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Abstract

The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of
vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was
introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas.
Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more
efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In
the current study, we determined the relationship between temperature and time since feeding on the probability of
transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of
time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition,
we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing
that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study
suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and
provides a model for predicting the impact of temperature and global warming on WNV transmission.
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Introduction

The interaction between pathogens, their vectors, and verte-

brate hosts is a dynamic one, and evolution in any one of the three

can significantly alter transmission dynamics. Theory suggests that

pathogens will evolve to maximize their fitness, which is a function

of transmissibility and virulence to the host [1,2]. Pathogens that

infect and replicate well in their vertebrate hosts and vectors may

decrease the survival of both which may reduce their lifespan for

transmission.

At the same time, the distribution and intensity of transmission

of vector-borne pathogens is strongly influenced by the interaction

of temperature, vectors, hosts, and pathogen genetics. Tempera-

ture can determine both the latitudinal boundary and upper

elevational limit of pathogen transmission if the extrinsic

incubation period (EIP) is greater than the longevity of the vector

[3]. Temperature also has been linked to changes in the intensity

of transmission of pathogens [4,5], which may be linked to

temperature-induced changes in the EIP, the longevity, and the

feeding rate of vectors [6,7].

West Nile virus (WNV; Flaviviridae, Flavivirus), is a single-

stranded positive-sense RNA virus that was introduced into the

western hemisphere in 1999 and has subsequently spread

throughout much of North, Central, and South America [8,9].

It is primarily transmitted between birds (especially American

robins, Turdus migratorius, in many areas [10–14]) and Culex

mosquitoes [8,15] and has caused at least 2,500 reported cases

each year since 2002 for a total of 32,135 total reported cases,

11,243 cases of encephalitis, and 1,125 deaths, with an estimated

1.56 million infections and 310,000 illnesses from 1999–2007

[9,16–18]. In addition, WNV has evolved over the past 7 years,

and a genotype that was first isolated in 2001 (termed WN02) has

displaced the introduced genotype (termed NY99) [19,20]. WNV

strains in the WN02 or North American dominant genotype have

three consensus changes in the full length genome compared to

NY99 [19,20]. The rapid expansion of the WN02 genotype has

been linked to a shorter extrinsic incubation period in Culex

mosquitoes [21,22], but the full mechanisms of displacement are

not yet known. In particular, in previous studies WN02 genotypes

were transmitted more efficiently than NY99 by Cx pipiens on 5

and 7 days post feeding, but not day 9 and by Cx. tarsalis from 5 to

14 days post feeding [21,22].

The vector competence of mosquitoes characterizes their ability

to transmit a pathogen after taking an infected blood meal. The

fraction of vectors transmitting the pathogen is known to vary

between populations of a species [23–25], and increase with time

[26,27] and temperature for WNV [28–30] and many other

pathogens, including western equine encephalomyelitis virus and

St. Louis encephalitis virus in Cx. tarsalis [28,31], Rift Valley Fever

virus in Aedes fowleri [32], Ockelbo virus in Culex spp [33] and Aedes

spp [34], and African horse sickness virus, bluetongue virus, and

epizootic hemorrhagic disease in Culicoides sonorensis [35]. However,
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the exact relationship between vector competence, temperature

and the time since feeding on an infected host is not clear, and in

other studies the influence of temperature on vector competence

varies, sometimes depending on the mosquito species infected

[33,36,37].

A degree day model developed for Cx. tarsalis has been used to

model the effect of temperature on WNV transmission across

North America [28,38]. In this approach, a mosquito (or a fraction

of a population of mosquitoes) feeding on an infected host becomes

infectious after a time period at a certain temperature, termed the

number of degree days. Degree days are often measured as the

number of days since feeding multiplied by the temperature in

degrees Celsius above a minimum temperature threshold (Tthr)

below which no transmission is assumed to occur. However, the

exponential increase with temperature in chemical and molecular

processes contributing to viral replication would suggest that the

relationship between transmission and the number of degree days

should be accelerating and would not be well described by a

simple degree day model. Transmission would be expected to be

higher at higher temperatures given the same number of degree

days. For example, if Tthr = 14uC, transmission would be expected

to be higher after seven days at 30uC (16u above the threshold

temperature of zero transmission) than after 16 days at 21uC (7u
above the Tthr), even though the same number of degree days, 112,

is the same in both cases. Here we explore the relationship

between temperature and transmission of two genotypes of WNV

(NY99 and WN02) and test the adequacy of a simple degree day

model for WNV transmission by Culex pipiens, a key enzootic and

bridge vector for WNV in the northern USA [15,39].

Methods

Viruses and mosquitoes
Two strains of WNV were used, one belonging to genotype

NY99 and one to WN02 (strain designations are NY99-3356 and

WN02-1956, Genbank accession number, AF404756 and

AY590210, respectively). Previous work suggested that there was

little phenotypic variation between strains within genotype

[21,22]. NY99-3356 was passed twice in Vero (African Green

Monkey kidney) cells, and WN02-1956 was passed once in Vero

cells followed by one passage in C6/36 (Aedes albopictus) cells prior

to use in these studies.

Colonized Cx. pipiens were reared and maintained in the

Wadsworth Center Arbovirus Laboratory BSL-2 insectary. The

colony was established in 2002 from egg rafts collected in

Pennsylvania (courtesy of Michael Hutchinson) and has been

maintained continuously using defibrinated goose blood (Hema

Resourse and Supply, OR) for egg production and 10% sucrose ad

lib for maintenance at 27uC with 16:8 L:D light cycle and 85%

humidity. All experiments with infectious virus were performed in

the BSL-3 laboratories or insectaries at the Wadsworth Center

Arbovirus Laboratories.

Vector competence
Seven day-old mosquitoes were deprived of sucrose and water

for 48 h and then fed on a suspension of defibrinated goose blood

(Hema Resourse and Supply, OR) plus a final concentration of

2.5% sucrose and either a NY99 or a WN02 virus, using a

Hemotek feeding system (Discovery Workshops, UK). The WNV

titer in the bloodmeals was 1.2–1.46108 plaque-forming units

(PFU)/ml. Mosquitoes were allowed to feed for up to 1.5 h at

which time engorged mosquitoes were separated from unfed

mosquitoes under CO2 anesthesia. Fully engorged mosquitoes

were placed into 0.6L cardboard cartons, supplied with 10%

sucrose ad lib, and held at the prescribed temperatures under 85%

RH, photoperiod of 16:8 (L:D). Groups of 25 mosquitoes were

removed at several different intervals post-feeding and anesthe-

tized with triethylamine (Sigma, St. Louis, MO). The days

sampled included days 4, 7, 10, 14, 18, 21, 24, 28, 31, 34, and

40 for 15uC, 18uC, and 22uC and additional early sampling at

days 0.5, 1, 1.5, 2, 2.5, 3 for experiments at 32uC. Legs were

removed and placed in 1.0 ml of mosquito diluent (MD; 20%

heat-inactivated fetal bovine serum [FBS] in Dulbecco’s phos-

phate-buffered saline plus 50 ug/ml penicillin/streptomycin,

50 ug/ml gentamicin, and 2.5 ug/ml Fungizone) and frozen at

280uC for subsequent assay. Salivary secretions were collected

using a modified in vitro capillary transmission assay [40]. Briefly,

mosquito mouthparts were inserted into a capillary tube

containing approximately 10 mL of a mixture of 50% sucrose

and FBS (1:1) for 30 minutes, at which time the contents were

placed into 0.3 ml MD in a microfuge tube. Bodies were placed in

1.0 ml MD and all samples were frozen at 280uC for subsequent

assay. Bodies and legs were homogenized separately using a mixer

mill (Qiagen, Valencia, CA) at 24 cycles/s for 30 s and then

clarified by centrifugation. Samples were analyzed for the presence

of infectious virus by plaque assay on Vero cells as previously

described [41].

Statistical analyses
We treated each group of 25 individual mosquitoes tested after a

fixed time at a temperature as an experimental unit (data point)

and the fraction of mosquitoes that were infected (# with virus in

the body/# fed), had disseminated infections (# with virus in their

legs/# fed), or transmitted (# expectorating virus/# fed) as

dependent variables. We built regression models (using SPSS v

15.0) including degree days (DD = tT, where t = time or days since

feeding, and T = temperature in degrees Celsius) and a genotype

by DD interaction (to test for a temperature and time varying

advantage of WN02) as independent variables. We note that this

statistical model (and the one described below) assumes that

infection and transmission are increasing functions of temperature

and time since feeding, and statistical effects model differences

between genotypes as differences in the rates of increase (slopes),

Author Summary

West Nile virus (WNV) was introduced into New York in
1999 and subsequently expanded its range to include
much of North, Central, and South America. Previously, we
have shown that a new strain of WNV (referred to as
WN02) that was first detected in 2001 and subsequently
spread across North America was more efficient at
infecting and being transmitted by Culex mosquitoes than
the strain that was originally introduced (referred to as
NY99). In the current study, we determined how temper-
ature and time since feeding on infected blood affected
the probability that mosquitoes would transmit these two
strains of WNV. We found that the advantage of the WN02
strain over the NY99 strain increased with both temper-
ature and time. Thus, warmer temperatures would have
facilitated the invasion of the WN02 strain. In addition, we
found that transmission of both strains of WNV accelerated
sharply with increasing temperature, such that small
increases in temperature had relatively large effects on
transmission. This laboratory study suggests that both viral
evolution and temperature influence the distribution and
intensity of transmission of WNV, and provides a model for
predicting the impact of temperature and global warming
on virus transmission.
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rather than fixed differences (intercept or main effects). We believe

intercept differences are less biologically realistic because infection,

dissemination, and transmission all start at zero and increase with

time and temperature. In essence, the statistical effect of viral

genotype is assumed to influence the rate at which the probability

of a group of mosquitoes transmitting and becoming infected

increases with temperature and time. We also note that our degree

model implicitly assumes the minimum temperature threshold is

0uC (since it uses the raw temperature), which is likely too low, as

no transmission was observed at 10uC in Cx. tarsalis held for 110

days [28]. However, the fit of the data were much better using raw

temperature than either (Temperature 210uC) or (Temperature

214.3uC) (the residual error from models in Table 2 with a

threshold of 14.3uC and 10uC were 3.02 and 1.87, respectively,

compared to 0.99 with a threshold of 0uC; all regressions had the

same number of predictors). We arc-sin square-root transformed

the three dependent variables to normalize the residuals. We

omitted an intercept from the model because we assumed that,

except for residual virus in the blood meal, infection and

transmission would be 0 at degree-day 0. The qualitative

conclusions presented below were identical using an intercept.

We then tested the hypothesis that infection, disseminated

infection, and transmission should accelerate with increasing

temperature faster than the DD model, by regressing the residuals

of the previous models against temperature. A priori, we

hypothesized that the increase in transmission and infection with

temperature would be a balance between chemical and kinetic

processes that increase exponentially (i.e. as eT where T is

temperature, and e is the base of the natural logarithm) and

rate-limiting processes that would constrain viral replication. Since

the residuals were significantly correlated with temperature for all

three dependent variables (see Results) we attempted to determine

if DD with a higher order temperature term would provide a

better fit to the data. To facilitate model comparison we replaced

the DD model term (tT) with a term that was the product of the

days since feeding (t) and temperature (T), raised to the power n

(tTn), and compared models with increasing n. For the DD by

genotype interaction we also used DD with temperature also

raised to the nth power. Finally, the qualitative results of both our

analyses were unaffected by using actual temperature to calculate

degree days, or degrees above a previously reported [28] threshold

for zero transmission of 14.3uC. Our own data, and those in ref.

[28], show that low-level transmission occurs at 14–15uC (but after

very long periods that may exceed mosquito lifespan in the field).

Results

We examined a total of 2075 Cx. pipiens mosquitoes in 83 groups

of 25 individuals and examined midgut infection, disseminated

infection, and transmission from 12 hours to 40 days post-feeding

(Figure 1). At 32uC, we detected transmission at 12, 36, and

60 hours for the WN02 genotype, and on day 3 (72 hours) for the

NY99 genotype of WNV (Figure 1C). Virus was also present in the

legs (and abdomens) of these mosquitoes at these time points

(Figure 1B) and was not present in the saliva of any of the

mosquitoes that were not infected, so it is unlikely that mechanical

transmission or regurgitation accounted for the virus detected in

the transmission assays (see also Discussion, below).

The initial regressions indicated that the fraction of mosquitoes

infected and the fraction with disseminated infections increased

with degree days (DD = tT) since feeding (Figures 1,2; Table 1).

However, neither was significantly different between genotypes

(Figures 1,2; Table 1). In contrast, transmission of WNV by Cx.

pipiens mosquitoes was significantly influenced by both DD and a

genotype by DD interaction (Figures 1,2; Table 1). The coefficient

of this last term indicated that the fraction of mosquitoes

transmitting WNV increased faster for the WN02 genotype than

the NY99 genotype (and the fitted function for WN02 was greater

at all times and temperatures since both lines intersect the origin).

In fact, the fraction of mosquitoes transmitting the WN02

genotype was greater than or equal to the fraction transmitting

the NY99 genotype for all but two of the 42 time-temperature

samplings (the two exceptions were at 22uC on days 7 and 10

where 1/25 mosquitoes transmitted the NY99 genotype but 0/25

transmitted the WN02 genotype). Thus, the WN02 genotype

appeared to have an advantage at both high and low

temperatures, and this advantage increased with time and

temperature.

However, the residuals of regressions for all three dependent

variables was significantly correlated with temperature (all

p,0.001), suggesting that a degree day predictor using a linear

product of temperature and incubation period (tT) was not fully

capturing the temperature-dependent acceleration in infection and

transmission. In the second statistical analysis, we found that both

transmission and disseminated infection was best predicted by a

model including DD with temperature raised to the 4th power

(tT4), and a DD by genotype interaction (Table 2). The results

were the same if the fraction transmitting was expressed as the

fraction of infected mosquitoes transmitting (arc-sin square root

transformed fraction of infected transmitting, DD: 9.0961028 tT4;

p ,0.0005; DD-genotype interaction: 23.3061028; p,0.0005).

Infection was also best predicted by a model including DD with

temperature raised to the 4th power (tT4), but was not significantly

influenced by the DD by genotype interaction (Table 2). The

residual error in these second set of regressions was substantially

lower compared to the first statistical analysis, with the same

number of independent variables (Tables 1,2). The significant

negative coefficient for DD by genotype interaction term for

transmission and disseminated infection again indicates that the

fraction of Cx. pipiens infected with and transmitting genotype

WN02 increased faster than mosquitoes transmitting NY99, as

illustrated by the raw data (Figure 1), and the fitted relationships

(Figure 2). Thus, WN02 would have a significant advantage over

NY99 under warmer conditions after the same incubation period.

Discussion

The relationship between temperature and the transmission of

pathogens has gained substantial attention recently, because

projected changes in global temperature may increase the health

burden of some diseases [42]. We have shown that, in the

laboratory, increases in temperature have a two-fold impact on

WNV transmission. First, as has been shown previously, increasing

temperatures significantly increased viral infection, dissemination,

and transmission, most likely through increased viral replication.

Our study used the plaque assay which measured the presence of

infectious virus and not the presence of unpackaged viral RNA, to

test for infection, dissemination, and transmission in the mosquito.

As a result, since the replication cycle is completed more quickly at

higher temperatures, this will lead to greater concentration of

infectious virus above the limit of detection in each mosquito. This

is the case for replication in all tissues, and as such, increased

temperature would affect not only infection kinetics, but

dissemination and transmission kinetics as well.

Second, warmer temperatures increased the advantage of the

WN02 genotype over the NY99 genotype virus, and this

advantage accelerated with temperature. Thus, the WN02

genotype appears to be better adapted to warmer temperatures

Temperature, Genetics, and West Nile Virus
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than NY99, and NY99 was better adapted to warm conditions

than a South African strain of WNV in Cx. tarsalis [28]. This result

highlights the importance of understanding vector-pathogen-

environment interactions and the role of pathogen evolution in

influencing transmission.

We also have shown that the advantage of WN02 over the

NY99 genotype extends beyond day 7 post infection in Cx. pipiens,

as we had observed in Cx. tarsalis [22]. The disparate results

between our study and previous research that indicated no

difference on day 9 [21] is likely due to extending the experiments

Figure 1. The relationship between genotype (NY99 and WN02), temperature, and days since feeding and the fraction of Culex
pipiens mosquitoes infected (A), with disseminated infections (B), or transmitting WNV (C), after 0.5–40 days as the proportion of
mosquitoes tested.
doi:10.1371/journal.ppat.1000092.g001
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past day 9 (up to day 40 at some temperatures) and including

additional experiments resulting in much larger sample sizes.

Nonetheless, our results support the earlier assertion that the

WN02 genotype has an advantage over the NY99 genotype in the

laboratory.

Our results refine the WNV temperature-transmission relation-

ship and show that WNV transmission in mosquitoes accelerates

nonlinearly with the extrinsic incubation temperature, suggesting

that even a small increase in temperatures can have a significant

impact. They show that traditional degree day models for WNV

may not accurately describe the impact of temperature on

transmission. Instead, transmission may be more accurately

modeled using degree day functions that include a temperature

term raised to a power greater than 1. For WNV, we found that a

degree day term with temperature raised to the fourth power, tT4,

was most accurate in explaining variation in transmission in our

data. The implications of this difference are that even relatively

small changes in temperature (e.g. the 2uC projected change in

global temperatures [43]) have the potential to substantially

increase transmission, and traditional degree day models used to

investigate the potential impact of global warming will thus

underestimate the effects of warming on transmission of WNV by

mosquitoes. For example, if we fit a linear degree day model, tT, to

our data, an increase from 28uC to 30uC would be predicted to

increase temperature only 0.9% (from 12.1% to 13.0%), whereas

the fitted model with tT4 this increase from 28uC to 30uC would

actually increase transmission 7.8% (from 11.4% to 19.2%).

In our study, we occasionally detected infectious virus in both

salivary secretions and the legs of mosquitoes only 12 hours after

feeding on an infected blood meal. Although under normal

conditions the WNV replication cycle requires 10–12 hours [44],

it is known that the virus replicates more quickly at higher

temperatures [45]. Thus it may be possible that sufficient levels of

replication took place in some mosquitoes held at 32uC to result in

dissemination and transmission very quickly after feeding. It is

equally possible that at high temperatures the cell junctions of the

epithelium of the midgut were disrupted or increasingly permeable

creating a rapid mechanism for midgut escape, possibly via

leakage of virus, as has been observed with other virus-mosquito

pairs [46–48]. This would have facilitated early escape of the virus

to the legs, and subsequent infection of the salivary glands. Since

the only mosquitoes that had virus in their salivary secretions were

those that had virus in their legs, this argues against either

mechanical transmission due to residual virus on the proboscis or

regurgitation of virus from the midgut during the capillary

transmission assay. Nonetheless, we cannot entirely rule out these

other explanations, and furthermore, it is unlikely that mosquitoes

would feed again 12 or 24 hours after the initial blood meal unless

they had only obtained a partial or interrupted blood meal.

It should be noted that our study did not evaluate the impact of

mosquito rearing temperature, as all immature stages were

maintained at 27uC. Previous work showed that vector compe-

tence for several flaviviruses, including Murray Valley [49],

Japanese encephalitis [50], and St. Louis [51] encephalitis viruses,

and dengue [52] and yellow fever [53] viruses, was depressed by

maintaining adults at temperatures lower than those they

experienced during larval development. In contrast, transmission

of two alphaviruses, eastern equine encephalitis [54] and western

equine encephalomyelitis [55], were not observed to decrease

when adults were maintained at temperatures lower than the

Figure 2. Fitted relationships between the fraction of mosquitoes transmitting virus for two genotypes of WNV and time and
temperature, based on the statistical model in Table 2(WN02: Tr = (sin(8.00tT4/108))2; NY99: Tr = (sin(5.32tT4/108))2. Each curve shows
the fraction of mosquitoes transmitting at a fixed time period after feeding on WNV-infected blood (4, 7 or 14 days) with points showing increasing
temperatures (12uC to 32uC, symbol every 2uC).
doi:10.1371/journal.ppat.1000092.g002

Table 1. Regression analysis (no intercept) of midgut infection, disseminated infection, and transmission after arc-sin square root
transformation with Degree Days (DD) and a genotype (GT) by Degree Day interaction as predictors.

Term Transmission p-value Disseminated Infection p-value Infection p-value

DD*103 0.6260.084 ,0.0005 1.2060.16 ,0.0005 2.060.28 ,0.0005

GT-DD*103 20.2760.12 0.029 20.3260.23 0.17 20.1160.39 0.77

Residual Error 3.41 12.9 37.5

Total Error 6.38 24.7 82.9

Coefficient61SD is given.
doi:10.1371/journal.ppat.1000092.t001
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rearing temperature, and early season populations were consider-

ably more susceptible to infection that those collected during

midsummer.

These results contribute to our broader understanding of how

factors can generate spatial and temporal variation in transmission

of pathogens. The transmission of WNV by Cx. pipiens has been

shown to be influenced by host availability [12], mosquito genetic

ancestry [56], and now the interaction of temperature and viral

genotype. A key goal of future research will be to link the

temperature-transmission patterns observed in the laboratory to

patterns of transmission in the field. This should enable more

accurate predictions of the impact of climate and climate change

on the transmission of WNV and other vector borne pathogens.
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