial "warm-up" period while u < 1, when o-= 1, and u satisfies

(3.11) ut u= +(l + Ix)2;
for the values of T, Ix, and/3 that we are considering, the maximum temperature at
the centre will reach 1 in finite time, and, following this, there is a secondary "surge"
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phase when the temperature increases rapidly. Define the function v(u) and the fast
timescale r by

(3.12) f(u) ev, t= epczy-’r;
then where f’ > 0, i.e., v > 0 (u > 1), v satisfies

f’ u e epc2 e 2pc2 f,, 2q- tdzz td(3.13) v [l+pc-’5oe dz]2 y Y f,2
at leading order, this gives, at least while v is O(1),

(3.14) v, f’(u) e 1 + pc-I e dz

Thus v begins to increase on a fast timescale t---8pc2/Y.
Note that the warm-up occurs (from (3.11)) on a timescale t.--pcz/T; and since

(3.14) applies where v >0, the rapid surge phase is initially confined to the central
region where u 1; thus o e dz 1 (since v=0 for u < 1), and v-f e/(1 + pc-)2.
Since u is a slowly varying function of v (and hence r), so is f’(u)=f’[f-(ev)], we
can solve this approximately by taking f’ as a constant, whence

v -ln [e-o(Z)-f’r/(1 +/d,-1)2].
The solution (3.15) leads to blowup in finite time. This is rapidly suppressed as

v increases, because the integral term becomes important. Returning to the original
timescale, (3.13) is

2(3.16) v, Vzz-e(f"/f’2)Vz+(y/e)f e pc+ e dz

Saturation of v occurs when v In (y/e), since then the integral term becomes impor-
tant. Putting

(3.17) v=ln (y/e) + w,

we have the approximate transient problem (for w>-ln (y/e))

ft cw
(3.18) w,= Wzz+[io eW dz]2,

which relaxes towards the previously defined steady state on a conductive
timescale O(1).

In fact, this final conductive relaxation will generally take place in two stages,
depending on how uniform the initial warm-up period is. In general, the central portion
surges for a time t--- 8pc2/’y; during this time the cold (u < 1) region suffers an increase
of Au e. If Uzz O(1) at z 0 when u 1, then the surge propagates out to z O(v-)
(i.e., where 1 u--- e). Rescaling z--- e /2 then suggests that the hot zone governed by
(3.17) equilibrates in a time t--- e, and the outer temperature field relaxes conductively
on a time O(1). On the other hand, if 1-u--- e everywhere at surge initiation, then
the whole thermistor participates in the surge, and surge termination and final relaxation
both occur on a timescale O(1). Such uniform initial temperatures can be caused by
large numerical values of y/pc2 or small values of/3, such as we, in fact, have. To
summarise, there are four distinct phases: warm-up tpc2/)’; surge t---8pc2/’)1;
deceleration < 1; and relaxation t---1: compare Fig. 4.

In this description, then, the largest temperature gradients are set up towards the
centre of the device, and, although further analysis of (3.13) is then necessary, (3.15)
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suggests that Ov/Oz eVv’o-/x when e v---/x. These large gradients occur in a "front"
dividing the hot central surging region from the cooler periphery (see Fig. 4 below).
Thus, surging leads to temperature gradients Ou/Oz---e/x, which are typically sig-
nificantly larger than those associated with an almost uniform warm-up phase. Values
e/x of 0(1) (e =0.1, /x 10) correspond to temperature gradients of order IO0C per
millimetre.

4. The case where/3 << 1, two dimensions, numerical results. The analysis given in
the preceding section applies for e << 1,/3 1. A particular further simplification follows
if we suppose that/3 << 1, also, as is, in fact, the case (/3 =0.1 on the top). In this case,
the initial warm-up is close to uniform, as is the final steady state. Let us put

(4.1)

and write

(4.2) u=u*+ew/f’(u*)

in the steady state. Define A as before, by (3.7). Then, if A >>/x, i.e., y >> e/x, w is given
to leading order by the (unique) solution of

(4.3) w+e eWdz =0; w=-bf’(u*)u* onz=l; w=0 onz=0,

so that u u* everywhere.
It is not so obvious whether u (t), where is the average temperature, applies

throughout the transient. To examine this, we formally write

(4.4) u=a(t)+eV, t=(2e/y)r,

and seek conditions under which V is uniformly O(1). Evidently, we can take V O(1)
at most when fi 1 (at the end of the warm-up phase). During the acceleration phase,
while the integral term in (3.10) is small, a must satisfy

(4.5)
dO

e exp (0)/e];
dr

FIG. 4. Evolution temperature in the one-dimensional case. Parameter values are 3/= 2000, e 0.1,/z 20,
=0.5.
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by explicit calculation, V satisfies

(4.6) v (,e/ ,) Vzz +
exp [{f(ff + e V) -f(ff)}/e

1 +/-1 1 exp {f(f+ eV)/e} dz]2

[exp {f’(f) V}- 1],
E

for sufficiently small values of z. Eliminating r, we then have V given in terms of t by

OV 1
[exp{f’(f) V}- l](4.7)

Off e

with V O(1) when f 1. It follows from this that V will become much larger than
1 for f-1 O(1). Moreover, spatial variations in V at the onset of the acceleration
phase will lead to large spatial gradients in V, and hence u, as f increases. In other
words, we may expect the same surge structure to develop even when/3 << 1. Only if
u 1 q- O(8 2) at surge onset will u remain approximately uniform, since then (4.7) will
imply that V- O(1). Such uniform initial profiles are associated with large numerical
values of ]///.Z 2.

It is easy to extend these results (when/3 << 1) to two dimensions, at least for the
steady state. Returning to (2.2) and (2.3), we substitute for u from (3.5); then choosing
A given by (3.3) to satisfy (3.7), we find, to leading order, that

(4.8a) V [e-WV] =0,

(4.8b) V2w+ e-W[Vq]2 0,

with

(4.9)

OW Ow
---bf’(u*)u* onz=l,r=a; -0 onz=0;
On on

-0 on r a; =0 on z =0; q 1 on z 1,
Or

as long as A >> .
If u is very uniform in the warm-up phase, then u will remain uniform in the

surge phase, and the evolution of the temperature can be obtained by integrating (2.2b)
over the volume of the thermistor. Using (2.2a) and (2.3c), we get

u dV= flu dS+ y er(u)b
On

(4.10)
dt v s

With/3 << 1, we may take u f, even in the boundary layer at z 1. On the other hand,
if u- << e during the surge phase, then approximately V2q 0, whence Czz 0, so
that O/On (=constant) on z 1. Hence (2.3a) implies that 1/(1 +/,er(u)) on
z 1, and this applies after the surge phase, also, when q 1. Hence

Is O-- dS f erq - dS rra 2r/ l + lr 2(4.11) r(u)4
On z=, On

This will not be the case in the conductive phase (where q satisfies (4.8a)), but the
error is not serious. Hence a uniform approximation to (4.10) may be obtained by
writing u O(t), which satisfies

d
(4.12) V-d--- -/3-Sf + yAr( f)/[ + er] 2,
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where V 7ra
2 is (half) the thermistor volume, S 7ra(2 + a) is (half) the total external

surface area, A 7ra
2 is the cross-sectional area, all in dimensionless units, and/ is

the mean value of/3. Noting that/3 eb, the equilibrium value of u* is determined from

(4.13) A= l/or(u*) yA/ebSu*

(tr<< 1), which is consistent with (3.7) (to O(e) in u*). Equation (4.12) provides a
convenient means of estimating transient and steady behaviour, at least when /3 is
small. When/3-- e, it only applies if y//x2 >> 1, so that u is truly uniform; if y//x2-- 1,
we expect a surge to develop as previously described.

To illustrate these results, we solve the one-dimensional problem (3.3) numerically,
for a variety of values of the parameters. Figure 4 illustrates a typical solution for
values 3’ 2000, e =0.1,/z 20, and/3 =0.5. It can be seen that a central surge does
indeed occur, as predicted here, and that its features are in line with the discussion
in the text. In Fig. 5, we plot the numerically computed maximum temperature versus
the asymptotic estimate. It can be seen that the prediction is excellent, and that the
error is apparently of O(e), which is consistent with our analysis.

M = 2

Epsilon*Log

Epsilon
Epsiion
Eps,ilon

FIG. 5. Comparison ofnumerical values ofu*- with the theoretical prediction (4.8), for values ofe 0.1
(crosses), e 0.5 (triangles), e 0.025 (circles).

In Fig. 6, we show numerical solutions of (4.12), for values a 5,/3 0.1, 7 150,
and for various values of e. The development of a surge phase as t7 increases through
1 is notable; while its duration decreases as e decreases, so does its amplitude, since
u*-l as e0.

5. Conclusion. Early treatments of the thermistor problem ignored the interaction
with the circuit by setting /x--0 [11], [12]. The quadratic nonlinearity in the field
equations has recently stimulated mathematical interest in this version of the problem.,
and results are available for various boundary conditions for u and q. Cimatti and
Prodi [5] and Cimatti [2], [4] obtain existence and regularity results when u and q
have Dirichlet boundary data; i.e., both are specified on the thermistor boundary.
Howison, Rodrigues, and Shillor [9] also obtain regularity results with the radiation
condition (2.3c). Howison [7] discussed a simplified version in which q satisfies (2.3a),
(2.3b) with/x =0, but u =0 on the boundary (i.e.,/3), and with o-(u) represented
by a step function as in 3. Howison concluded that as long as 3’ is not too large, the
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FIG. 6. Numerical solutions of (4.12), with a 5, fl =0.1, 3/= 150, and various e.

hot region u > must be thin (O(3/6)). This work was extended by Westbrook 15] to
incorporate the more realistic boundary condition (2.3c); he presented numerical results
for an asymptotic problem exploiting the thinness of the hot region. The limiting case
where 6 0 is an interesting unsolved problem.

A striking result due to Diesselhorst [6], revived and made rigorous by Cimatti
[3], is that, no matter what shape the thermistor is, if u and q satisfy boundary
conditions such that on the portions of the boundary where q is constant, u is constant
also, and on the portions where Oq/On vanishes so does Ou/On, then the equipotentials
and isotherms for the steady problem form the same family of curves, and the problem
reduces to solving one nonlinear ordinary differential equation and Laplace’s equation.
Specifically, since u u(q), we can write tr(u)V Vq for some q, so that from (2.2a),
V2p=0; then from (2.2b), we find that d/dq((1/tr(u)/(du)dq))=-l. In two space
dimensions, p has a geometrical interpretation as the imaginary part of the conformal
map from the thermistor to a rectangle [8]. These results for the steady state problem
can be extended to include the effect of an external resistance, although, of course, in
the steady state the resistance of the thermistor should be much larger than any external
resistance.

Our results differ from these in two respects: first, we obtain asymptotic results
for the unsteady case, and, second, we incorporate the electric circuit. Our conclusions
may be summarised as follows.

1. The system we describe depends on five important dimensionless parameters:
y, /x, e, /3, and a. Of these, /z and a may be varied by changing the shape of the
thermistor,/3 depends on the exact mechanism of heat transfer away from the device,
y depends only on Vo and the intrinsic properties of the ceramic material (assuming
that AT is more or less invariant), and e depends entirely on intrinsic material properties.

2. Provided that 3’ is large enough that the switching temperature is easily reached,
the largest dimensionless temperature is u*’-l+O(e ln(y/e)), from (3.8). In par-
ticular, if /3 and e are of similar size, then the steady temperature is u*+ O(e)
throughout the device.

3. The current-voltage dependence in the steady state is easily calculated. We
begin with the case in which R0=0, and then we use (1.5) to calculate the steady
current for Ro 0. Suppose that the voltage across the thermistor is qo in dimensionless
terms, i.e., Voq0 in dimensional terms. Then from (3.2) the dimensional current through
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the thermistor is

ocruVoq0 H exp (f(u)/e) dz

If the thermistor is "cold," i.e., y is not large enough for u to reach the switching
temperature u 1, f(u) is small, and so

Ith" Voqo" "n’ro’./H;

i.e., there is a linear dependence of current on applied voltage. On the other hand,
when the thermistor is "hot," and assuming that is small, the one-dimensional
analysis predicts that

lt Voo" r./ma,
where m O(e/) is a constant depending on the precise details of the temperature
profile. Since A= yf’(u*)/e, u*=f-(e In (y/e)), and recalling that here we must use
the value ,V/4kAT for y, we have

4kerAT 1
Io Hmf’(u*) Vo0;

i.e., Io decreases with applied voltage. There is a transition region between these two
regimes, but, in view of the exponential decay of for T> 1, it is rather small.

This current-voltage dependence is sketched in Fig. 7, which also shows the circuit
law Io Vo- Voo)/Ro, for various values of Vo. It is apparent that there may be one,
two (exceptionally), or three operating points for a thermistor in a circuit, and that
the current-voltage diagram for a thermistor in a circuit is as sketched in Fig. 8.

This nonuniqueness has been demonstrated theoretically in [4]. It is known to
thermistor users that when there are three operating points, the two extreme points
((a) and (c) in Fig. 7) are stable with (b) being unstable. It is an interesting open

Vo/Ro

FIG. 7. Thermistor and circuit current characteristics versus the applied voltage.
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FIG. 8. Schematic diagram ofcurrent-voltage characteristic, showing a hysteretic switch between behaviour
at low V (cold) and high Vo (hot).

problem to demonstrate which of these points is the large time limit of an initial value
problem, although when used as a circuit protection device we would choose the
parameters such that only point (c) remains.

4. We have predicted large temperature gradients during the temperature surges
with spatial variation (see Fig. 4). These occur, in particular, if y/lx2--- O(1). If the
cracking mentioned in the Introduction is caused by thermal expansion, these large
gradients are the most likely cause. They could be smoothed out by taking /3 very
small, but the operating temperature of the device might then become unacceptably
large; alternatively, they may be suppressed at large values of 3///2, which, however,
requires large voltages to be applied.
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