
Template Attacks in Principal Subspaces

C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater

UCL Crypto Group - Université catholique de Louvain
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

{archambeau, peeters, standaert, jjq}@dice.ucl.ac.be

Abstract. Side-channel attacks are a serious threat to implementations
of cryptographic algorithms. Secret information is recovered based on
power consumption, electromagnetic emanations or any other form of
physical information leakage. Template attacks are probabilistic side-
channel attacks, which assume a Gaussian noise model. Using the max-
imum likelihood principle enables us to reveal (part of) the secret for
each set of recordings (i.e., leakage trace). In practice, however, the ma-
jor concerns are (i) how to select the points of interest of the traces, (ii)
how to choose the minimal distance between these points, and (iii) how
many points of interest are needed for attacking. So far, only heuristics
were provided. In this work, we propose to perform template attacks in
the principal subspace of the traces. This new type of attack addresses
all practical issues in principled way and automatically. The approach is
validated by attacking stream ciphers such as RC4. We also report analy-
sis results of template style attacks against an FPGA implementation of
AES Rijndael. Roughly, the template attack we carried out requires five
time less encrypted messages than the best reported correlation attack
against similar block cipher implementations.

1 Introduction

Since their first public appearance in 1996 [6], side-channel attacks have been
intensively studied by the cryptographic community. The basic principle is to
monitor one (or more) unintentional channels that leak from a device such as a
smart card and to match these observations with a key-dependent leakage pre-
diction. This channel is usually monitored thanks to an oscilloscope that samples
a continuous analog signal and turns it into a discrete digitalized sequence. This
sequence is often referred to as a trace.

Recently, a probabilistic side-channel attack, called the Template Attack (TA),
was introduced [2]. This attack was originally mounted to target stream ciphers
implementation. In this context, the attacker can only observe a single use of
the key, usually during the initialization step of the cipher. As it is not possible
to generate different leakages from the same secret key (e.g., corresponding to
different plaintexts), TAs were purposed for a more efficient way of retrieving
information from side-channel traces.

There are three main reasons that make TAs more efficient than previous
approaches to exploit side-channel leakages. First, TAs usually require a pro-
filing step, in order to build a (probabilistic) noise model of the side-channel

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 1–14, 2006.
c© International Association for Cryptologic Research 2006

2 C. Archambeau et al.

that can be used to capture the secret information leaked by a running device.
Second, TAs usually exploit multivariate statistics to characterize the dependen-
cies between the different time instant in the traces. Finally, TAs use maximum
likelihood as similarity measure, that can capture any type of dependency (if
the probabilistic model is found to be adequate), whereas, for example correla-
tion analysis only captures linear dependencies [1]. In general, the cost of these
improvements is a reduction of the adversarial flexibility. For example, Ham-
ming weight leakage models can generally be used for any CMOS devices while
template attacks profile the leakage function for one particular device.

TA relies on the hypothesis that leakage information is located in the vari-
ability of the leakage traces. In order to recover the secret, one has thus to focus
at the time instants where the variability is maximal. However, in practice it
is not clear how many and which moments exactly are important. The attacks
are therefore based on heuristics, which specify these quantities according to
some prior belief. For example, it is common to force the successive, relevant
time instants to be one clock cycle distant.

The main contribution of this work is that we take TA a step further. Instead
of applying TA directly, we first transform the leakage traces such that we are
able to select the relevant features (i.e. transformed time instants) and their num-
ber automatically. Meanwhile, we do not need to determine a specific feature in-
terdistance. Of course, when performing TA after transformation, we still take
the correlations between the features into account. Now, in order to find a suit-
able transformation consider again ordinary TA. It is assumed that the secret
information leakage is mainly hidden in the local variability of the mean traces.
If this hypothesis is valid, it would be more appropriate to take the optimal lin-
ear combination of the relevant time samples and perform TA in the principal
subspace of the mean traces. We call this approach principal subspace-based TA
(PSTA). A principal subspace can be viewed as a lower dimensional subspace
embedded in the data space1 where each coordinate axis successively indicates
the direction in which the data have maximal variability (or variance).

A standard statistical tool for finding the principal subspace of a data set is
principal component analysis (PCA) [5]. PCA performs an eigendecomposition
of the empirical data covariance matrix in order to identify, both, the principal
directions (eigenvectors) and the variance (eigenvalues) associated to each one
of them. However, practical issues may arise in the context of PSTA, as the
dimension of the traces is much larger, (typically O(105)) than the number of
traces (typically O(103)). Therefore, we propose to use a variant of PCA that is
more suitable in this situation (see Section 3.1 for further details).

An attractive feature of PSTA is that the projected traces are aligned with the
directions of maximal variance. These directions are nothing else than a weighted
sum of all the time instants, the weights being determined such that the data
variability is preserved after projection. So, in contrast to TA, which selects a
relevant subset of time instants according to a heuristic, PSTA determines first
the optimal (in terms of maximal variance) linear combination of these time

1 Here, the data space is the space in which the leakage traces live.

Template Attacks in Principal Subspaces 3

instants. In other words, there is no need to determine an interdistance between
the time samples anymore as the irrelevant ones will be assigned a small weight.
Furthermore, based on the value of the eigenvalues, one can determine which (the
largest) and how many directions are relevant. In order to validate our approach,
we finally apply the described techniques to two implementation cases. First we
target an implementation of RC4, similar to the one in [3] as a typical context
where template attacks are necessary. The, we target an FPGA implementation
of the AES Rijndael. For this purpose, we suggest an adaptation of template
attacks that allow characterizing the leakage traces of block ciphers. We finally
compare the obtained results with previously reported and observe a significant
improvement of the attacks efficiency (which is, again, to be traded with less
flexibility than previous attacks).

2 Template Attacks

In this section, the underlying principle of Template Attacks (TA) is first pre-
sented. Next, we introduce principal subspace TA (PSTA). In this approach,
(linear) dimensionality reduction techniques [5,4] are used to select automati-
cally the most relevant features and their number. In this context, features can
be understood as weighted sums of the most relevant trace samples. In addition,
both the computational requirements as well as the prohibitive memory usage
of standard TA are reduced in a principled way.

2.1 Templates

Suppose that Pk traces of a given operation Ok were recorded. The traces
{tpk

}Pk
pk=1 are N -dimensional time vectors. In TA a Gaussian noise model is

considered [2], meaning that {tpk
}Pk

pk=1 are assumed to be drawn from the mul-
tivariate Gaussian distribution N (·|μk, Σk), which is defined as follows:

N (t|μk, Σk) = (2π)− N
2 |Σk|−

1
2 exp

{
−1

2
(t − μk)TΣ−1

k (t − μk)
}

. (1)

Note that the mean μk and the covariance matrix Σk specify completely the
noise distribution associated to the operation Ok. Constructing the templates
consists then in estimating the sets of parameters {μk}K

k=1 and {Σk}K
k=1.

A standard approach is to use the maximum likelihood principle. In this ap-
proach, we seek for the parameters that maximize the likelihood of the ob-
servations (traces) under the chosen noise model. Maximizing the likelihood is
equivalent to maximizing the log-likelihood, which is given by

log Lk ≡ log
Pk∏

p=1

p(tpk |Ok) =
Pk∑

pk=1

log N (tpk |μk, Σk) (2)

where p(tpk
|Ok) is the probability of observing trace tpk

if we assume that op-
eration Ok was performed on the device. Direct maximization of (2) is straight-
forward and leads to the following estimates:

4 C. Archambeau et al.

μ̂k =
1
Pk

Pk∑
pk=1

tpk , Σ̂k =
1
Pk

Pk∑
pk=1

(tpk − μ̂k)(tpk − μ̂k)T. (3)

Note that these quantities correspond respectively to the empirical mean and
the empirical covariance matrix associated to the observations {tpk

}Pk
pk=1.

2.2 Attack

Assume that the set of possible operations that can be performed on the device
is {Ok}K

k=1. In order to determine to which operation a new trace tnew (for
example measured on a different device than the one on which the templates
were constructed) corresponds, we apply Bayes’ rule. This leads to the following
classification rule:

Ôk = argmax
Ok

P̂ (Ok|tnew) = argmax
Ok

p̂(tnew|Ok)P (Ok), (4)

where p̂(tnew|Ok) = N (tnew|μ̂k, Σ̂k) and P (Ok) is the prior probability that
operation Ok was performed. Thus, the classification rule assigns tnew to the op-
eration Ok with the highest posterior probability. Note that when the operations
are equiprobable P (Ok) equals 1/K.

3 Template Attacks in Principal Subspaces

In practice, the number of samples N per trace is very large, typically O(105) as
it depends on the sampling rate of the recording device. A high sampling rate is
usually mandatory in order to retain the frequency content of the side-channel.
This leads to excessive computational loads and a prohibitively large memory
usage. Furthermore, it is expected that only a limited number of time samples
are relevant for TA.

Several attempts were made to address these practical issues. Chari, et al.
[2] select time samples showing the largest difference between the mean traces
{μk}K

k=1. Rechberger and Oswald [8] used a similar method; their selection rule
is based on the cumulative difference between the mean traces. In addition,
the traces are pre-processed by a Fast Fourier Transform (FFT) in order to
remove high frequency noise. Another, simple rule is to select the points (af-
ter pre-processing) where the the largest variance of the mean traces occur. All
these approaches assume that the relevant samples are the ones with the high-
est variability. However, they only provide heuristics and are therefore by no
means optimal. Furthermore, they require to chose an arbitrary minimum dis-
tance between successive points (for example the clock cycle) in order to avoid
redundancy and there is no satisfactory rule to determine how many such sam-
ples are needed to attack optimally.

Another, more systematic approach, which also relies on the data variability,
is to select the relevant points based on principal component analysis (PCA)
(see for example [5,4]). PCA is a standard statistical tool for dimensionality
reduction. It looks for a linear transformation that projects high-dimensional

Template Attacks in Principal Subspaces 5

data into a low-dimensional subspace while preserving the data variance (i.e., it
minimizes the mean squared reconstruction error). In order to minimize the loss
of relevant information, PCA works in two steps. First, it looks for a rotation of
the original axes such that the new coordinate system indicates the successive
directions in which the data have maximal variance. Second, it only retains the
M most important directions in order to reduce the dimensionality. It assumes
therefore that the variability in the discarded directions corresponds to noise.
An example is shown in Appendix A.

3.1 Trace Principal Subspaces

Consider a set N -dimensional observations {tk}K
k=1, which are the empirical

mean traces associated to the set of operation {Ok}K
k=1. PCA looks for the first

principal directions {wm}M
m=1 such that N ≥ M and which form an orthonormal

basis of the M -dimensional subspace capturing maximal variance of {tk}K
k=1. It

can be shown [5] that the principal directions are the eigenvectors of the empirical
covariance matrix, which is given by

S̄ =
1
K

K∑
k=1

(tk − t̄)(tk − t̄)T. (5)

The quantity t̄ =
∑K

k=1 tk is the average of the mean traces.
In TA, N is typically O(105), meaning that S̄ ∈ IRN×N is beyond computation

capabilities. Furthermore, the total number of mean traces K is much smaller
than N . Matrix S̄ is of rank K − 1 (or less) and has therefore only K − 1
eigenvectors. Fortunately, one can compute the first K − 1 eigenvectors without
having to compute the complete covariance matrix S̄ [4].

Let T = (t1 − t̄, . . . , tK − t̄) ∈ IRN×K be the matrix of the centered mean
traces. By definition the empirical covariance matrix is given by 1

K TTT. Let us
denote the matrix of eigenvectors and eigenvalues of 1

K TTT by respectively U
and Δ, the latter being diagonal. We have (1

K TTT)U = UΔ. Left multiplying
both sides by T and rearranging leads to

S̄(TU) = (TU)Δ. (6)

From this expression, we see that TU is the matrix of the K eigenvectors of S̄. In
order to form an orthonormal basis, they need to be normalized. The normalized
principal directions are given by

V =
1√
K

(TU)Δ− 1
2 . (7)

The principal directions {wm}M
m=1 are the columns of V corresponding to the

M largest eigenvalues of Δ. Subsequently, we will denote these eigenvalues by
the diagonal matrix Λ ∈ IRM×M and the corresponding matrix of principal
directions by W ∈ IRN×M .

As discussed above, PCA can be performed when the number of data vectors is
(much) lower than their dimension. Still, one may question the pertinence of the

6 C. Archambeau et al.

solution, as a subspace of dimensionality K − 1 goes exactly through K points.
However, the solution found by PCA makes sense if the intrinsic dimension of
the data manifold is much lower than number of observations. In other words,
the solution is valid if most of the relevant information can be summarized
in very few principal directions. Fortunately, this is the case in the context of
Template Attacks (see Section 4). Note that the same problematic arises in
Computer Vision in the context of automatic face recognition. Here, the very
high dimensional vectors are the face images. The principal characteristics are
then found by following a similar approach, which is known as eigenfaces [12].

3.2 Principal Subspace Based Templates

In the previous section, we showed how standard PCA can be modified in order
to be used with very high-dimensional vectors such as traces. This provides us
with the projection matrix W, which identifies successively the directions with
maximal variance. Now, in order to build PSTA, we assume a Gaussian noise
model after projection. So we need to estimate the projected means {νk}K

k=1 and
the covariance matrices of the projected traces along the (retained) principal
directions {Λk}K

k=1. These parameters are respectively given by

νk = WTμ̂k, Λk = WTΣ̂kW. (8)

As in standard TA, the noise model is here given by a multivariate Gaussian
distribution. However, it is expected that the number of principal directions M
is much smaller than N . Note that a direction can be considered as not being
principal when the associated eigenvalue is small compared to the largest one.
This will be further discussed in Section 4.

Next, in order to classify a new trace tnew, we apply Bayes’ rule. This leads
to the following classification rule (or attack):

Ôk = argmax
Ok

p̂(WTtnew|Ok)P (Ok), (9)

where the distribution in projection space is given by p̂(WTtnew|Ok) =
N (WTtnew|νk, Λk).

4 Experimental Results

In the experiments, the recorded traces are power leakages. We validate PSTA
both on stream ciphers (RC4) and block ciphers (AES Rijndael). Two examples
of leakage traces for each encryption algorithm are shown in the Figures of
Appendix B.

From a practical point of view, considering a very small number K of different
operations/keys can lead to a degenerate solution as only very few principal
directions can be identified. This in turn may lead to poorly performing attacks.
Therefore, it is convenient to augment the number of mean traces artificially in
this case. For example, one can compute for each operation a pre-defined number
of mean traces by picking several traces at random in the training set. Another
approach is to use resampling techniques from statistics (see for example [3]).

Template Attacks in Principal Subspaces 7

4.1 RC4

The first experiments were carried out on a PIC 16F877 8-bit RISC-based mi-
croprocessor [7]. The microchip was clocked at a frequency around 4 MHz. This
microprocessor requires four clock cycles to process an instruction. Each instruc-
tion is divided into four steps: (i) fetch (update of the address bus), (ii) decode
and operands fetch (driven by the bus), (iii) execute and (iv) write back. We
monitored the power consumption of a device by inserting a small resistor at
its ground pin or power pin. The resistor value is chosen such that it disrupts
the voltage supply by at most 5% from its reference2. The 1-Ohm method3 was
used to attack the device at the ground pin and a differential probe in the case
of targeting the power pin.

RC4 is a stream cipher working on a 256-byte state table denoted S hereafter.
It generates a pseudo-random stream of bits which is mixed with the plaintext
using a XOR function to yield a ciphertext. The state S is initialized with a
variable key length (typically between 40 and 256 bytes) using the following
key-scheduling algorithm:

for i from 0 to 255
S[i] := i

j := 0
for i from 0 to 255
j := (j + S[i] + key[i mod keylength]) mod 256
swap(S[i],S[j])

The power consumption of the first iteration was monitored; the dependence
on the first byte of the key is here obvious. The 256-byte state was placed in
the data memory by allocating 64 bytes per bank. Therefore, it is expected to
be easier to distinguish the keys located in different banks even if they have the
same Hamming weight.

In the RC4 experiments, 10 keys that are believed to be “close” are considered.
For each one, 500 traces are used to construct the models and 300 to validate
them. In other words, 500 traces are used to estimate the parameters and 300 to
assess the performance. For each trace, there are 300,000 time samples. Figure 1
shows the eigenvalues in decreasing order. Clearly, most of the variance is located
in very few components. In practice, 7 components are sufficient to ensure an
average rate of correct classification of 93.3% (see Figure 2), meaning that most
of the test traces are correctly classified at once.

By contrast, in [2] 42 test samples were selected according to some heuris-
tic. The noise model was chosen to be multivariate Gaussian as in (1). When
considering a diagonal covariance matrix (i.e., the time samples are considered
2 This is advised in IEC 61967-3: Integrated circuits - Measurement of electromagnetic

emissions, 150kHz to 1GHz Part 3: Measurement of radiated emissions, surface scan
method (10kHz to 3GHz), 47A/620/NP, New Work Item Proposal (July 2001).

3 See IEC 61967-4: Integrated circuits - Measurement of electromagnetic emissions,
150 kHz to 1 GHz - Part 4: Measurement of conducted emissions 1Ω / 150Ω. Direct
coupling method, 47A/636/FDIS, Final Draft International Standard, Distributed
on 2002-01-18.

8 C. Archambeau et al.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

i

Δ ii

(a) Eigenvalues.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

i

Δ ii

(b) Largest eigenvalues.

Fig. 1. Eigenvalues in descending order for RC4

independent) the classification errors reported by [2] were up to 35% for simi-
lar keys. Since the power of the attack strongly depends on the implementation
and the measurement noise, we also reproduced the experiments for a fully mul-
tivariate Gaussian noise model (i.e., for full covariance matrices) for compari-
son purposes. The samples were selected as the ones where maximal variance
occurred. The minimal distance between successive samples was chosen to be
equal to the clock cycle. For 42 time samples , the average classification suc-
cess was 91.8%, which is already considerable. However, note that this approach
requires to choose a particular distance between the samples a priori, which af-
fects the performances considerably. For example here, a distance of half the
clock cycle leeds to an average classification error of only 80.5%. A similar loss
of performance is observed when choosing to few samples to construct the multi-
variate noise model, but when too many samples are taken, the model reliability
might be questionable. Indeed, when the dimension of the data space increases,
the number of observations to reliability estimate the parameters needs to in-
crease as well. In the case of standard TA with a 42 points of interest, estimating
the mean and the covariance matrix of the multivariate Gaussian noise model
requires to fit M(M + 3)/2 = 945 parameters. However, there is only a limited
number of measurements (or traces), typically few hundreds. The number of
constraints increases linearly with the dimension M . There are thus only very
few measurements to estimate each model parameter.

An important advantage of PSTA over TA is that the number of relevant
features can be inferred from the eigenvalues. Only the significant ones need
to be retained; the remaining ones are thought of as being noise. Clearly, from
Figure 1, it can be observed that only the first two components are important,
and indeed, the average correct classification rate for two components is already
88.7% (see Figure 2). The next few components only slightly increase the power
of the attack. Furthermore, in the 7-dimensional principal subspace of the traces
only 70 parameters need to be estimated (as opposed to 945), while the number
of data is the same. The model parameters are thus expected to be more reliably
estimated. Note also that a minimal distance between the features needs not to be

Template Attacks in Principal Subspaces 9

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of components

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ra

te

Fig. 2. Average correct classification rate for RC4 as a function of the number of
components

chosen in the case of subspace TA. As a matter of fact, the principal components
are a weighted sum of many time samples, the weights being determined as the
ones minimizing the loss of variance in the data.

4.2 AES Rijndael

Template attacks are usually applied to stream ciphers, key scheduling algo-
rithms and pseudo-random number generators. This is motivated by the fact
that such primitives are difficult to target with standard side-channel attacks
like the DPA, since the attacker can only observe a single use of the key. How-
ever, in general, one could apply template attacks to any kind of cryptographic
primitive in order to take advantage of a more efficient information extraction
from side-channel observations. For example, in this section we show that an
adaptation of subspace based TA can be applied to FPGA implementations of
block ciphers. Such a context is practically interesting since it allows to eval-
uate how the construction of templates may be affected by (large) amounts of
algorithmic noise. It also yields particular constraints since the objective is to
characterize only a part of the implemented design.

For illustration purposes, let us observe the simplified block cipher of Figure 3,
where only one round is represented. In this picture, let us also assume that we
want to build templates for the key bits entering the first (upper) substitution
box s. Clearly, if we only want to identify the power consumption patterns of
this s-box (more specifically, we want to identify the dark grey computations
in the scheme, before the application of a diffusion layer), it is important to
randomize all the other points in the implementation. They will then contribute
to the overall leakage as random noise source. That is, all the inputs to the
other s-boxes should be feed with a random number generator. Therefore, we
will construct our templates according to the following procedure:

1. Select the target key bits in the implementation.
2. For each key candidate:

10 C. Archambeau et al.

K

ROUND

S
D

S
S
S

S
S

counter

PRNG

Fig. 3. Simplified view of one round in AES Rijndael. The counter feeds a particular
sequence of messages to the device. PRNG is a pseudo-random generator producing
arbitraty message sequences. K is the encryption key, S denotes an s-box and D is the
diffusion layer of the round.

– Feed the s-box corresponding to these target key bits with a deterministic
sequence of plaintexts (e.g., a counter).

– Feed the other s-boxes in the scheme with random inputs4.
– Build the templates from the measurement of these computations.

An important feature of this process is that each key candidate will be character-
ized by a number of encryptions. This is because every value in the counter will
give rise to a computation that identifies these candidates. As a matter of fact,
this will allow us to evaluate the efficiency of our template attack, by checking the
number of encryptions required to reach a successful classification and therefore
to compare our results with previous attacks against similar implementations.

In practice, we targeted an FPGA implementation of the AES Rijndael [11].
Basically, we selected a loop architecture with only one round implemented in
the circuit. The key scheduling was not implemented on-the-fly, but executed
once, before the execution of our encryptions. However, note that the possible
implementation of an on-the-fly key scheduling would not affect the construction
of the templates as long as the key is fixed and therefore, once initialized, the
key scheduling does not lead to any switching activity anymore.

In the experiments, 10 different keys were considered. For each one, 500 traces
were used to estimate the model parameters and 500 to validate the resulting
models. The number of samples per trace is equal to 500, 000. Figure 4 shows
the eigenvalues for AES Rijndael. Again, it can be observed that most of the
variance in the data can be summarized with relatively few components. For
example, with 20 components and for 128 encrypted messages the average clas-
sification success is equal to 86.7% (see Figure 5). Compared to the results with

4 Random inputs are used not only when constructing the templates, but also when
evaluating the performance of the attack. Therefore, this set up mimics a device
with unknown inputs for the other s-boxes as desired. Note that a convenient way to
generate these random inputs is to use the feedback from the block cipher outputs.

Template Attacks in Principal Subspaces 11

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

−3

i

Δ ii

(a) Eigenvalues.

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−3

i

Δ ii

(b) Largest eigenvalues.

Fig. 4. Eigenvalues in descending order for AES Rijndael

0

50

100

150

0

10

20

30
0

0.2

0.4

0.6

0.8

1

Number of messages

Average correct classification rate

Number of components

Fig. 5. Average correct classification rate for AES, as a function of the number of
encrypted messages and the number of retained components

RC4, a higher number of components is necessary for a comparable classification
accuracy. This result can be explained by the fact that the power traces are here
much noisier (due to the parallel hardware implementation).

Although, there are relatively few significant components needed with respect
to the number of encrypted messages, it is important to realize that it does not
mean that the information in most of them is discarded. Indeed, in PSTA, the
PCA-step seeks of the optimal projection in the feature space. Each component
corresponds thus to a weighted sum of a possibly high number of time samples.
Therefore, the information leakage due to a possibly high number of encrypted
messages is summarized in a single component.

Figure 5 shows the average correct classification rate as a function of the num-
ber of retained components and the number of messages. As expected, when the
number of encryptions decreases, the performances drops. This is due to the fact
that there is less information leakage available. Similarly, when the number of

12 C. Archambeau et al.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

t
1

t 2

V

V 1

2

Fig. 6. Illustration of principal component analysis (PCA)

components is small, there is only a poor capacity to classify correctly, as too
many relevant features have been discarded. However, when the number of mes-
sages and the number of components increases the average correct classification
rate rapidly increases.

Compared to recent correlation-based power analysis attacks of AES Rijndael
(also on FPGA), the number of message required to recover the correct key bytes
is much smaller. The factor of proportionality ranges from 2 to 5 depending on
the fact that the attack uses trace averaging [10] or not [9]. Note also that corre-
lation attacks require in general to carefully preprocess the traces, for example
using several filters. By contrast, PSTA is much more practical as it exploits the
information in the raw data directly and does not require to adjust any tuning
parameters, but the number of components to retain.

5 Conclusion

In this work, we introduced principal subspace template attacks and showed that
they can be successfully applied to both stream and block ciphers. Preprocessing
the leakage traces beforehand by PCA allows avoiding the practical issues of
ordinary template attacks. Principal subspace template attacks are motivated
by the fact that template attacks consider the time instants having a great
variability as being important to discriminate. If this assumption is correct, then
PCA is the optimal (linear) transformation to identify the most relevant features.
Besides, the eigenvalues provide a systematic rule for determining how many and
which features should be selected to mount a powerful attack. Finally, it is also
important to realize that the main difference between both attacks resides in
the way they extract information from traces. In template attacks M of the
N samples are used to mount the noise model, the selection being based on
heuristics, while in principal subspace template attacks M linear combinations
(preserving maximal variance) of these N samples are used.

Template Attacks in Principal Subspaces 13

References

1. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

2. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of
Lecture Notes in Computer Science, 13–28. Springer, 2002.

3. B. Efron and R.J. Tibshirani. An introduction to the Bootstrap. Chapman and
Hall, London, 1993.

4. K. Fukunaga. Introduction to Statistical Pattern Recognition. Elsevier, New York,
1990.

5. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
6. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In Neal Koblitz, editor, 16th Annual International Cryptol-
ogy Conference (CRYPTO), volume 1109 of Lecture Notes in Computer Science,
104–113. Springer, 1996.

7. Microship. PIC16F877 datasheet. url: ww1.microchip.com/downloads/en/ Device-
Doc/30292c.pdf, 2001.

8. Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, 5th International Workshop on Infor-
mation Security Applications (WISA), volume 3325 of Lecture Notes in Computer
Science, 440–456. Springer, 2004.

9. F.-X. Standaert, S.B. Ors, and B. Preneel. Power analysis of an FPGA implemen-
tation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-
Jacques Quisquater, editors, 6th International Workshop Cryptographic Hardware
and Embedded Systems (CHES), volume 3156 of Lecture Notes in Computer Sci-
ence, 30–44. Springer, 2004.

10. F.-X. Standaert, E. Peeters, F. Macé, and J.-J. Quisquater. Updates on the security
of FPGAs against power analysis attacks. In proceedings of ARC 2006, LNCS 3985,
pp. 335-346, 2006.

11. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient imple-
mentation of Rijndael encryption in reconfigurable hardware: Improvements and
design tradeoffs. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, edi-
tors, 5th International Workshop Cryptographic Hardware and Embedded Systems
(CHES), volume 2779 of Lecture Notes in Computer Science, 334–350. Springer,
2003.

12. M. Turk and A.Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

A Appendix

An illustration of PCA is shown Figure 6. The data is drawn from a 2-dimensional
Gaussian distribution. The two principal directions v1 and v2 are shown by the
solid lines. The length of the lines is proportional to the variance of the projected
data onto the corresponding direction. If we remove the second dimension (after
rotation) and describe the data only by the first one, then we will minimize the
loss of information (i.e., loss of variance) due to this new representation.

14 C. Archambeau et al.

B Appendix

The examples of the recorded RC4 and AES Rijndael power traces are shown
respectively in Figure 7 and 8.

2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

N

t p k

Fig. 7. Example of a RC4 power trace

0 2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N

t p k

Fig. 8. Example of an AES Rijndael power trace

	Introduction
	Template Attacks
	Templates
	Attack

	Template Attacks in Principal Subspaces
	Trace Principal Subspaces
	Principal Subspace Based Templates

	Experimental Results
	RC4
	AES Rijndael

	Conclusion
	Appendix

