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Abstract

Neisseria meningitidis has multiple strategies to evade complement-mediated killing, which

contribute to its ability to cause septicaemic disease and meningitis. However, the meningococcus

is primarily an obligate commensal of the human nasopharynx, and it is unclear why the bacterium

has evolved exquisite mechanisms to avoid host immunity. Here we demonstrate that mechanisms

of meningococcal immune evasion and resistance against complement increase in response to an

elevation in ambient temperature. We have identified three independent RNA thermosensors

located in the 5′-UTRs of genes necessary for capsule biosynthesis, the expression of factor H

binding protein, and sialylation of lipopolysaccharide, which are essential for meningococcal

resistance against immune killing1,2. Therefore increased temperature (which occurs during

inflammation) acts as a ‘danger signal’ for the meningococcus which enhances defence against

human immune killing. Infection with viral pathogens, such as influenza, leads to inflammation in

the nasopharynx with an elevated temperature and recruitment of immune effectors3,4.

Thermoregulation of immune defence could offer an adaptive advantage to the meningococcus

during co-infection with other pathogens, and promote the emergence of virulence in an otherwise

commensal bacterium.

Neisseria meningitidis is an obligate human pathogen and important cause of sepsis and

meningitis5, with peaks of disease often preceded by influenza outbreaks in temperate

climates6. The bacterium has evolved exquisite mechanisms to evade immune responses7,

including expression of a polysaccharide capsule (containing sialic acid in serogroup B, C,

Y and W strains)8,9, sialylation of lipopolysaccharide (LPS), and recruitment of the human

complement regulator factor H, via high affinity interactions with bacterial factor H binding

protein1-2. The reasons why such mechanisms have evolved in an otherwise commensal

bacterium is uncertain as systemic infection represents an evolutionary dead end.

Previously we found that resistance of the meningococcus against complement-mediated

killing is enhanced following insertion of the mobile element IS1301 into the 134 bp

intergenic region (IGR) between the css (encoding capsule biosynthesis) and ctr (capsule

export) operons in the capsule biosynthesis locus (cps)10,11. To identify other changes

modulating serum resistance, we subjected the N. meningitidis strain S311 to serial passage
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in 6% human serum; within six rounds, S3 became as resistant to complement-mediated

killing as a strain (R3) with IS1301 in the IGR (Supplementary Fig. 1). We further

characterised six passaged strains (selected serum resistant, SSR 1-6) that were more

resistant to complement than S3 (Fig. 1a). Resistance did not result from insertion of

IS1301; instead five strains (all except SSR2) have lost a single copy of a duplicated 8 nt.

sequence (TATACTTA) located 15 nt. upstream of the CssA start codon in the 5′-
untranslated region (5′-UTR) of css mRNA (Fig. 1b-c, Supplementary Fig. 2) and have

elevated levels of CssA, which catalyses the first step in capsule biosynthesis12. Comparison

of S3 with SSR, and isogenic strains (both containing an antibiotic resistance cassette

downstream of the css operon) with one (Δ8) or two copies (wild-type, WT) of the 8 bp

sequence demonstrates that loss of 8 bp causes elevated CssA levels and capsule expression

(Fig. 1d-e). The increased serum resistance of SSR2 resulted from reduced levels of PorA

(Fig. 1b), a target of bactericidal antibodies13.

To define how the 8 bp sequence contributes to capsule expression, we performed DNA

footprinting of the IGR with IHF and FIS. Despite potential recognition sites for these

proteins10,14, there was no difference in IHF or FIS binding to the WT and Δ8 IGRs

(Supplementary Fig. 3). Analysis of translational reporters in the N. meningitidis cps

demonstrated that loss of 8 bp leads to a marked increase in reporter activity of Css but not

Ctr (Supplementary Fig. 4 and 5), demonstrating that Δ8 influences the capsule biosynthesis

operon. Furthermore, significantly elevated Css reporter activity with the Δ8 IGR was

evident in 38 transcription factor mutants (Supplementary Table 1, Supplementary Fig. 5),

while northern blot analysis demonstrates that css mRNA levels are unaffected by the

number of copies of the 8 bp (Fig. 1f). Therefore, the 8 bp sequence affects CssA post-

transcriptionally.

We noticed that the css 5′-UTR is predicted to form a stem loop structure that includes the

ribosome binding site (RBS, Fig. 2a), consistent with an RNA thermosensor15. In RNA

thermosensors, the transcript assumes a hairpin structure at lower temperatures that occludes

the RBS, and stalls protein translation; higher temperatures destabilise the secondary

structure which allows translation. The Δ8 mRNA, on the other hand, is predicted to form a

limited stem loop with a single-stranded region by the RBS (Fig. 2a). Consistent with a

thermosensor, CssA levels increase in N. meningitidis grown at increasing temperatures

(Fig. 2b). In contrast, loss of 8 bp leads to increased CssA levels at lower temperatures and

less pronounced increase at higher temperatures, suggesting that this change disrupts the

thermosensor and dysregulates capsule biosynthesis.

RNA thermosensors should function in a heterologous host. Similar to N. meningitidis,

thermal regulation of CssA was evident in E. coli containing CssA and the WT IGR on a

plasmid; CssA expression was dysregulated with the Δ8 IGR (Fig. 2c). Additionally, in vitro

transcription/translation assays demonstrated that CssA synthesis increased with an

elevation in temperature and on loss of one copy of the 8 bp sequence (Fig. 2d) in the

absence of any transcription factor. Furthermore, we introduced nucleotide (nt.) changes into

the 5′-UTR predicted to alter the stability of the thermosensor, including substitutions at the

same position (+92U/C or +92U/G, Fig. 2a) expected to have opposing effects. Expression of

CssA from plasmids containing these changes was consistent with a thermosensor in the 5′-
UTR (Fig. 2e). We also performed RNA toeprinting at 30°C, 37°C and 42°C to assess

binding of ribosomes to the nascent css transcript. The results demonstrate that ribosome

binding is enhanced to mRNA from the Δ8 compared to WT 5′-UTR, with differences most

marked at 30°C (Supplementary Fig. 6). Finally we found that thermoregulation of CssA is

evident in strains of different capsular serogroups and hypervirulent lineages (Fig. 2f).

Together these results confirm the presence of an RNA thermosensor controlling the capsule

biosynthesis operon in N. meningitidis across a range of strains.
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Previous reports of RNA thermosensors in pathogens are restricted to facultative organisms

and govern transcription factors that mediate transition of bacteria from external to internal

environments15-18. As the meningococcus is an obligate commensal residing in the

nasopharynx, we compared the dynamic response of the canonical PrfA Listeria

thermosensor with the meningococcal Css thermosensor (which directs a single pathway).

The prfA and css 5′-UTRs and their promoters were fused to GFP in pEGFP-N2, and in

vitro transcription/translation was performed at different temperatures (Fig. 3a). Protein

synthesis regulated by the prfA thermosensor was barely detected up to 36°C, but markedly

increased at higher temperatures. In contrast to this on:off switching, the css thermosensor

displayed a gradual increase over physiologically relevant temperatures (acting like a

rheostat). The difference can be explained by the relatively high GC content and distribution

of GC bonds flanking the RBS in the prfA 5′-UTR (Fig. 3b); in the bacteria, the Listeria

thermosensor mediating a marked temperature shift as the bacterium migrates from the

external environment into its host, while N. meningitidis is in virtual constant contact with

its host and therefore be less exposed to large temperature wide temperature fluctuations.

Next we determined the prevalence of IGR polymorphisms in 265 meningococcal disease

isolates. The WT sequence (two copies of the 8 nt. sequence) was most frequently found

(201 of 265, 75.8%); of note, no polymorphism was detected in the 5′-UTR with two copies

of the 8 nt. Strains with a Δ8 accounted for the remainder (64/265, 24.2%, Fig. 3c), although

this deletion was accompanied by two substitutions (TATGCCTAT; altered bases

underlined, Δ8AT/GC) in the majority of instances (50/64 isolates, 78.1%). Only a few strains

(8/64, 12.5%) had the Δ8 sequence with no changes, and the single, TATGCTTAT

polymorphism (Δ8A/G) was present in the other strains (6 of 64, 9.4%), but TATACCTAT

(Δ8T/C) was never detected. We analysed the effect of these polymorphisms in E. coli

plasmid reporters (Fig. 3d), and found that whereas Δ8A/G partially restores CssA thermal

regulation following deletion of 8 nt., Δ8AT/GC re-establishes thermosensing (consistent with

its predicted structure and RNA toe-printing, Supplementary Fig. 6 and 7). In contrast, Δ8T/C

(which was never found) leads to markedly elevated CssA expression at all temperatures. Of

note, the compensatory polymorphisms occur at similar frequencies in different clonal

complexes of the meningococcus, consistent with them arising on several occasions.

The conservation of the WT sequence and prevalence of compensatory polymorphisms

emphasise the importance of capsule thermoregulation in the meningococcus. Hence we

examined whether other factors involved in immune escape are subject to similar regulation.

Of note, expression of factor H binding protein (which recruits the host complement

regulator factor H) and Lst (necessary for LPS sialylation19) also increase with increasing

temperature (Fig. 3e), in contrast to proteins not involved in immune escape (such as PorB,

Pilin, RmpM, and RecA) which are unaffected by temperature (Fig. 3f). To define the

mechanism of thermosensing of fHbp and Lst, we analysed in E. coli plasmids harbouring

these genes and observed thermal regulation (Fig. 4a). Furthermore, thermoregulation of

these proteins in N. meningitidis was independent of 38 transcription factors

(Supplementary Fig. 8), while thermoregulation of fHbp and Lst was detected in both in

vitro transcription/translation assays (with fixed amounts of DNA) and in vitro translation

assays (with fixed amounts of RNA, Fig. 4a) indicating that the 5′-UTRs of fHbp and lst

contain RNA thermosensors, consistent with secondary RNA structure predictions

(Supplementary Fig. 9).

Temperature therefore acts as a ‘danger signal’ for the meningococcus, prompting the

bacterium to enhance expression mechanisms of immune evasion via three independent

thermosensors dedicated to single proteins or pathways. To determine the influence of

temperature on meningococcal complement resistance, bacteria were grown at 30°C then

incubated at 30°C or 37°C for one hour. Bacteria that had been equilibrated at the elevated
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temperature expressed more CssA, fHbp, and Lst (Supplementary Fig. 10) and were

significantly more resistant against complement than those left at 30°C (Fig. 4b),

demonstrating that thermal regulation of immune defence mechanisms has a marked impact

on bacterial survival in the presence of human complement.

An elevation in temperature is a cardinal feature of inflammation, which is associated with

extravasation of serum components and recruitment of phagocytes. In these circumstances,

increasing expression of factors necessary for immune evasion would provide a considerable

adaptive advantage to a microbe in the nasopharynx (Fig. 4c). Influenza provokes

complement activation in the upper airway3, a rise in core temperature, and elaborates

neuraminidase that could damage the meningococcal capsule20. By sensing local

inflammation, thermal regulation of immune defence by the meningococcus would allow

adaption to changes in the nasopharynx during infection with influenza21,4 and other

respiratory pathogens; microbes unable to sense and protect themselves against

inflammatory responses will face elimination from this habitat (Fig. 4b). Furthermore,

thermoregulation by the meningococcus would provide an advantage to bacteria entering the

bloodstream, which is at higher temperatures than the nasopharynx22. Therefore traits that

are beneficial for bacterial colonisation during coinfection and inflammation (such as

thermoregulation of immune defence) will, by unfortunate coincidence, promote the

virulence of otherwise commensal microbes.

Materials and Methods

Bacterial Strains and Growth Conditions

Neisseria was grown in Brain Heart Infusion broth (BHI, Oxoid, 37 g dissolved in 1 L dH2O

with 1 g soluble starch) or on BHI agar (1% w/v) supplemented with Levinthal’s base (500

ml defibrinated horse blood, autoclaved with 1 L BHI broth). Solid media was inoculated

from frozen stocks of bacteria stored in media with 15% glycerol at −80°C. Cultures were

then incubated for 16–18 hours at 37°C with 5% CO2. Liquid cultures were grown in 10 ml

of media inoculated with 109 bacteria and grown at 37°C with shaking (150 r.p.m.) to an

optical density (O.D.) measured at 600 nm (A600) of ~0.4 unless otherwise stated. N.

meningitidis disease isolates belonging to serogroups B, C, W135, and Y from cc11, 32,

41/44, and 269 were described previously 1

E. coli was grown in Luria-Bertani (LB) broth (2% w/v in dH2O, Oxoid, UK) or on LB agar

(1% w/v) plates. All liquid E. coli cultures were grown in 5 ml of media inoculated from a

single colony overnight at 37°C with shaking (250 r.p.m.). Overnight grown bacteria were

diluted 1/100 in media and grown to an A600 of ~0.4 unless otherwise stated. To construct

isogenic strains, isolates were tagged with a kanamycin cassette in oatC as previously

described 2. Primers NG1095-for and NG1125-rev were used to amplify an 8 kb region

across the IGR and oatC using genomic DNA from SSR5 as DNA template; all primers are

shown in Supplementary Table 2. The PCR product was sequenced, purified and

transformed into S3. Eight transformants with the deletion and four without the deletion

were analysed to confirm the resistance phenotype. The porA gene was amplified and

sequenced with NG1945-for and NG1946-rev.

Plasmid DNA from E. coli was isolated from overnight cultures grown in LB broth using the

GenElute™ Plasmid Kit (Sigma-Aldrich). Genomic DNA from N. meningitidis was purified

as previously, and PCRs were performed using a PTC-225 Tetrad PCR machine (MJ

Research). DNA was purified using a QIAquick gel extraction kit (Qiagen, UK) and DNA

digestion was carried out using enzymes supplied by New England Biolabs, Ligation

reactions contained no more than 100 ng of purified vector and insert DNA (usually in a 1:3

ratio) and Quick-stick ligase (Bioline, UK). N. meningitidis was transformed by placing 10
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μl of a bacterial suspension on solid media, and allowing it to dry. Plasmid or genomic DNA

was added to the bacteria, and the plates were incubated for 4 hours at 37°C before streaking

on selective media.

N. meningitidis reporter strains

Reporter constructs for N. meningitidis were initially generated in pUC19 in E. coli as

follows. The erythromycin resistance cassette was amplified from pYHS1882 using NG1304

and NG1305. The resulting product and pUC19 were digested with AatII and Eco01091 and

ligated together. The resulting construct was digested with BsaI and AatII and ligated with a

region of the cssA ORF amplified using primers NG1306 and NG1307 and digested with the

same enzymes. Promoters of interest were then inserted upstream of the erythromycin

resistance cassette following HindIII and AflIII digestion. The promoter regions were

amplified from strains with primers NG1324 and NG1419. A truncated ctrA with no

intergenic region (IGR) was amplified with NG1419 and NG1420, and integrated into the

pUC19. Next the lacZα fragment was removed from the vector by digestion with HindIII

and SfoI, and replaced with full length lacZ amplified from pRS415 using NG1480 and

NG1484. The resulting fusions contained the cssA start codon fused to lacZ at codon 10.

Constructs were verified by restriction mapping and sequence analysis before transformation

of N. meningitidis. Integration of the vector by double crossover leads to a single

chromosomal copy of the lacZ reporter in the capsule biosynthesis locus. Template genomic

DNA was used with a WT or Δ8 IGR as appropriate.

Whole cell lysates, β-galactosidase assays and FACS analysis

N. meningitidis strains were harvested after overnight growth on BHI agar plates and re-

suspended in PBS. The concentration of the bacterial suspension was determined by

measuring the A260 of a mixture containing 20 μl of the bacterial suspension and 980 μl of

lysis buffer (0.1 M NaOH, 1% SDS) using a UVVIS spectrophotometer (Shimadzu UK).

The bacterial suspension was adjusted to 10 × 109 CFU/ml, mixed with an equal volume of

2× SDS-PAGE loading buffer (100 mM Tris-HCl pH 6.8, 20 μM β-mercaptoethanol, 4%

SDS, 0.2% bromophenol blue, 20% glycerol), and boiled for 10 minutes. The samples were

centrifuged at 16,000 ×g for 20 seconds, and 10 or 20μl of samples was analysed by SDS-

PAGE. β-galactosidase assays were performed as described previously 3 using o-

nitrophenyl-β-galactoside (ONPG) (4 mg/ml) as the substrate; reactions were stopped by the

addition of 1 M NaCO3. FACS analysis to determine the amount of capsule has been

described previously2. Results were calculated as mean fluorescence index (MFI), the

geometric mean multiplied by the percentage of positive cells.

SDS-PAGE and Western blotting

Proteins were separated on polyacrylamide gels alongside Precision Plus All Blue markers

(Biorad, USA) and stained using Coomassie blue stain for 10 minutes. Proteins were

transferred to immobolin P polyvinylidine fluoride (PVDF) membranes (Millipore, USA)

using the wet transfer system (Biorad, USA). For Western blot analysis, membranes were

washed three times in 0.05% (w/v) dry milk/PBS with 0.05% (v/v) Tween-20 for 10

minutes, and then incubated with the primary antibody for two hours. Membranes were

washed again three times and incubated for a further hour with a secondary, HRP-

conjugated antibody. Binding was detected with an ECL Western Blotting Detection kit

(Amersham, USA) and exposed to ECL Hyperfilm. Anti-peptide antibodies were generated

against CssA (amino acid sequences, YGRTYKEVTRENYQH or DVGTRQSNRHMGKSI,

Eurogentec), and used at a final dilution of 1:500. An α-RecA rabbit antibody (Bio

Academia, France) was used at a final dilution of 1:10,000. Goat α-rabbit IgG HRP-

conjugated antibody (Dako, UK) was used at a final dilution of 1;10,000, while the α-His-

HRP conjugated mAb (Qiagen, UK) was used at a 1:50,000 dilution. Antibodies were used
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at a final concentration as follows: α-PorB mAb (NIBSC), 1:1000; α-RmpM mouse mAb

(NIBSC), 1:1000; α-PilE mouse pAb, 1:5000; α-fHbp mouse pAb, 1:5000; α-Lst rabbit

pAb, 1:20000.

Screen of Transcription Factor Mutants

From the library of transcription factor mutants (Supplementary Table 1), genomic DNA

from each mutant was used to transform N. meningitidis containing css::lacZ translational

fusions of promoters. Colony PCR of transformants was used to verify the mutation of genes

encoding transcription factors. Once generated, the mutant library was analysed using the β-
galactosidase assay.

RNA Isolation and Northern analysis

N. meningitidis and E. coli were grown in liquid culture to an O.D. A600 of ~0.4 prior to

RNA extraction. RNA was isolated using the RNAeasy Miniprep Kit (Qiagen, UK)

following the manufacturer’s protocol. Samples was analysed by measuring the A260 and

A280. For northern blotting, 20μg of total RNA was separated on a formaldehyde agarose gel

prior to transfer. Hybond-N membranes were subsequently hybridised with 32Pɣ-labeled

DNA fragments amplified with corresponding primers. Northern blots were developed and

band intensities measured in a Fuji phosphorImager scanner. Primers used are listed in Table

2. To amplify a DNA fragment for detection of sscA and tmRNA, we used CssA-U with

CssA-U and ssrA-(EC)-F with ssrA-(EC)-R.

Electrophoretic Mobility Shift Assays

Plasmids used in Electrophoretic Mobility Shift Assays (EMSA) were generated by

amplifying a truncated region of the intergenic region (TR, +40 to +139, primers R1F and

R1R) or a full length region of the IGR (FL, −80 to +132, primers R2F and R2R) by PCR

from genomic DNA. PCR products were ligated into pGEM-T Easy (Promega), and inserts

end labelled using the Klenow fragment of DNA polymerase (New England Biolabs, UK)

and [α-32P] dCTP. Binding was performed in 20 mM Tris-HCl, pH7.5, 10 mM DTT, 15%

glycerol, 100 mM KCl and 0.05 mg/ml BSA. Dilutions of IHF and FIS were prepared in 1 ×

reaction buffer with 1 mg/ml BSA. Concentrations of salmon sperm DNA and proteins are

indicated. Control DNA included Tn10 and Himar 4.

Toe-print assay

Templates for in vitro transcription of WT, Δ8bp, and Δ8bpAT/GC were constructed by PCR

using the primers S3(TOE)T7F and S3(TOE)-new. In vitro transcription was performed

using the RiboMAX™ Large Scale RNA production sytems-SP6 and T7 kit as described by

the manufacturer (Promega). In vitro transcribed RNA was ethanol precipitated,

resuspended in formamide loading dye and separated on an 8% denaturing polyacrylamide

gel. The RNA was visualized by UV shadowing, excised from the gel and transferred to 300

μl 2M NH4Acetate. After overnight incubation at 14°C, the RNA was phenol extracted

followed by ethanol precipitation. Quantification was performed on a NanoPhotometer

(Implen). In vitro transcribed RNA was 5′-end-labelled using the KinaseMax kit as

described by the manufacturer (Ambion). Toe-printing experiments were performed in 10 μl
reactions with 0.5 pmol of WT, Δ8bp, and Δ8bpAT/GC. The RNA were pre-incubated at

either 30°C, 37°C or 42°C for 20 min and subsequently mixed with 0.6 pmol of 5′-end-

labelled S3(TOE)-new probe in a buffer containing 60mM NH4Cl, 10mM Tris-acetate [pH

7.5], 10mM DTT, 1 ml RNAguard and 100 mM dNTP. The mixture was incubated 2 min at

94°C and then placed on ice for 5 min and either at 30°C, 37°C or 42°C for 5 min. Two

different concentrations of 30S ribosomes (0.1 and 0.5 pmol) (E. coli MRE600) were added

followed by 10 min incubation. The mixture was supplemented with 10 mM uncharged
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tRNAfmet (Sigma) followed by 15 min incubation after which, 2U of AMV reverse

transcriptase was added. The reaction was stopped after 30 min by the addition of 10 μl
formamide loading dye. In parallel, sequencing reactions were prepared using S3(TOE)T7F

and S3(TOE)-new DNA as templates. The resulting DNA was separated on an 8%

denaturing polyacrylamide sequencing gel and the resulting toe-print was measured with a

Fuji phosphorImager scanner.

In vitro transcription/translation

One microgram of cssA-WT-gfp (PCR amplified using CssA-GFP-F(L) and CssA-6C-R

were inserted in pEGFP-N2) and prfA-gfp5 plasmids were in vitro transcribed in an E coli

S30 Extract system for Linear Templates in vitro Transcription/Translation Kit (Promega)

according to the manufacturer’s instructions. In brief, cssA-WT-gfp and prfA-gfp plasmids

were digested using NotI restriction enzyme and purified using QiAquick PCR purification

kit (Qiagen). One microgram of cssA-WT-gfp and prfA-gfp digested plasmids mixtures

were incubated at 28°C, 30°C, 32°C, 34°C, 36°C, 37°C and 38°C for 1 hour before

transferring onto ice for 5 min. Samples were acetone-precipitated, re-suspended in 1×

sample buffer, and separated on a 12% polyacrylamide gel before being transferred onto a

PVDF membrane using a semi-dry blotting apparatus (Biorad). Membranes were developed

following the protocol of the ECL western blotting kit (Amersham), using anti-GFP (BD-

living colours) as primary antibody and an HRP-conjugated anti-mouse as the secondary

antibody (Dako).

In vitro translation

Five microgram of RNA from E. coli containing either lst or fhbp (PCR amplified using

fhbp-F and fhbp-R or lst(c)-F and lst(c)-R were cloned in pGEM-T) plasmids were in vitro

translated with the E coli S30 Extract system for Linear Templates in vitro Transcription/

Translation Kit (Promega) according to the manufacturer’s instructions. The RNA mixtures

were incubated at either 30°C, 37°C or 42°C for 1 hour before transferring onto ice for 5

min. Samples were acetone-precipitated, re-suspended in 1× sample buffer, and separated on

a 12% polyacrylamide gel before being transferred onto a PVDF membrane using a semi-

dry blotting apparatus (Biorad). Development of the membrane essentially followed the

protocol of the ECL western blotting kit (Amersham), using anti-LST or anti-FHBP as the

primary antibody and HRP-conjugated anti-rabbit or anti-mouse, respectively, as secondary

antibody (Dako).

Human serum sensitivity assay

Bacterial strains were grown on BHI agar plates overnight and re-suspended in PBS.

Bacteria were diluted to a final concentration of 1 × 105 CFU/ml in DMEM-glutaMAX™

medium (Invitrogen, UK), and incubated with different concentrations of normal human sera

(NHS) at 37 °C in presence of 5% CO2 for 1 hour. Survival of bacteria in the presence of

sera was determined by plating 10 μl aliquots to BHI plates and counting the number of

colonies after overnight incubation. The percent survival was calculated by comparing the

number of colonies present in samples with serum to those without serum.

To compare the sensitivity of bacteria at different temperatures, N. meningitidis was grown

in BHI broth to mid-logarithmic phase at 30°C, then split and incubated at 30°C or 37°C for

a further 1 hour. 106 CFU were incubated with serial dilutions of pooled human immune

serum for either 10 or 20 mins, and the proportion of bacteria surviving was determined by

plating 10 μl aliquots onto BHI plates and counting the number of colonies after overnight

incubation; differences were analysed with the Student’s t- test.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Loss of an 8 bp increases capsule expression and complement resistance
Selected serum resistant strains (SSR1-6) demonstrate enhanced resistance in human serum

against complement-mediated killing (a), and increased expression of CssA (b, except

SSR2; RecA loading control) compared with the parental strain, S3. (c) The 134 bp css/ctr

intergenic region showing the ribosome binding site (RBS), transcriptional start sites

(arrows) and open reading frames, and location of the duplicated 8 bp sequence. (d)

Resistant strains exhibit increased capsule expression by FACS (MFI, Mean Fluorescence

Index). (e) CssA expression in isogenic strains with one or two copies of the 8 bp sequence.

(f) Northern blot analysis demonstrates that increased CssA levels are not associated with

elevated cssA mRNA. Findings were confirmed in three biological replicates. Error bars

show S.D. of experiments performed in triplicate.
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Fig. 2. Capsule gene expression is governed by an RNA thermosensor
(a) Predicted secondary structure of the css 5′-UTR with two (WT) or one copy of the 8 nt.

sequence (Δ8); the ribosome binding site is indicated. (b) Western blot analysis of CssA

levels in isogenic N. meningitidis strains with a wild-type IGR (WT) or containing a single

copy of the 8 bp sequence (Δ8) grown at different temperatures (indicated above each lane).

(c) Thermoregulation of CssA expression is detected in E. coli by western blot analysis, and

(d) by in vitro transcription/translation assays with purified E. coli RNA polymerase; β-
lactamase included as a control. (e) Mutational analysis of the 5′-UTR. E. coli expressing

CssA with modifications (shown in panel a) grown at temperatures indicated; the predicted

effects shown. (f) Thermoregulation of CssA is evident in N. meningitidis across different
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capsular serogroups and lineages (cc, clonal complex). Findings were confirmed with three

biological replicates.
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Fig. 3. Thermosensing of immune evasion mechanisms
(a) In vitro transcription/translation assays and (b) predicted structure of the Css and PrfA

thermosensors modulating GFP expression in E. coli at a range of temperatures. (c)

Sequence analysis of the IGR in different hypervirulent lineages; clonal complexes (cc)

shown. Loss of a copy of the 8 bp sequence (Δ 8) is associated with a 2 bp substitution in the

remaining single 8 bp sequence (i.e. Δ8AT/GC), which is never detected in a strain with two

copies of the 8 bp sequence. (d) Effect of the polymorphisms examined in E. coli; the most

abundant polymorphism Δ8AT/GC restores thermosensing to wild-type levels in the presence

of a single 8 bp sequence, whereas Δ8A/G substitution partially restore thermosensing; Δ8T/C

leads to higher CssA levels than Δ8. (e) Western blot analysis demonstrates that levels of
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proteins mediating immune evasion, fHbp and Lst, increase in N. meningitidis with an

elevation in temperature, (f) whereas other proteins (indicated) are unaffected. Blots are

representative of experiments performed on at least three occasions.
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Fig. 4. Temperature influences complement escape by N. meningitidis
(a) Thermoregulation of fHbp and Lst expression in i) E. coli reporters detected by Western

blot analysis; RecA, loading control, ii) in vitro transcription/translation assays, and iii) in

vitro translation assays of fHbp and Lst; RecA, expression control. Blots are representative

of experiments performed on at least three occasions. (b) Bacteria incubated for 1 hr at 37°C

are more resistant to complement-mediated killing than those at 30°C: the assay was

performed on four separate occasions and error bars represent the SEM; ** and ***, p<0.01

and <0.001 (Students T test). (c) Inflammation at the epithelial surface in the nasopharynx

(in response to viral co-infection) would increase local temperature and recruitment of

innate immune effectors. Thermoregulation of microbial defence mechanisms would prevent
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bystander killing and enhance systemic dissemination to warmer body sites that are replete

with immune effectors.
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