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1. Introduction. Let D = {(x, O): 2 > 0,¢t > 0}, S = {(0, H): ¢t > 0}, and C =
{(z,0) : z > 0} with D™ and S~ denoting the closures of D and S respectively. Also let
u(z, t) be the temperature distribution in a homogeneous, isotropic and semi-infinite
rod, which is radiating heat along its entire length at the rates proportional to « and
g(z, t; w), and also at the end x = 0 at the rates proportional to u and B(t; w). Without
loss of generality in the main results, we assume the diffusivity of the rod to be one.
If energy is supplied to the end z = 0 at a rate proportional to some function f(¢), and
the initial distribution of temperature is given by ¢(x), then u(z, t) is determined by the
following initial boundary value problem:

Lu = u,(z, t) — hu(x, t) — u, (2, t) = kg(x, t; u) in D, (1.1)
u(z, 0) = ¢(x) onC, (1.2)
Au = u,(0,t) — bu(0,t) = aB(t; u) — f(t) on S, (1.3)

where u is assumed to tend to zero as z tends to infinity for ¢ > 0. Here h, k, b and a are
given constants with 4, k and a being nonnegative while the given functions g, ¢, B and f
are piecewise continuous with ¢ and f being bounded and nonnegative, and f = 0 for
T <t < o, where T is a nonnegative constant.

When k = ¢ = 0, and B(t; u) = 4"(0, t), where n is a positive constant, our problem
(1.1)-(1.3) reduces to the one studied recently by Hartka [2]. If in addition » = b = 0,
then we have the problem considered by Keller and Olmstead [3]. For further references,
we refer to these papers, where existence of the nonnegative solution for each problem
was established by constructing the surface temperature u(0, ). On the other hand, if
B(t; u) = 4"(0, t), then n = 1 corresponds to the Newton law of cooling, and n = 4
corresponds to the Stefan radiation law for black bodies.

The main purpose of this paper is to establish existence of the maximal and the
minimal nonnegative solutions of the problem (1.1)-(1.3), to give conditions under which
these coincide, and to construct upper and lower bounds for the nonnegative solutions.
Our quest for nonnegative solutions is motivated by the physical concept of the absolute
temperature. The methods used here are different from those in the above-mentioned
papers.

Instead of treating the special case B(t; u) = u"(0, t), we shall require B to satisfy
some or all of the following conditions:
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(B,) there exists a bounded, nonnegative and piecewise continuous function ¢(z, t)
such that for bounded functions u(z, t) and »(z, t) in D™, B(t; u(0, t)) — B(t; v(0, t)) <
qu(0, t) — v(0, )] if u > v at (0, t);

(Bs) B(t;0) = 0;

(B;) u > 0 at the point (0, t) implies B(¢; u(0, t)) > 0;

(B,) u > v at the point (0, t) implies B(t; (0, t)) = B(t; v(0, t)).

Also we shall need the function ¢ to satisfy some or all of the following assumptions:

(g,) there exists a bounded, nonnegative and piecewise continuous function p(z, t)
such that for bounded functions u(z, t) and v(z, t) in D7, g(x, t; u(z, t)) — g(a, t;v(z, 1)) <
plu(z, t) — v(z, t)] if u > vat (, t);

(92) 9(x,t,0) = 0;

(g9s) u > 0 at the point (x, t) implies g(z, t; u(z, t)) > 0;

(g.) u > v at the point (z, f) implies g(z, ¢; u(x, t)) = g(z, t; v(z, t)).

Here we note in particular that ¢ and p in conditions (B;) and (g,) respectively can
be replaced by appropriate nonnegative constants. Also, conditions (B;) and (B,) taken
together imply condition (B;) while assumption (g;) follows from assumptions (g.)
and (g,).

Let

K, t;g ) = {27[x(t — D]} exp { — (v — §)/[4( — 1)}

Also let Z(z, t; £, 7) be the solution of
Z=2Z,.(tE7)— N(x,t; 8, 7) — Z(x, 8, E,7) =0 for a,£>0,t> 7,

Z(CB, 7 & T) = 6(1/ - E))
'YZ = Z:(O; L& T) - GZ(O’ ) T) =0,

where & is the Dirac distribution, A and 6 are given constants. The function Z is a funda-
mental solution called the Neumann function (cf. Chan [1]) of lw(a, t) = 0 in D and
yw(0, t) = 0 on 8. Let

Z(x, t; 8 1) = 2(x, t; £ 7) exp [=N( — 7)]. (1.4)
It follows from Stakgold [5, pp. 209-210] that
2(x, t; £, 7) = Kz, ;£ 1) + K(—=x, t; ¢, 7)

— Ofr(t — D] f: exp {—0y — (x + ¢+ y)'/4¢t — D)} dy.  (1.5)

We shall need the following two positivity lemmas.

Lemma 1. Z(x, t; ¢, 7) > 0fora, £ >0, > 720.

Proof. If 8 = 0, then it follows from (1.4) and (1.5) that the lemma is proved.
If 6 = 0, then by integrating the third term on the right-hand side of (1.5) by parts,
we have

z(z’ t; &, T) = K(I; i & 7') - K(—l, L& 7)

F - f [exp (— )]z + & + PK(—z, t; £+ y, 7 dy,

from which the Lemma follows with the use of (1.4).
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The solution w(x, t) of the problem

lw =G, t) in D, (1.6)
w(x, 0) = &(x) on C, 1.7)
yw = F(1) on S, (1.8)

where w tends to zero as x tends to infinity for ¢ > 0, is given by

wie, 0 = [ e, 5 000 & — [ ' [ 26 65 966 7 ax s

— f 2, t; 0, 7)F(7) dr.

This together with Lemma 1 gives the following result.

Lemma 2. Ifin (1.6)-(1.8),G < 0,® > 0,and F < 0, thenw > 0in D",

In Sec. 2, we establish existence of the maximal and the minimal nonnegative solu-
tions, which are constructed respectively as the limits of a monotone nonincreasing
sequence of upper bounds and a monotone nondecreasing sequence of lower bounds.
Hence the error involved in using a certain approximate solution can be estimated. Also
we give conditions which ensure uniqueness of the solution. With uniqueness, the rate of
convergence for each of the above sequences is shown to be geometrical. In Sec. 3, we
show that an iteration scheme of the Pieard type gives an alternating sequence consisting
of two monotone subsequences bounding any nonnegative solution from above and below.
Thus each successive iteration gives a more accurate pointwise upper or lower bound.
Under additional assumptions, this sequence is shown to converge uniformly and geo-
metrically to a solution.

2. Maximal and minimal solutions. Since we are interested in nonnegative solu-
tions here, we shall use the following definition.

Definition. A solution M(z, t) (m(x, {)) of the problem (1.1)-(1.3) is said to be
maximal (minimal) if w(x, t) < M(z, t) (m(z, {) < u(z, t)) for any nonnegative solution
u(z, t).

Let us construct a sequence { M, (x, )} by LMy = 0in D, M, = ¢onC,AM, = —f
on S, and for7 =0,1,2, ---,

LM;,, = kyg(x, t; M;) ++(M,,, — M,) in D, 2.1
M,.,,=¢ on C, (2.2)
AM;,, = aB(t; M) +s(M;,;, — M;) —f on S, (2.3

where M, tends to zero as x tends to infinity for-£ > 0, 7 and s are constants chosen to be
r > kp and s > ag with p and ¢ being given in conditions (g,) and (B,) respectively.
The following theorem shows that this constructed sequence forms a uniformly bounded
and monotone nonincreasing sequence of upper bounds for solutions of the problem
(1.1)-(1.3), and also establishes existence of the maximal solution.

TaeoreM 1. Under assumptions (g,)—(¢gs) and (B,)—(Bs), and b* — h < 0if b < 0,
the sequence {M,} satisfies the inequalities

0<M\, <M,<¢ in D, =012 - (2.4)
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where ¢, is a nonnegative constant; furthermore, it converges to the maximal solution

of the problem (1.1)-(1.3).
Proof. By Lemma 2, M, > 0in D™. On the other hand,

Moo, 0 = [ RO, 65000 & + [ RO, 60, 910 dr,
where R is the Neumann function of L = 0in D and Aw = 0 on S. From (1.4) and
Stakgold [5, pp. 209-210], R can be written in the form
R(r, ;¢ 1) = {exp [=h(t — DK, G 1) + K(=r, £, 7)]
— blexp [b(e + &) + O — W)t — )]}
AL = erf [0 + 9/ — ') + bt — DN, (@2.5)

where crf y = 277'% [,* exp (—&°) df is the error function. Since ¢ and f are bounded,
let ¢, and ¢; be nonnegative constants such that ¢ < ¢, and f < ¢; . Also, let

E=1¢7 if t<T,
=" @t -=")" if t>7T,
F=(h—b)'{exp [T(h — b)) — 1} if b<0 and b — h <O,
=7 if b<0 and b —h =0.
Using f = Ofor¢ > T, and the facts that 0 < erfy < lande™ < 1 for y > 0, we obtain
My(r, t) < [exp (—hD)][3¢2/2 + 2¢;,Ex~""* exp (hT)] if b > 0,
Mo(r, t) < [exp (—hD)){c.[3/2 + 2 exp (b*D)]
+ 2¢3[n " °E exp (hT) + [b| F exp (b*)]} if b < 0. (2.6)
Since b — k < 0if b < 0, we have
Mo(x, t) < Tca/2 + 2¢[x °T"? exp (hT) + |b] FJ,
irrespective of the sign of b. Denoting the right-hand side by ¢, , we have M,(2, t) < ¢, .
From assumptions (g,) and (g.), we have
g, t; My) — pMo(a, t) < g(z, t;0) = 0.
Similarly, from assumptions (B,) and (B,), we have
B(t; M,) — gM,0,t) < B(t; 0) = 0.
It follows from (2.1) and (2.3) respectively that
(L — )M, < klg(e, t; My) — pM,] <0 in D,
(A — )M, < a[B(t; My) — gM,)] — f <0 on 8.

Since ¢ > 0, it follows from Lemma 2 that M, > 0in D".
Next, we show that M, > M, in D™, Since M, > 0in D7, it follows from assumptions
(92), (95), (B>) and (Bs) that g(x, t; M,) > 0 and B(t; M,) 2 0. Thus,

(L—7rM,— M) = —kglx,t; M) <0 in D,
(A —s)(My — M) = —aB(t; M) <0 on 8.
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Since My, — M, = 0on C,wehave My > M, in D".
To establish (2.4), let us assume that for a particular value of 7 (say j > 1),
0<M,<M,, <+ <My,<¢ in D.
Then it follows from assumptions (¢,) and (g,) that
g(x, t; M;) < pM; , (2.7)
and from assumptions (B,) and (B,) that
B(t; M;) < qM; . (2.8)
Thus,
(L —vM;,, <(kp—n)M; <0 in D,
(A —9)M;,, <(ag—s)M; — <0 on 8.
Hence, M;,, > 0 in D". Using assumptions (¢,) and (B,), we have
(L—n)(M; — M;,,) <tkp—n)M,;,., — M,)<0 In D,
A -9, — M;,,) <(agq—s)M,_, — M;) <0 on 8.

Since M; — M;,, = 0 on C, it follows that M; > M,,, in D”. From the principle of
mathematical induction, we have (2.4).

Since the sequence {A/;} is monotone noninereasing and uniformly bounded, there
exists a function A/ to which the sequence converges pointwise. To show that A7 is
a solution of the problem (1.1)-(1.3), let us rewrite the iteration scheme (2.1)-(2.3)
equivalently as

M, 0 = [ RG, 68 00 d
—f fw R(r, t: &, Dlkg(e, 7 3) + 1M ., — M) dt dr

- ft R(x, ;0, )[aB(r; M) + s(M.. — M) — f(7)] dr. (2.9)

By Lemma 1, (2.4), (2.7) and (2.8), the integrands in the second and the third integrals
on the right-hand side of (2.9) are bounded respectively by

(kp + 1M, 1R, 8§ 1),
[aqM0(07 T) + SZ”O(O; T) + 63]R(:vy t; 07 T)v

both of which are integrable over their respective regions of integration. As 7 tends to
infinity in (2.9), it follows from the Lebesgue convergence theorem (cf. Royden [4, p.
200]) that we can interchange the limit and the integration processes. Hence,

M, 0 = [ R, 5000 de — & [ [ RG, G D, 700 de dr

J0

_ f R(r, t; 0, D)aB(r; 1) — [(r)] dr.

This implies that M is a solution of the problem (1.1)-(1.3).
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To show that M is maximal, let v be any nonnegative solution of the problem
(1.1)-(1.3). Then,

LMy, —w) = —kg(r, t;u) <0 in D,
AM, —w) = —aB(t;uw) <0 on S.

As My — uw = 0 on C, we have M, > u in D™. Let us assume that w < M; in D™ for
some j. Using assumptions (¢,) and (B,), we have

(L -0y, —w) < (kp —0)(M; —u) <0 in D,
(A —=8)(M;,, —u) < (ag —s)(M; —u) <0 on S.

Since M ;,; — u = 0 on C, it follows that M ;,, > win D”. From the principle of mathe-
matical induction, we have v < M, in D™ for7 = 0,1, 2, --- . Hence u < M in D™,
This shows that A is the maximal solution.

If b* — h < 0, then it follows from (2.6) that A ,(x, t) tends to zero as ¢ tends to
infinity; this is physically obvious since the temperature must approach zero if heat is
lost along the length of the rod faster than it can be absorbed at the end (ef. Hartka [2]).

Our next thecorem gives a monotone nondecreasing sequence of lower bounds for
nonnegative solutions of the problem (1.1)-(1.3), and also existence of the minimal
solution. We omit its proof here since it is similar to that of Theorem 1 with some obvious
modifications.

TuaeoreM 2. Under the hypotheses of Theorem 1, the sequence {m,(x, £)} con-
structed by my = 0in D™, and for7z = 0,1, 2, --- |

Lm;,, = kg(r, t; m;) +r(m;,y — m;) in D,
mig=¢ on C,

Am;, = aB(t; m) + s(m,yy, — m,) — f on S,

where m; tends to zero as a tends to infinity for ¢ > 0, satisfies
0<m; < m,, <My,<e¢ in D7, 1=0,1,2, -+, (2.10)

and converges to the minimal solution m of the problem (1.1)—(1.3).

That the maximal solution is nonnecgative follows from its definition. Because of
(2.10), the minimal solution is also nonnegative. The following result gives the conditions
under which we have a unique solution.

TueorEM 3. Under the hypotheses of Theorem 1 and the assumptions (¢,) and (B,),
there exists a unique nonnegative solution of the problem (1.1)—(1.3).

Proof. By Theorems 1 and 2, we have existence of the maximal solution A7 and the
minimal solution m. Thus,

0 < M, )= mle, ) = —k [ [ RG, 68 Dlote, 75 00) = o6&, 7 m)) dt dr

—af R(r, 1:0, )B(r; M) — B(r: )] dr in D~ (2.11)

It follows from Lemma 1 and assumptions (¢,) and (B,) that the integrands in the last
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two integrals arc nonnegative, and hence from (2.11) we have
0 < M, t) — m(a,t) <0in D"

Thus, M = m in D™, and hence the solution is unique.

Our next result gives the rate of convergence of each of the sequences {M;} and {m,}
to the solution.

TueorEM 4. Under the hypotheses of Theorem 3, each of the sequences {M;} and
{m,} converges uniformly and geomectrically to the unique nonnegative solution

= l_im M, = l_im m; (2.12)

of the problem (1.1)-(1.3).

Proof. Since M,,, < M,in D™,k > 0,and a > 0, it follows from (2.9), Lemma 1,
and assumptions (B,) and (g,) that

t ©
M) = Mite, 0 <7 [ [ R, 8 DO, = M) dg dr
<0 0

4 sf R(r, ;0, (M,_, — M) dr

after having dropped out the nonpositive terms. Let

pi = sup M[in - ]ua":
(r,t)YED™
and ¢, = max {r, s}. Then
o < c,)[f f R, ;£ 7) dt dr + f RG, 150, 7) dr]- (2.13)
Using (2.5), and the facts that 0 < erf y < 1 and ¢ < 1 for y > 0, we have
pe < l(7/2 4 2Dt 4+ 207 pi (2.14)

Let the quantity inside the square brackets be denoted by w(f), which is nonnegative.
From (2.4), p, < ¢, . Thus it follows from induction that

pn < [ean(®)]"po < cilean(®)].

Let us choose the time interval [0, ¢] such that cu(t) < 1 so that the scquence {M;}
converges uniformly and geometrically to a solution on [0, ¢] with the use of the Lebesgue
convergence theorem. Since 3/, > 0, this solution is nonnegative.

Next, we start from ¢t = ¢ — 7, where 7 is an arbitrarily chosen positive constant such
that ¢ — # > 0. Using an argument similar to the above, we obtain the incquality

el (7/2 + 2 |b|)(t — o+ 1)+ 21,-—1/2(t — ¢+ "7)1/2] <1

restricting the time interval for convergence. To satisfy this inequality, we can choose
the time interval to be [¢ — 7, 26 — 7]. Thus, {M;} converges uniformly and geometri-
cally to a nonnegative solution for 0 < ¢ < 2¢ — 7. By repeating the above procedures,
we have uniform and geometrical convergence of {3} to a nonnegative solution of the
problem (1.1)-(1.3).

A similar argument applied to the sequence {m,} shows that {m,} converges uniformly
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and geometrically to a nonnegative solution. From Theorem 3, the nonnegative solution
of the problem (1.1)-(1.3) is unique. Thus, (2.12) holds.

3. Alternating bounds. Let us construct the sequence {u,(x, )} by u, = M,in D7,
and forz =0,1,2, --- |
Lu;., = kg(x, t;u;) in D,
Uiss =¢ on C,
Au; oy = aB(t;u;)) — f on S,

where u; tends to zero as x tends to infinity for ¢ > 0. This gives an alternating sequence,
which is different from that by Keller and Olmstead [3].
TaeorEM 5. If assumptions (g.), (9.), (B2) and (B,) hold, then any nonnegative

solution u of the problem (1.1)-(1.3) satisfics
U < v LUy < s Su s Sup <o Syin DL (3.1)

Proof. Tirst, we show that u < u, in D™. Since assumptions (¢.) and (¢,) imply (¢s),
and v > 0in D7, we have ¢(x, {; w) > 0 in D. Similarly, assumptions (B;) and (B,)
imply (B;), and we have B(t; w) > 0 on S. Thus,

L, —w) = —kg(r, t;u) <0 in D,
Aluy, — u) = —aB(t;u) <0 on S.

Since uy — u = >

Because u < u, in D7, it follows from assumptions (g,) and (B,) respectively that
Lu —u) <0inD,and A(u — u;) <0onS.Asu — u, = 0on C, we have u >
in D™,

Let us assume that for a particular value of 7, say 7,

0 on C, we have u, > u in D™ by using Lemma 2.

U < s S Uy SuUL U < - <y in DT

Then for ¢ = j + 1, it follows from assumptions (g,) and (B,) respectively that
L(uzjse — u) < 0in D, and A (uz;,» — u) < 0on S. Since uz;:2 — u = 0 on C, we have
Us;+2 > uin D™, By repeating the argument for uy; — Ugjve, % — Ugirs , A0 Ugjuz — Usjur
respectively, we have uz; > Uaji2 , U > Usjys , and Upje3 = Uzj+1 , F'Tom the principle of
mathematical induction, we have (3.1).

The subsequence {u.,.,} is monotone nondeereasing and bounded above by u, while
the subsequence {u.;} is monotone nonincreasing and bounded below by u, . It has not
been proved above that the alternating sequence converges to a solution of the problem
(1.1)-(1.3). Even if the odd and the even subsequences converge respectively to a lower
bound and an upper bound, neither of them may be a solution. Our next result shows
that under additional conditions, the sequence {u,} does converge to a solution, which
need not be nonnegative.

ThHEOREM 6. Under the hypotheses of Theorem 5, assumptions (¢,) and (B,),
b>’ — h <0ifb < 0,and g = B = 0 for ¢t > ¢ where ¢ is a nonnegative constant, the
sequence {u;} converges uniformly and geometrically to a solution of the problem
(1.1)-(1.3).

Proof. Tirst, let us show that u, is bounded below by a constant. From (2.4),
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0 < %, < ¢;in D™, Thus, g(z, t; uo) = 0 and B(t; u,) > 0. It follows that

1M%02-%£.ERuMﬁmMQer&dr—aﬁRmHOJWGWJM

after having dropped out the nonnegative terms on the right hand side. Let
d=1t¢ if t<ec,
=c if t>c
Using assumptions (g,), (92), (B,) and (B,), r > kp, s > aq, and ¢, = max {r, s}, we have

wie 0> —cal [ [ R 66 deir+ [(Re 50,0 ).

A reasoning analogous to that in arriving at (2.14) from (2.13) gives
wi(x, £) > —cieaf (7/2 + 2 |b)d + 22747 — (¢ — d)]}.
Since
M — (t— &) < ¢V
we have
wi(z, 1) > —eel(7/2 + 2 |b)e + 277 %),

Thus, «, is bounded below. An argument similar to that in proving the convergence
of {M,} in Theorem 4 shows that the sequence {u;} converges uniformly and geometri-
cally to a solution of the problem (1.1)-(1.3).

We note that in each step of the constructions of the maximal and the minimal
solutions, the same Neumann function of (L — r)w = 0in D and (4 — s)w = Oon S
is used, except in the initial step of constructing M, when we use the Neumann function
of Lw = 0in D and Aw = 0 on S. This latter function is also used in the constructions
of the alternating bounds.
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