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Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coales-
cences can be modelled accurately by approximation/perturbation techniques in general relativity.
Recent progress in numerical relativity has enabled us to model also the non-perturbative merger
phase of the binary black-hole coalescence problem. This enables us to coherently search for all three
stages of the coalescence of non-spinning binary black holes using a single template bank. Taking
our motivation from these results, we propose a family of template waveforms which can model the
inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that
follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by
the physical parameters of the binary. We show that the template family is not only effectual in
detecting the signals from black hole coalescences, but also faithful in estimating the parameters of
the binary. We compare the sensitivity of a search (in the context of different ground-based inter-
ferometers) using all three stages of the black hole coalescence with other template-based searches
which look for individual stages separately. We find that the proposed search is significantly more
sensitive than other template-based searches for a substantial mass-range, potentially bringing about
remarkable improvement in the event-rate of ground-based interferometers. As part of this work,
we also prescribe a general procedure to construct interpolated template banks using non-spinning
black hole waveforms produced by numerical relativity.

PACS numbers:

I. INTRODUCTION

A network of ground based gravitational-wave (GW)
detectors (LIGO, Virgo, GEO 600, TAMA) is currently
collecting data, which a world-wide scientific collabora-
tion is involved in analyzing. Among the most promis-
ing sources detectable by these observatories are coa-
lescing compact binaries consisting of black holes (BHs)
and/or neutron stars spiraling toward each other as
they lose orbital energy and angular momentum through
gravitational-wave emission. The gravitational-wave sig-
nal from coalescing binaries is conventionally split into
three parts: inspiral, merger and ring down. In the
first stage, the two compact objects, usually treated as
point masses, move in quasi-circular orbits (eccentric-
ity, if present initially, is quickly radiated away). This
part of the waveform is described very well by the post-
Newtonian (PN) approximation of general relativity. In
this approximation the Einstein equations are solved in
the near zone (which contains the source) using an ex-
pansion in terms of the (small) velocity of the point

masses. In the far zone, the vacuum equations are solved
assuming weak gravitational fields, and these two solu-
tions are matched in the intermediate region [1, 2, 3].

The PN approximation breaks down as the two com-
pact objects approach the ultra-relativistic regime and
eventually merge with each other. Although various re-
summation methods, such as Padé [4] and effective-one-
body (EOB) approaches [5], have been developed to ex-
tend the validity of the PN approximation, unambiguous
waveforms in the merger stage must be calculated nu-
merically in full general relativity. Recent breakthroughs
in numerical relativity [6, 7, 8] have allowed many groups
[6, 7, 8, 9, 10, 11, 12, 13] to evolve BH binaries fully nu-
merically for the last several orbits through the plunge to
single BH formation. The field is now rapidly developing
the capability to routinely evolve generic black-hole bi-
nary configurations in the comparable-mass regime, and
to accurately extract the gravitational-wave signal. Im-
portant milestones include simulations of unequal-mass
binaries and calculations of the gravitational recoil ef-
fect and the evolution of black-hole binaries with spin
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[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Comparisons with post-Newtonian results are essen-
tial for data analysis efforts, and several groups have
published results showing good agreement of various as-
pects of non-spinning simulations with post-Newtonian
predictions (see e.g. [25, 26, 27, 28, 29, 30, 31, 32]), and
first results for certain configurations with spin have also
become available [33, 34]. In order to overcome phase
inaccuracies in long evolutions, significant progress has
been made by the Caltech-Cornell group using spectral
codes [35, 36], and by the Jena group using higher (sixth)
order finite differencing [37]. Methods to reduce the ec-
centricity to around 10−3 (so far only for equal-mass
binaries) have been presented by the Caltech-Cornell
group [36], and the Jena group [38] (using initial pa-
rameters from PN solutions that take into account ra-
diation reaction). Current numerical waveforms can be
generated for the last (. 10) orbits, and these wave-
forms can be joined continuously with analytic PN inspi-
ral waveforms to obtain one full signal. This was done
in [27, 29, 30, 39]. Indeed, there are no fundamental
obstructions to generating the whole waveform, includ-
ing long inspiral over hundreds of orbits, by solving the
full Einstein equations numerically. But, not only would
this be computationally prohibitive with current meth-
ods, it is also unnecessary: the PN formalism is known
to work very well in the weak-field regime (when the BHs
are well-separated), and is a low-cost and perfectly ade-
quate substitute to fully general relativistic solutions in
that regime.

The numerically generated part of the gravitational-
wave signal from coalescing binaries also includes the
final stage of the coalescence, when a single perturbed
black hole is formed and it rapidly loses its deviations
from a Kerr black hole via gravitational waves. This part
of the signal can be decomposed as a superposition of
exponentially damped modes, and is called quasi-normal
mode ‘ring down’, by analogy with the vibrations of a
bell. The detectable part of the ring down is rather short
and only a few modes (if not only the dominant one) are
expected to be important/detectable by initial ground-
based observatories. This will not be true, however, for
the advanced detectors [40] and certainly it is not the
case for LISA, the planned space-borne gravitational-
wave observatory. Indeed, the majority of the signal-
to-noise ratio (SNR) comes from the quasi-normal mode
ringing of binary systems with a total mass above a few
106M⊙ [41]. For LISA, and also perhaps for the next
generation of ground based detectors, it will be possible
to detect several quasi-normal modes and test the ‘no
hair’ theorem, according to which all modes are functions
of a BH’s mass and spin [41, 42, 43].

Joining analytically modeled inspiral with numerically
generated merger and ring down allows us to produce the
complete gravitational-wave signal from coalescing bina-
ries, and to use it in the analysis of detector data. There
are several benefits to using the whole signal in searches.
The most obvious one is the increase in SNR in a fully co-

herent matched filtering search [30, 44, 45, 46]. Increase
in SNR implies increase in the event rate and improve-
ment in the parameter estimation. Including the inspi-
ral, merger and ring down parts in a template waveform
also means that the waveform has a more complex struc-
ture. This extra complexity will also bring about some
improvement in the parameter estimation [47] and pos-
sibly also a reduction in the false alarm rate in analysis
of the data from the ground-based network of detectors.
This is because it is in general harder for the noise to
mimic a complex signal1. For LISA, the detection of
inspiralling super-massive black holes is not a problem;
the SNR is expected to be so large that we expect some
signals to be visible by eye in LISA data. However, using
the full signal for LISA data analysis is equally impor-
tant because the full signal is essential in estimating pa-
rameters of the binary with the required accuracy. This
is important not only from the astrophysical point of
view, but also because we need to subtract loud signals
from the data in order to detect/analyze other signals.
Imperfect signal removal due to errors in the parame-
ter estimation will result in large residuals and will ad-
versely affect subsequent analyses. Improved parameter
estimation will also enable GW observations (in conjunc-
tion with electromagnetic observations) to constrain im-
portant cosmological parameters, most importantly the
equation of state of dark energy [47, 48, 49, 50, 51, 52].

The numerical waveforms described above are still
computationally expensive and cannot be used directly
to densely cover the parameter space of the binary BHs
that will be searched over by matched filtering tech-
niques. A promising alternative is to use the post-
Newtonian and numerical-relativity waveforms to con-
struct an analytic model that sufficiently accurately
mimics a true signal [30, 39]. In [30] we have sug-
gested a phenomenological family of waveforms which
can match physical signals from non-spinning binaries
in quasi-circular orbits with fitting factors above 99%.
In this paper we extend this formulation to propose a
two-parameter family of template waveforms which are
explicitly parametrized by the physical parameters of
the binary. We show that this two-dimensional tem-
plate family is not only ‘effectual’ in detecting the sig-
nals from binary BH coalescences, but also ‘faithful’ in
estimating the parameters of the binary. This family
of template waveforms can be used to densely cover the
parameter space of the binary, thus avoiding the com-
putational burden of generating numerical waveforms in
each grid point in the parameter space. We compute the
effectualness and faithfulness (see Section III for defi-
nitions) of the template family in the context of three
different ground-based detectors: namely, Initial LIGO,
Virgo and Advanced LIGO. We also compare the sen-

1 At least we expect this to happen for those binaries for which
both the inspiral and the merger contribute significantly to SNR.
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sitivity of a search which coherently includes all three
(inspiral, merger and ring down) stages of the BH coa-
lescence with other template-based searches which look
for each stage separately.

Our ‘target signals’ are constructed by matching the
numerical-relativity waveforms to a particular family
(TaylorT1 approximant [46]) of post-Newtonian wave-
forms, but this choice is by no means necessary. Indeed,
we expect that more robust ways of constructing post-
Newtonian approximants, such as the effective one-body
approach [5] or Padé resummation approach [4], will give
better agreement with numerical-relativity (NR) wave-
forms. But the purpose of the current paper is to explic-
itly prescribe a general procedure to produce hybrid and
phenomenological waveforms, and to construct interpo-
lated template banks using parametrized waveforms. We
show that, given the number of numerical wave cycles we
employ, even a simple PN choice like TaylorT1 leads to
very faithful and effectual templates, and significantly in-
creases the possible range of gravitational-wave searches.
The use of improved PN approximants will require a
smaller number of NR cycles, thereby further reducing
computational cost for template construction. There are
also other approaches for comparing analytic and numer-
ical waveforms and for constructing hybrid waveforms
(see, for example [29]); it would be interesting to com-
pare the results presented in this work with other ap-
proaches presented in the literature.

The paper is structured as follows. In Section II we
summarize the methods of current numerical-relativity
simulations, including a setup of the initial data that al-
lows an unambiguous comparison with post-Newtonian
results, and the wave extraction techniques. In Sec-
tion III we briefly outline the waveform generation us-
ing the restricted post-Newtonian approximation. There
we briefly introduce the main data-analysis techniques
and define notations that are used in the subsequent
sections. In Section IV we construct a phenomenolog-
ical template family parametrized only by the masses
of the two individual black holes. First we combine re-
stricted 3.5PN waveforms [53] with results from NR sim-
ulations to construct ‘hybrid’ waveforms for the quasi-
circular inspiral of non-spinning binaries with possibly
unequal masses. Then, we introduce a phenomenologi-
cal family of templates constructed in the frequency do-
main. Initially the template family is parametrized by
10 phenomenological parameters. We then find a unique
mapping of these 10 parameters to the two physical pa-
rameters: namely, the total mass M and the symmetric
mass ratio η ≡ M1M2/M

2, so that the template family
is just two-dimensional. The resulting templates have
remarkably high fitting factors with target waveforms.
Here we also compute the faithfulness of the templates
and the bias in the estimation of the parameter of the
binary. A comparison of the sensitivity of the search
using the proposed template family with other existing
template-based searches is also presented. Finally, we
summarize our main results in Section V. Some details of

the calculations involved are described in Appendices A
and B. We adopt geometrical units throughout this pa-
per: G = c = 1.

II. NUMERICAL SIMULATIONS AND WAVE

EXTRACTION

Numerical simulations were performed with the BAM
[11] and CCATIE [23] codes. Both codes evolve black-
hole binaries using the ‘moving-puncture’ approach [7,
8]. The method involves setting up initial data con-
taining two black holes via a Brill-Linquist-like worm-
hole construction [54], where the additional asymptot-
ically flat end of each wormhole is compactified to a
point, or ‘puncture’. A coordinate singularity exists at
the puncture, but can be stably evolved using standard
finite-difference techniques, and is protected by causal-
ity from adversely affecting the physically relevant ex-
ternal spacetime. This prescription allows black holes to
be constructed on a 3D Cartesian numerical grid with-
out recourse to excision techniques, and also provides a
simple way to generate any number of moving, spinning
black holes [55, 56]. Given an initial configuration of
two black holes, the data are evolved using a conformal
and traceless ‘3+1’ decomposition of Einstein’s equa-
tions [57, 58, 59]. In addition the gauge is evolved using
the ‘1+log’ [60, 61] and ‘Γ-driver’ equations [61, 62] and
the coordinate singularity in the conformal factor is dealt
with by evolving either the regular variable χ = ψ−4

[7] (in BAM) or φ = lnψ (in CCATIE), which diverges
‘slowly’ enough so as not lead to numerical instabilities.
The standard moving puncture approach consists of all
these techniques, and causes the ‘punctures’ to quickly
assume a cylindrical asymptotics [63], and allows them
to move across the numerical grid. This method has
been found to allow accurate, stable simulations of black
holes over many (> 10) orbits through merger and ring
down.
In the initial data construction we must specify the

masses, locations and momenta of the two black holes
(we do not consider spinning black holes in this work).
The mass of each black hole, Mi, is specified in terms of
the Arnowitt-Deser-Misner (ADM) mass at each punc-
ture. This corresponds to the mass at the other asymp-
totically flat end which is, to a very good approximation,
equal to irreducible mass of the apparent-horizon mass
[64, 65, 66]

Mi =

√

Ai
16π

. (2.1)

where Ai is the area of the apparent horizon. We assume
that this mass is the same as the mass used in post-
Newtonian formulas. This assumption is really expected
to be true only in the limit where the black holes are
infinitely far apart and stationary. As such we consider
any error in this assumption as part of the error due
to starting the simulation at a finite separation. The
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important point is that a binary with horizon masses
M1 and M2 should be compared with a post-Newtonian
system with the same mass parameters. This allows us
to provide the same overall scaleM =M1+M2 for both
numerical and post-Newtonian waveforms, and is crucial
for comparison and matching.
The initial momenta of the black holes are chosen to

correspond approximately to quasi-circular (low eccen-
tricity) inspiral. For equal-mass evolutions performed
with the CCATIE code, parameters for quasi-circular or-
bit were determined by minimizing an effective potential
for the binary [23, 67, 68]. For the unequal-mass simu-
lations performed with the BAM code [15], initial mo-
menta were specified by the 3PN-accurate quasi-circular
formula given in Section VII of [11]. For the longer
unequal-mass simulations performed with higher-order
spatial finite-difference methods [37] and used for verifi-
cation, the initial momenta were taken from a PN pre-
scription that takes radiation reaction into account to
reduce the initial eccentricity to below e ≈ 10−3 [38].
The Einstein equations are solved numerically with

standard finite-difference techniques. Spatial derivatives
are calculated at fourth- or sixth-order accuracy, and the
time evolution is performed with a fourth-order Runge-
Kutta integration. Mesh refinement is used to achieve
high resolution around the punctures and low resolutions
far from the black holes, allowing the outer boundary to
be placed very far (at least > 300M) from the sources.
Full details of the numerical methods used in the two
codes are given in [11] for BAM and [23] for CCATIE.
In the wave-zone, sufficiently far away from the source,

the spacetime metric can be accurately described as a
perturbation of a flat background metric. Let hab de-
note the metric perturbation where a, b denote space-
time indices, and t be the time coordinate used in the
numerical simulation to foliate the spacetime by spatial
slices. Working in the transverse-traceless (TT) gauge,
all the information about the radiative degrees of free-
dom is contained in the spatial part hij of hab, where i, j
denote spatial indices. Let us use a coordinate system
(x, y, z) on a spatial slice so that the z-axis is parallel
to the total angular momentum of the binary system at
the starting time. Let ι be the inclination angle from the
z-axis, and let φ be the phase angle and r the radial dis-
tance coordinates so that (r, ι, φ) are standard spherical
coordinates in the wave-zone.
The radiative degrees of freedom in hab can be written

in terms of two polarizations h+ and h×:

hij = h+(e+)ij + h×(e×)ij , (2.2)

where e+,× are the basis tensors for transverse-traceless
tensors in the wave frame

(e+)ij = ι̂i ι̂j−φ̂iφ̂j , and (e×)ij = ι̂iφ̂j+ ι̂j φ̂i . (2.3)

Here ι̂ and φ̂ are the unit vectors in the ι and φ direc-
tions, respectively, and the wave propagates in the radial
direction.

In our numerical simulations, the gravitational waves
are extracted by two distinct methods. The first one uses
the Newman-PenroseWeyl tensor component Ψ4 [69, 70]
which is a measure of the outgoing transverse gravita-
tional radiation in an asymptotically flat spacetime. In
the wave-zone it can be written in terms of the complex
strain h = h+ − ih× as [71],

h = lim
r→∞

∫ t

0

dt′
∫ t′

0

dt′′Ψ4. (2.4)

An alternative method for wave extraction determines
the waveform via gauge-invariant perturbations of a
background Schwarzschild spacetime, via the Zerilli-
Moncrief formalism (see [72] for a review). In terms of
the even (Q+

ℓm) and odd (Q×

ℓm) parity master functions,
the gravitational wave strain amplitude is then given by

h =
1√
2r

∑

ℓ,m

(

Q+
ℓm − i

∫ t

−∞

Q×

ℓm(t′)dt′
)

Y −2
ℓm +O

(

1

r2

)

.

(2.5)
Results from the BAM code have used the Weyl tensor

component Ψ4 and Eq. (2.4), with the implementation
described in [11]. While the CCATIE code computes
waveforms with both methods, the AEI-CCT waveforms
used here were computed using the perturbative extrac-
tion and Eq. (2.5). Beyond an appropriate extraction
radius (that is, in the wave-zone), the two methods for
determining h are found to agree very well for moving-
puncture black-hole evolutions of the type considered
here [19].
It is useful to discuss gravitational radiation fields

in terms of spin-weighted s = −2 spherical harmonics
Y sℓm, which represent symmetric tracefree 2-tensors on a
sphere, and in this paper we will only consider the dom-
inant ℓ = 2, m = ±2 modes (see [28] for the higher ℓ
contribution in the unequal-mass case), with basis func-
tions

Y −2
2−2 ≡

√

5

64π
(1− cos ι)2 e−2iφ,

Y −2
22 ≡

√

5

64π
(1 + cos ι)2 e2iφ. (2.6)

Our ‘input’ numerical relativity waveforms thus corre-
spond to the projections

hℓm ≡ 〈Y −2
ℓm , h〉 =

∫ 2π

0

dφ

∫ π

0

hY −2
ℓm sin θ dθ , (2.7)

of the complex strain h, where the bar denotes complex
conjugation. In the cases considered here, we have equa-
torial symmetry so that h22 = h2−2, and

h(t) =

√

5

64π
e2iφ

(

(1 + cos ι)2 h22(t) + (1− cos ι)2 h̄22(t)
)

.

(2.8)
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In this paper, we assume that the binary is optimally-
oriented, so that ι = 0. Thus

h(t) = 4

√

5

64π
h22(t) ≈ 0.6308 h22(t). (2.9)

III. POST-NEWTONIAN WAVEFORMS AND

INTRODUCTION TO DATA-ANALYSIS

CONCEPTS

In this Section we will introduce notation that will be
used later in the paper and describe briefly the main
data-analysis techniques currently used in gravitational
wave astronomy.

A. Restricted post-Newtonian waveforms

We use the restricted PN waveform at mass-
quadrupole order, which has a phase equal to twice the
orbital phase up to highest available order in the adia-
batic approximation, and amplitude accurate up to lead-
ing order. The corresponding h is given by

h =
ηM

r
v2(t)e2iφ

[

(1 + cos ι)2e−iϕ(t) + (1− cos ι)2eiϕ(t)
]

(3.1)
whereM ≡M1+M2 is the total mass, η ≡M1M2/M

2 is
the symmetric mass ratio, r is the observation radius, ι
is the inclination angle; the quantity v(t) is an expansion
parameter, defined by v = (Mϕ̇/2)1/3 with ϕ(t) equal to
twice the adiabatic orbital phase. The waveform seen by
the detector is given by

s(t) = 4 η
M

r
Av2(t) cos[ϕ(t) + ϕ0], (3.2)

where, for short-lived signals (i.e., with duration much
shorter than the earth rotation time, as well as de-
phasing time scale due to Doppler shifts induced by earth
motion and rotation), A and ϕ0 are numerical constants
depending on the relative position and orientation of the
source relative to the detector, as well as the antenna
pattern functions of the detector. In PN theory, the adi-
abatic phase ϕ(t) is determined by the following ordinary
differential equations (also called the phasing formula):

dϕ

dt
=

2v3

M
,

dv

dt
= − F(v)

ME′(v)
. (3.3)

In these expressions, E′(v) = dE(v)/dv where E(v) is
the binding energy (per unit mass) of the system, and
F(v) is the GW luminosity. E(v) and F(v) are com-
puted as post-Newtonian expansions in terms of v [73].
Currently, the binding energy function E(v) has been
calculated to v6 (3PN) accuracy by a variety of meth-
ods [74, 75, 76, 77, 78, 79, 80, 81]. The flux func-
tion F(v), on the other hand, has been calculated to
v7 (3.5PN) accuracy [53, 82] up to now only by the

multipolar-post-Minkowskian method and matching to
a post-Newtonian source [73].
The inspiralling phase is usually pushed up to the

point where the adiabatic evolution of circular orbits
breaks down due to the lack of further stable circular or-
bits. In the test-mass limit, the last (or innermost) stable
circular orbit (ISCO) can be computed exactly (at 6M in
Schwarzschild coordinates). For comparable-mass bina-
ries, on the other hand, the ISCO cannot always arise
unambiguously from PN theories. In adiabatic mod-
els, the maximum-binding-energy condition (referred to
as MECO, or the maximum binding energy circular or-
bit, [83]) can be used in place of the ISCO. This condition
is reached when the derivative of the orbital binding en-
ergy with respect to orbital frequency vanishes. As a
consequence, in this paper, the waveforms are evolved
in time up to MECO: E′(v) = 0. It may be noted that
the ISCO and MECO may not be physically meaningful
beyond the test-mass limit, but they make convenient
cutoff criteria. The appropriate region of validity of PN
waveforms can only be determined by comparison with
fully general relativistic results, such as the numerical
simulations that we discussed earlier.
Given E(v) and F(v), one can construct different, but

equivalent in terms of accuracy, approximations to the
phasing by choosing to retain the involved functions or
to re-expand them. Indeed, the different PN models
which describe the GW signal from inspiralling binaries
agree with each other in the early stages of inspiral; but
start to deviate in the late inspiral. The classification
and explicit form of various models is nicely summarized
in [46]. In this paper we use PN waveforms obtained
by numerically solving Eqs. (3.3), called the TaylorT1

approximant, to construct the ‘hybrid waveforms’ (see
Section IVB).

B. Introduction to matched filtering

Since we can model the signal reasonably well, it is
natural to employ matched filtering (which is the optimal
detection strategy for a signal of known shape in the sta-
tionary Gaussian noise) to search for the gravitational-
wave signal. Suppose the detector’s data x(t) contains
noise n(t), and possible signal s(t), i.e., x(t) = n(t)+s(t).
Assuming n to be stationary Gaussian noise, it is con-
venient to work in the Fourier domain, because the sta-
tistical property of the noise is completely characterized
by its power spectral density Sn(f), which is given by
(here we use a single-sided spectrum)

〈ñ(f)ñ∗(f ′)〉 = 1

2
Sn(f) δ(f − f ′) , (3.4)

where ñ(f) is the Fourier Transform of n(t)

ñ(f) ≡
∫ ∞

−∞

n(t)e−2πift dt , (3.5)
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and 〈. . .〉 denotes taking the expectation value. Based on
the detector noise spectrum, we introduce a Hermitian
inner product:

(g|h) ≡ 2

∫ ∞

0

g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sn(f)
df . (3.6)

For the data x with known signal s, the optimal detection
statistic is given by applying a template h with the same
shape as s, or h = αs:

ρopt ≡ (x|h) . (3.7)

The detectability of the signal is then determined by the
SNR of ρopt,

S

N
=

(s|h)
√

〈(h|n)(n|h)〉

∣

∣

∣

∣

∣

h=αs

= (s|s)1/2. (3.8)

(Note that the SNR does not depend on the overall nor-
malization of h.) In case the template h is not exactly
of the same shape as s, the SNR will be reduced to

S

N
= (s|s)1/2M , (3.9)

where M ≤ 1 is the match of the template to the signal,
given by

M[s, h] ≡ (s|h)
√

(s|s) (h|h)
≡ (ŝ|ĥ) , (3.10)

and where a hat denotes a normalized waveform. For
more details, we refer the reader to Ref. [84].

C. Template banks, effectualness and faithfulness

We now consider the more realistic problem of
attempting to detect a family of waveforms s(θ),
parametrized by a vector of physical parameters θ ∈ Θ,
using a family of templates h(λ) parametrized by a
vector of parameters λ ∈ Λ. We first introduce the
concepts of physical template bank and phenomenolog-

ical template bank. Roughly speaking, physical tem-
plate banks are constructed from well-motivated phys-
ical models (e.g., approximation up to a certain or-
der) [85], while phenomenological banks are constructed
in an ad-hoc manner to mimic the desired physical sig-
nals with high accuracy. For physical banks, the vectors
θ and λ consists of the same set of physical parame-

ters, while for phenomenological banks, the vector λ usu-
ally contains phenomenological parameters, which can be
larger or smaller in number than the physical parame-
ters. Two phenomenological template families [86, 87]
are used currently in the search for BH binaries in LIGO
data [88, 89]. They each represent a different motiva-
tion for introducing phenomenological banks: (i) when
we have uncertainty in the signal model, we can produce

a template bank with larger detection efficiency by in-
troducing extra (phenomenological) parameters (BCV1,
[86]) so that dim(Λ) > dim(Θ); (ii) when the true sig-
nal depends on too many parameters and is too diffi-
cult to search over, it is sometimes possible to come up
with a model with fewer (phenomenological) parameters
(dim(Λ) < dim(Θ)) and still high fitting factors (BCV2,
[87]).
The detection efficiency of a template bank towards

a specific signal s(θ) can be measured by the thresh-
old SNR above which the detection probability exceeds
a certain minimum (usually 50%), while the false-alarm
probability is kept below a certain maximum (usually 1%
for one-year data). The threshold value depends (loga-
rithmically, in the case of Gaussian noise) on the num-
ber of statistically independent templates, and (inverse-
proportionally) on the fitting factor (FF) [90]:

FF[h; θ] ≡ max
λ

M[s(θ), h(λ)] ≡ M[s(θ), h(λmax)] .

(3.11)
A bank with high FF is said to be effectual [4, 91]. Typ-
ically, we require that the total mismatch between the
template and true signal (including the effects of both
the fitting factor and the discreteness of the template
bank) to not exceed 3%. We shall see that this require-
ment is easily met by our template bank.
It is natural to associate every point θ in the physical

space Θ with the best matched point λmax ∈ Λ. This
leads to a mapping P : Θ 7→ Λ defined by

P (θ) = λmax . (3.12)

This mapping will play a key role in the construction
of our template bank. We will assume the mapping P
to be single-valued, i.e., given a target signal, the best-
matched template is unique. We depict this mapping
schematically in the left panel of Fig. 1.
For a physical template bank with θ and λ the same

set of parameters (which we use θ to denote), it is most

convenient to identify the best-match parameter θmax

as the estimation of the original parameter θ. In general
this will lead to a systematic bias

∆θ = θmax − θ = P (θ)− θ . (3.13)

A bank with a small bias (as defined above) is said to be
faithful [4, 91].
However, if we assume no uncertainty in the true wave-

forms (thereby excluding the case of BCV1), then as long
as P is invertible, a non-faithful physical or phenomeno-
logical bank can always be converted into a faithful bank
by the re-parametrization

hfaithful(θ) ≡ h ◦ P (θ) (3.14)

where we have used the standard notation h ◦ P (θ) :=
h(P (θ)). In other words, each template λ in the image
set of physical signals P (Θ) is labeled by physical pa-
rameters θ = P−1(λ). For this reason, we require P to
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FIG. 1: Construction of the phenomenological template bank: (i) mapping physical signals (solid curve) into a sub-manifold
(dashed curve, with example templates marked by dots) of a larger-dimensional template bank (curved surface), (ii) obtaining
a lower-dimensional phenomenological bank with the same number of parameters as physical parameters, through interpolation
(solid curve on the curved surface, with example templates marked by triangles), and (iii) Estimating the bias of the lower-
dimensional interpolated bank by mapping physical signals into the bank (with images of example signals marked by dots).

be invertible. It is quite conceivable that for physical
banks, P should be invertible, if the physical bank does
not fail to describe the true waveforms too dramatically
(and of course assuming the true waveform does contain
independent information about the physical parameters
θ). In this way, all reasonable physical banks can be made

faithful.
By contrast, if for some phenomenological bank (e.g.,

BCV2 if we only take into account the intrinsic pa-
rameters of the bank), P is a many-to-one map, with
P (θ1) = P (θ2) for some θ1 6= θ2. Then for a physi-
cal signal with parameter θ1, the template bank hfaithful
would achieve the same best match at both θ1 and θ2,
making physical parameter determination non-unique.
In this case, we can simply keep using the phenomeno-
logical bank h(λ); once a detection is made with λmax,
the a set of parameters P−1(λmax) would be the best
knowledge we have about the physical parameters of the
source. (In practice, statistical uncertainty also applies
to λmax.)

IV. A PHENOMENOLOGICAL TEMPLATE

FAMILY FOR BLACK-HOLE COALESCENCE

WAVEFORMS

A. Strategy for constructing the phenomenological

bank

In our situation, since it is expensive to generate the
entire physical bank of templates using numerical simula-
tions, we first construct a highly effectual 10-dimensional
phenomenological bank (motivated by the format of PN
waveforms), with effectualness confirmed by computing
its FF with a relatively small number of ‘target signals’.
Since we are considering only non-spinning black holes,
the physical parameter space Θ is the set of all masses

and symmetric mass ratios (M, η) that we wish to con-
sider. As we shall see shortly, for our case the phe-
nomenological parameter space Λ is a 10-dimensional
space. Our templates will be denoted by

h(λ) = h10D(λ) . (4.1)

According to the discussion above [Eqs. (3.12)–(3.14)], if
the mapping P : Θ 7→ Λ can indeed be obtained and in-
verted, then a faithful two-dimensional (2D) phenomeno-
logical bank can be constructed as

hfaithful2D (θ) = h10D ◦ P (θ) . (4.2)

However, if our aim was to know P exactly, then in
principle we would have to calculate accurate numerical
waveforms for every (M, η) and to calculate the corre-
sponding λ in each case. This is obviously not practical,
and we shall instead compute P at a few chosen points
in Θ and interpolate to obtain an approximation to P .
The detailed steps are as follows:

i. While confirming effectualness of the ten-dimensional
(10D) bank, we simultaneously obtain N (a num-
ber manageable in terms of computational costs)
data points for the mapping P ,

λ(n)
max = P (θ(n)) , n = 1, 2, . . . , N (4.3)

which gives discrete points on the 2D manifold
P (Θ). This is depicted by the left panel of Fig. 1.

ii. Using these discrete points, we perform a smooth in-
terpolation of P denoted by Pint. The form of Pint

is motivated by PN waveforms, but with expansion
coefficients determined by interpolation:

Pint(θ) = λint . (4.4)
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FIG. 2: NR waveforms (thick/red), the ‘best-matched’ 3.5PN waveforms (dashed/black), and the hybrid waveforms
(thin/green) from three binary systems. The top panel corresponds to η = 0.25 NR waveform produced by the AEI-CCT
group. The second, third and fourth panels, respectively, correspond to η = 0.25, 0.22 and 0.19 NR waveforms from produced
by the Jena group. In each case, the matching region is −750 ≤ t/M ≤ −550 and we plot the real part of the complex strain
(the ‘+’ polarization).

.

This gives us a 2D phenomenological bank,

h2D(θ) = h10D ◦ Pint(θ) . (4.5)

This is depicted by the middle panel of Fig. 1. Due
to the discrete choice of target waveforms, the con-
strained form of Pint, and numerical errors (in the
target waveforms as well as in searching for best-
fit parameters), the interpolation will have errors,
even at the sample points. This means the 2D bank
will have slightly lower effectualness than the 10D
bank.

iii. We re-test the effectualness of this 2D bank. Note

that there will be a new mapping P2D which maps
the physical parameters to the best fit param-
eters of this 2D bank. We therefore find the
best-matched parameters λ

(n)
max′ , therefore obtain-

ing discrete samples of the mapping P2D:

λ
(n)
max′ = P2D(θ

(n)) , (4.6)

yielding a systematic bias of

∆θ(n) = P−1
int (λ

(n)
max′)− θ(n) . (4.7)

This is depicted in the right panel of Fig. 1.
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In this paper, we construct the 2D template bank
h2D(θ) and estimate the systematic bias ∆θ(n) in the
estimation of parameters θ, as described above. But, it
is also possible to construct an interpolation P2D int from
the data points of P2D so that we can construct a fully
faithful (no systematic bias) bank (up to interpolation
error)

hfaithful2D (θ) = h10D ◦ Pint ◦ P2D int(θ). (4.8)

B. Constructing the ‘target signals’

The ultimate aim of this work is to create a family
of analytical waveforms that are very close to the gravi-
tational waveforms produced by coalescing binary black
holes. As a first step, we need to construct a set of ‘tar-
get signals’ containing all the three (inspiral, merger and
ring down) stages of the binary black hole coalescence.
Although numerical relativity, in principle, is able to pro-
duce gravitational waveforms containing all these stages,
the numerical simulations are heavily constrained by
their high computational cost. It is therefore necessary,
at the present time, to use results from post-Newtonian
theory to extend the waveforms obtained from numerical
relativity.
We produce a set of ‘hybrid waveforms’ by matching

the PN and NR waveforms in an overlapping time in-
terval t1 ≤ t < t2. The obvious assumption involved in
this procedure is that such an overlapping region exists
and that in it both approaches yield the correct wave-
forms. These hybrid waveforms are assumed to be the
target signals that we want to detect in the data of GW
detectors.
The NR and PN waveforms are given by Eq. (2.8)

and Eq. (3.1), respectively (with ι = 0). The (com-
plex) time-domain waveform h(t,µ) from a particular
system is parametrized by a set of ‘extrinsic parame-
ters’ µ = {ϕ0, t0}, where ϕ0 is the initial phase and
t0 is the start time of the waveform. We match the PN
waveforms hPN(t,µ) and the NR waveforms hNR(t,µ) by
minimizing the integrated squared absolute difference, δ,
between the two waveforms, i.e.,

δ ≡
∫ t2

t1

∣

∣

∣
h

PN

(t,µ)− a h
NR

(t,µ)
∣

∣

∣

2

dt. (4.9)

The minimization is carried out over the extrinsic pa-
rameters µ of the PN waveform and an amplitude scaling
factor a, while keeping the ‘intrinsic parameters’ (M and
η) of both the PN and NR waveforms the same 2. The

2 Here the amplitude scaling factor a is introduced because of
two reasons. (i) The short NR waveforms used to construct the
phenomenological template family (see the following discussion
in this Section) were extracted at a finite extraction radius. This
introduces some error in the amplitude of the NR waveforms. (ii)

hybrid waveforms are then produced by combining the
‘best-matched’ PN waveforms and the NR waveforms in
the following way:

h
hyb(t,µ) ≡ a0 τ(t) h

NR(t,µ) + (1− τ(t)) hPN(t,µ0)
(4.10)

where µ0 and a0 denote the values of µ and a for which
δ is minimized, and τ is a weighting function, defined as

τ(t) ≡



















0 if t < t1

t−t1
t2−t1

if t1 ≤ t < t2

1 if t2 ≤ t.

(4.11)

In this paper we use two families of hybrid wave-
forms. Both are produced by matching 3.5 PN Tay-
lorT1 waveforms with NR waveforms. The first set is
constructed by using long (> 10 inspiral cycles) NR
waveforms. This include equal-mass (η = 0.25) NR
waveforms produced by the AEI-CCT group using their
CCATIE code employing fourth-order finite differencing
to compute spatial derivatives, and equal and unequal-
mass (η = 0.19, 0.22, 0.25, or M1/M2 = 1, 2, 3) wave-
forms produced by the Jena group using their BAM
code employing sixth-order finite differencing and PN-
motivated initial-data parameters. The second set of
hybrid waveforms is constructed by using NR waveforms
produced by the Jena group using their BAM code em-
ploying fourth-order finite differencing. These are short
waveforms (∼ 4 inspiral cycles) densely covering a wide
parameter range (0.16 ≤ η ≤ 0.25). We use the second
set of hybrid waveforms to construct the phenomenolog-
ical family and to test its efficiency in detecting signals
from black hole coalescences, and use the first set of hy-
brid waveforms (which are closer to the actual signals)
to verify our results.

The former family of hybrid waveforms is shown in
Fig. 2. The NR waveforms from three different sim-
ulations (η = 0.25, 0.22, 0.19) done by AEI and Jena
groups are matched with 3.5PN inspiral waveforms over
the matching region −750 ≤ t/M ≤ −550. The hybrid
waveforms are constructed by combining the above as
per Eq. (4.10) and Eq. (4.11).

Since the ‘long and accurate’ NR waveforms (see the following
discussion) are extrapolated to an infinite extraction radius, we
expect the amplitude of these waveforms to be correct within
numerical accuracy of the simulations. But, it turns out that the
restricted PN waveform has an amplitude which is inconsistent
with the NR waveform by roughly constant factor 6± 2% in the
frequency range we consider here [31]. For simplicity, we take the
amplitude of the restricted PN waveform as the amplitude scale
for the hybrid waveforms. It should be noted that, since we use
normalised templates, the errors that we introduce by this (<
10%) do not affect the fitting factors or the detection statistic.
But the horizon distance that we estimate in Section IVF can
have an error up to 10% due to this choice.
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The robustness of the matching procedure can be
tested by computing the overlaps between hybrid wave-
forms constructed with different matching regions. If the
overlaps are very high, this can be taken as an indication
of the robustness of the matching procedure. A prelimi-
nary illustration of this can be found in Ref. [92], and a
more detailed discussion will be presented in [93].

Fig. 3 shows the hybrid waveforms of different mass-
ratios in the Fourier domain. In particular, the panel
on the left shows the amplitude of the waveforms in the
Fourier domain, while the panel on the right shows the
phase. These waveforms are constructed by matching
3.5PN waveforms with the long NR waveforms produced
by the Jena group. In the next section, we will try to
parametrize these Fourier domain waveforms in terms of
a set of phenomenological parameters.

C. Parametrizing the hybrid waveforms

We propose a phenomenological parametrization to
the hybrid waveforms in the Fourier domain. Template
waveforms in the Fourier domain are of particular pref-
erence because, (i) a search employing Fourier domain
templates is computationally inexpensive compared to
one using time domain templates (ii) parametrization of
the hybrid waveforms is easier in the Fourier domain.

We take our motivation from the restricted post-
Newtonian approximation to model the amplitude of the
inspiral stage of the hybrid waveform, i.e., the amplitude
is approximated to leading order as a power law f−7/6

in terms of the Fourier frequency f (as follows straight
from adding leading order radiation reaction to Newto-
nian dynamics). The amplitude of the merger stage is
empirically approximated as a power law f−2/3 (consis-
tent with the observation of [27]), while the amplitude
of the ring down stage is known to be a Lorentzian func-
tion around the quasi-normal mode ring down frequency.
Similarly, we take our motivation from the stationary
phase approximation (see, for example, [94]) of the in-
spiral waveform to write the Fourier domain phase of the
hybrid waveform as a series expansion in powers of f . As
we shall see later, this provides an excellent approxima-
tion of the phase of the hybrid waveform.

1. Phenomenological waveforms

We write our phenomenological waveform in the
Fourier domain as

u(f) ≡ Aeff(f) e
iΨeff (f). (4.12)

where Aeff(f) is the amplitude of the waveform in the
frequency domain, which we choose to write in terms of
a set of ‘amplitude parameters’ α = {fmerg, fring, σ, fcut}

as

Aeff(f) ≡ C























(f/fmerg)
−7/6

if f < fmerg

(f/fmerg)
−2/3

if fmerg ≤ f < fring

wL(f, fring, σ) if fring ≤ f < fcut
(4.13)

where fcut is the cutoff frequency of the template and
fmerg is the frequency at which the power-law changes

from f−7/6 to f−2/3 (as noted previously in [27] for the
equal-mass case). C is a numerical constant whose value
depends on the relative orientations of the interferometer
and the binary orbit as well as the physical parameters
of the binary (see below). Also, in the above expression,

L(f, fring, σ) ≡
(

1

2π

)

σ

(f − fring)2 + σ2/4
, (4.14)

represents a Lorentzian function of width σ centered
around fring. The normalization constant w is chosen in
such a way that Aeff(f) is continuous across the ‘transi-
tion’ frequency fring, i.e.,

w ≡ πσ

2

(

fring
fmerg

)−2/3

. (4.15)

Taking our motivation from the stationary-phase ap-
proximation of the gravitational-wave phase, we write
the effective phase Ψeff(f) as an expansion in powers of
f ,

Ψeff(f) = 2πft0 + ϕ0 +

7
∑

k=0

ψk f
(k−5)/3 , (4.16)

where t0 is the time of arrival, ϕ0 is the frequency-
domain phase offset, and ψ = {ψ0, ψ2, ψ3, ψ4, ψ6, ψ7}
are the ‘phase parameters’, that is the set of phenomeno-
logical parameters describing the phase of the waveform.
The numerical constant C in Eq. (4.13) can be deter-

mined by comparing the amplitude of the phenomeno-
logical waveforms with that of the restricted post-
Newtonian waveforms in the frequency domain.
In the restricted post-Newtonian approximation, the

Fourier transform of the gravitational signal from an
optimally-oriented binary located at an effective distance
d can be written as in Eq. (B1). We expect that in the
inspiral stage (f < fmerg) of our phenomenological wave-
forms the amplitude will be equal to that of the post-
Newtonian waveforms as given in Eq. (B1). Thus, in
the case of an optimally-oriented binary, the numerical
constant C can be computed as

C =
M5/6 f

−7/6
merg

d π2/3

(

5 η

24

)1/2

. (4.17)

This ‘physical’ scaling will be useful when we estimate
the sensitivity of a search using this template family (see
Section IVF and Appendix B).
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and the term linear in time (and frequency) have already been subtracted from the phase. Symmetric mass-ratio η of each
waveform is shown in the legends. These waveforms are constructed by matching 3.5PN waveforms with the long NR waveforms
produced by the Jena group.
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FIG. 4: Fitting factors of the hybrid waveforms with the
phenomenological waveform family. Horizontal axis shows
the symmetric mass ratio of the binary. Fitting factors are
calculated assuming a white noise spectrum, and hence are
independent of the mass of the binary.

We now compute the fitting factors of the hybrid
waveforms with the family of phenomenological wave-
forms by maximizing the overlaps over all the param-
eters, i.e., {α,ψ, ϕ0, t0} of the phenomenological wave-
forms. While doing this, we also find the parameters,
αmax and ψmax, of the ‘best-matched’ phenomenologi-

cal waveforms. This calculation is described in detail in
Appendix A.
We first take a few (seven) hybrid waveforms coarsely

spaced in the parameter range 0.16 ≤ η ≤ 0.25, and
compute the fitting factors and the best-matched phe-
nomenological parameters, assuming a white-noise spec-
trum for the detector noise. We use these samples in the
parameter space to construct the interpolated template
bank (see next subsection). We then test the effectu-
alness and faithfulness of the template bank using all
(∼ 30) hybrid waveforms finely spaced in the parameter
space.
The fitting factors are shown in Fig. 4. It is quite

apparent that the fitting factors are always greater
than 0.99, thus underlining the effectiveness of the
phenomenological waveforms in reproducing the hybrid
ones. Also, as an example, in Fig. 5, we plot the hybrid
waveforms from η = 0.25 binary in Fourier domain along
with the ‘best-matched’ phenomenological waveform.

2. From phenomenological to physical parameters

It is possible to parametrize the phenomenological
waveforms having the largest overlaps with the hybrid
waveforms in terms of the physical parameters of the
hybrid waveforms. In Fig. 6, we plot the amplitude
parameters αmax of the best-matched phenomenologi-
cal waveforms against the physical parameters of the
binary. Similarly, the phase parameters ψmax of the
best-matched phenomenological waveforms are plotted
against the physical parameters of the binary in Fig. 7.
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FIG. 5: Hybrid waveforms (solid lines) in the frequency domain, and the ‘best-matched’ phenomenological waveforms (dashed
lines). The left panel shows the Fourier domain magnitude, while the right one shows the phase. In the hybrid waveforms,
the constant phase term and the term linear in time (and frequency) have already been subtracted from the phase. In the
phenomenological waveforms, t0 and ϕ0 (see Eq.(4.16)) have been chosen to minimize the phase difference between the hybrid
and phenomenological waveforms. These waveforms correspond to a binary with η = 0.25, and are constructed from the
‘short’ NR waveforms produced by the Jena group (see Section IVB). The ‘dip’ in the left panel at Mf ≃ 2× 10−2 is due to
the small eccentricity present in the first few cycles of the NR waveform. All waveforms are normalized assuming a flat noise
spectral density.

It can be seen that αmax and ψmax can be written as
quadratic polynomials in terms of the physical parame-
ters (M and η) of the hybrid waveforms as:

αj int =
aj η

2 + bj η + cj
πM

,

ψk int =
xk η

2 + yk η + zk
η (πM)(5−k)/3

, (4.18)

where aj , bj , cj , j = 0...3 and xk, yk, zk, k =
0, 2, 3, 4, 6, 7 are the coefficients of the quadratic poly-

nomials used to fit the data given in Figs. 6 and 7. These
coefficients are listed in Tables I and II. It may be noted
at this point that Figs. 6 and 7 correspond to the map-

ping P : θ(n) → λ
(n)
max that we have introduced in Sec-

tion IVA, and Eq. (4.18) to the interpolation Pint of
P .

Using the empirical relations given in Eq. (4.18), we
can rewrite the effective amplitude and phase of the
waveforms in terms of M and η as:

Aeff(f) ≡ C



































(

πMf
a0η2+b0η+c0

)−7/6

if f < a0η
2+b0η+c0
πM

(

πMf
a0η2+b0η+c0

)−2/3

if a0η
2+b0η+c0
πM ≤ f < a1η

2+b1η+c1
πM

wL
(

f, a1η
2+b1η+c1
πM , a2η

2+b2η+c2
πM

)

if a1η
2+b1η+c1
πM ≤ f < a3η

2+b3η+c3
πM ,

Ψeff(f) = 2πft0 + ϕ0 +
1

η

7
∑

k=0

(xk η
2 + yk η + zk) (πMf)(k−5)/3 , (4.19)

where the constant C is given by Eq.(4.17). We use this family of parametrized waveforms to create a two-
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FIG. 6: Best-matched amplitude parameters αmax in terms of
the physical parameters of the binary (assuming white noise
spectrum). The horizontal axis shows the symmetric mass-
ratio of the binary. Quadratic polynomial fits αint to the
data points are also shown.

dimensional template bank of non-spinning waveforms.
This template family can be seen as a two-dimensional
sub-manifold (parametrized by M and η) embedded in
a higher dimensional manifold (of the phenomenological
waveforms).
The polynomial coefficients in the Table II are indeed

significantly different from those predicted by stationary
phase approximation of the PN inspiral phase in the fre-
quency domain. There are two reasons for that: The

first one is that our re-parametrization is optimized for
the mass range where all three phases (inspiral, merger
and ring down) are contributing significantly. The sec-
ond reason is the residual eccentricity present in the nu-
merical waveforms. Change in the relative significance of
different PN terms reflects attempt to match the slightly
eccentric waveform with circular. When more accurate
(less eccentric) numerical waveforms become available in
future, the re-parametrization given in Eq.(4.18) can be
optimized for a wider mass range. An example of this
can be seen in Ref. [92].

D. Effectualness and faithfulness

In order to measure the accuracy of our parametrized
templates we compute their overlap with the ‘target sig-
nals’ (the hybrid waveform). To check the faithfulness
of our phenomenological templates, we compute their
overlap with the target signal maximizing it over the ex-
trinsic parameters (time-of-arrival and the initial phase).
We assess the effectualness of the parametrized wave-
forms by computing fitting factors with the target sig-
nals (computing the overlap maximized over both extrin-
sic and intrinsic parameters). Faithfulness is a measure
of how good the template waveform is in both detect-
ing a signal and estimating its parameters. However,
effectualness is aimed at finding whether or not an ap-
proximate template model is good enough in detecting
a signal without reference to its use in estimating the
parameters.
We compute the effectualness and the faithfulness of

the template family for three different noise spectra. The
one-sided noise power spectral density (PSD) of the Ini-
tial LIGO detector is given in terms of a dimensionless
frequency x = f/f0 by [95]

Sh(f) = 9× 10−46
[

(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2
]

, (4.20)

where f0 = 150 Hz; while the same for Virgo reads [95]

Sh(f) = 10.2× 10−46
[

(7.87x)−4.8 + 6/17x−1 + 1 + x2
]

, (4.21)

where f0 = 500 Hz. For Advanced LIGO [95],

Sh(f) = 10−49

[

x−4.14 − 5x−2 + 111
(1− x2 + x4/2

1 + x2/2

)

]

, (4.22)

where f0 = 215 Hz.

Faithfulness is computed by maximizing the overlaps
over the extrinsic parameters t0 and ϕ0 only, which can
be done trivially [96]. Effectualness is computed by max-
imizing both intrinsic and extrinsic parameters of the

binary. The maximization over the intrinsic parameters
is performed with the aid of the Nelder-Mead downhill
simplex algorithm [97].

The effectualness of the template waveforms with the
hybrid waveforms is plotted in Fig. 8 for three different
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FIG. 7: Best-matched phase parameters ψmax in terms of the physical parameters of the binary (assuming white noise
spectrum). The horizontal axis shows the symmetric mass-ratio of the binary. Quadratic polynomial fits ψint to the data
points are also shown.

noise spectral densities. The corresponding faithfulness
is plotted in Fig. 9. It is evident that, having both values
always greater than 0.99, the proposed template family
is both effectual and faithful.

We also calculate the systematic bias in the estima-
tion of parameters while maximizing the overlaps over
the intrinsic parameters of the binary. The bias in the
estimation of the parameters θ is defined in Eq.(4.7).

The percentage biases in estimating the total mass
M , mass ratio η, and chirp mass Mc = Mη3/5 of the
binary are plotted in Figs. 10, 11, and 12, respectively.
This preliminary investigation suggests that the bias in
the estimation of M and η using the proposed template
family is < 3%, while the same in estimatingMc is < 6%.

Parameter ak bk ck

fmerg 2.9740×10−1 4.4810×10−2 9.5560×10−2

fring 5.9411×10−1 8.9794×10−2 1.9111×10−1

σ 5.0801×10−1 7.7515×10−2 2.2369×10−2

fcut 8.4845×10−1 1.2848×10−1 2.7299×10−1

TABLE I: Polynomial coefficients of the best-matched ampli-
tude parameters. The first column lists the amplitude param-
eters αint. Eq.(4.18) shows how these parameters are related
to the coefficients ak, bk, ck.

Parameter xk yk zk

ψ0 1.7516×10−1 7.9483×10−2 -7.2390×10−2

ψ2 -5.1571×101 -1.7595×101 1.3253×101

ψ3 6.5866×102 1.7803×102 -1.5972×102

ψ4 -3.9031×103 -7.7493×102 8.8195×102

ψ6 -2.4874×104 -1.4892×103 4.4588×103

ψ7 2.5196×104 3.3970×102 -3.9573×103

TABLE II: Polynomial coefficients of the best-matched phase
parameters. The first column lists the phase parameters ψint.
Eq.(4.18) shows how these parameters are related to the co-
efficients xk, yk, zk.

E. Verification of the results using more accurate

hybrid waveforms

As we have discussed in Section IVB, the hybrid wave-
forms used for constructing the template waveforms are
produced by matching rather short (∼ 4 inspiral cycles)
NR waveforms with PN waveforms. We have also pro-
duced a few hybrid waveforms by matching PN wave-
forms with long (> 10 inspiral cycles) and highly accu-
rate (sixth-order finite differencing and low eccentricity)
NR waveforms. This set of hybrid waveforms (which are
closer to the ‘actual signals’) can be used to verify the
efficacy of the template waveforms in reproducing these
more accurate signals.
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FIG. 9: Same as in Fig. 8, except that the plots show the faithfulness of the (two-dimensional) template family.

Fig. 13 shows the fitting factors of the two-dimensional
template family with the ‘more accurate’ hybrid wave-
forms. The fitting factors are computed, as before, using
the Initial LIGO (left), Virgo (middle) and Advanced
LIGO (right) noise spectra. The high fitting factors (al-
though smaller than the same obtained in the previous
Section) with the hybrid waveforms once again underline
the efficacy of the template waveforms in reproducing
the hybrid ones. It is indeed expected that the tem-
plate family will have better overlaps with the hybrid
waveforms described in the previous Section (those con-
structed from ‘short’ NR waveforms), because the poly-
nomial coefficients given in Tables I and II are optimized

for these hybrid waveforms. When more ‘long and ac-
curate’ NR waveforms are available in the future, the
polynomial coefficients given in the Tables can be op-
timized for the corresponding family of ‘more accurate’
hybrid waveforms. In any case, since the fitting factors
are already very high, we don’t expect any significant
improvements.
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FIG. 11: Same as in Fig. 10, except that the plots show the percentage bias |∆η|/η × 100 in the estimation of η.

F. The astrophysical range and comparison with

other searches

The template family proposed in this paper can be
used for coherently searching for all the three stages
(inspiral, merger, and ring-down) of the binary black
hole coalescence, thus making this potentially more sen-
sitive than searches which look at the three stages sep-
arately. Fig. 14 compares the sensitivity of the searches
using different template families. What is plotted here
are the distances at which an optimally-oriented, equal-
mass binary would produce an optimal SNR of 8 at the
Initial LIGO (left plot), Virgo (middle plot) and Ad-
vanced LIGO (right plot) noise spectra. In each plot,
the thin solid (blue) line corresponds to a search using

PN templates truncated at the innermost stable circu-
lar orbit (ISCO) of the Schwarzschild geometry having
the same mass as the total mass M of the binary; the
dashed (purple) line to a search using ring-down tem-
plates [98]; the dot-dashed (black) line to a search us-
ing effective one body [5] waveform templates truncated
at the light ring of the corresponding Schwarzschild ge-
ometry, and the solid line to a search using all three
stages of the binary coalescence using the template bank
proposed here. The computation is described in detail
in Appendix B. The horizontal axis reports the total-
mass of the binary, while the vertical axis the distance
in Mpc. It is quite evident that, for a substantial range
of total mass (100 . M/M⊙ . 300 for Initial LIGO,
200 . M/M⊙ . 500 for Virgo, 150 . M/M⊙ . 400 for
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FIG. 12: Same as in Fig. 10, except that the plots show the percentage bias |∆Mc|/Mc×100 in the estimation ofMc =Mη3/5.
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represents the total mass M (in units of M⊙) and the legends display the symmetric mass ratio η of the binary.

Advanced LIGO), the ‘coherent search’ using the new
template family is significantly more sensitive than any
other search considered here.

However, while this looks promising, we repeat here
the caveats emphasized in [30]: It is important to treat
Fig. 14 as only a preliminary assessment; fitting factors
are not the only consideration for a practical search strat-
egy. It is also very important to consider issues which
arise when dealing with real data. For example, false
alarms produced by noise artifacts might well determine
the true sensitivity of the search, and these artifacts will
inevitably be present in real data. This is however be-
yond the scope of the present work, and further investi-
gation is required before we can properly assess the effi-
cacy of our phenomenological template bank in real-life
searches.

V. SUMMARY AND OUTLOOK

Making use of the recent results from numerical rel-
ativity we have proposed a phenomenological waveform
family which can model the inspiral, merger and ring-
down stages of the coalescence of non-spinning binary
black holes in quasi-circular orbits. We first constructed
a set of hybrid waveforms by matching the NR wave-
forms with analytical PN waveforms. Then, we con-
structed analytical phenomenological waveforms which
approximated the hybrid waveforms. The family of phe-
nomenological waveforms that we propose was found to
have fitting factors larger than 0.99 with the hybrid
waveforms. We have also shown how this phenomeno-
logical waveform family can be parametrized solely in
terms of the physical parameters (M and η) of the bi-
nary, so that the template bank is, in the end, two di-
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to a search using standard PN templates truncated at ISCO, the dotted-dashed (black) line to a search using effective one
body waveform templates truncated at the light ring, the the dashed (purple) line to a search using ring-down templates, and
the thick solid (red) line to a search using the template family proposed in this paper. The ring down horizon distance is
computed assuming that ǫ = 0.7% of the black hole mass is radiated in the ring down stage, while the Kerr parameter a = 0.69
is known from the numerical simulation. Since the value of ǫ has some amount of uncertainty in it, we have also included the
shaded region in the plot corresponding to 0.18% ≤ ǫ ≤ 2.7%.

mensional 3. This two dimensional template family can
be explicitly expressed in terms of the physical param-
eters of the binary. We have estimated the ‘closeness’
of this two-dimensional template family with the fam-
ily of hybrid waveforms in the detection band of three
ground-based GW detectors, namely Initial LIGO, Virgo
and Advanced LIGO. We have estimated the effectual-
ness (larger overlaps with the target signals for the pur-
pose of detection) and faithfulness (smaller biases in the
estimation of the parameters of the target signals) of the
template family. Having both types of overlap always
greater than 0.99, the two dimensional template family
is found to be both effectual and faithful in the detection
band of these ground-based detectors.

This phenomenological waveform family can be used
to densely cover the parameter space, avoiding the com-
putational cost of generating numerical waveforms at
every grid point in the parameter space. We have com-
pared the sensitivity of a search using this template fam-
ily with other searches. For a substantial mass-range, the
search using all three stages of the binary black hole co-
alescence was found to be significantly more sensitive
than any other template-based searches considered in
this paper. This might enable us to do a more sensitive
search for intermediate-mass black holes using ground-

3 It may be noted that, the mapping from the phenomenologi-
cal to physical parameters might not be unique in the case of
spinning binaries, because of the degeneracies of different spin
configurations.

based GW detectors.

A number of practical issues need to be addressed be-
fore we can employ this template family in an actual
search for GW signatures. The first issue will be how to
construct a bank of templates sufficiently densely spaced
in the parameter space so that the loss in the event rate
because of the mismatch between the signal and tem-
plate is restricted to an acceptable amount (say, 10%).
The explicit frequency domain parametrization of the
proposed template family makes it easier to adopt the
formalism proposed by Owen [99] in laying down the
templates using a metric in the parameter space. Work
is ongoing to compare the metric formalism adopted to
the proposed template family and other ways of laying
out the templates, for example a ‘stochastic’ template
bank [100]. Also, this explicit parametrization makes it
easier to employ additional signal-based vetoes, such as
the ‘chi-square test’ [101]. This will also be explored in
a forthcoming work.

Since this template bank is also a faithful representa-
tion of the target signals considered, we expect that, for
a certain mass-range, a search which coherently includes
all three stages of the binary coalescence will bring about
remarkable improvement in the estimation of parameters
of the binary. This may be especially important for LISA
data analysis in estimating the parameters of supermas-
sive black hole binaries. This is also being explored in
an ongoing work [47].

It is worth pointing out that the family of target sig-
nals (the hybrid waveforms) that we have considered
in this paper is not unique. One can construct alter-
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nate families of hybrid waveforms by matching PN wave-
forms computed using different approximations with NR
waveforms. Also, owing to the differences in initial data
and accuracy of numerical techniques, the NR waveforms
from different simulations can also be slightly different.
Thus, the coefficients listed in Tables I and II have a
unique meaning only related to this particular family
of target waveforms. But we expect that the general
parametrization that we propose in this paper will hold
for the whole family of non-spinning black hole coales-
cence waveforms from quasi-circular inspiral. As we have
mentioned in the Introduction, the purpose of this paper
is to explicitly prescribe a general procedure to construct
interpolated template banks using parametrized wave-
forms which mimics actual signals from binary black hole
coalescence (as predicted by numerical relativity and an-
alytical methods).
Nevertheless, it may be noted that most of the PN

waveforms constructed using different approximations
are known to be very close to each other (see, for ex-
ample, [46]). Also, we expect that NR waveforms from
different simulations will converge as the accuracy of nu-
merical simulations improves (see, for example, [102]).
Thus, since different families of PN and NR waveforms,
which are the ‘ingredients’ for constructing our target
signals, are very close to each other, we expect that the
phenomenological waveform family proposed in this pa-
per, in its present form, will be sufficiently close to other
families of target signals for the purpose of detecting
these signals. As a preliminary illustration of this, we
have computed the fitting factors of the template wave-
forms with a different family of hybrid waveforms (con-
structed from longer and more accurate NR waveforms),
and have shown that the overlaps are indeed very high.
This will be explored in detail in a forthcoming work.
Also, we remind the reader that this paper consider

only the leading harmonic of the GW signal (ℓ = 2, m =
±2). We expect that the contribution from the higher
harmonics become important for high mass ratios, which
will be investigated in a forthcoming work.
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APPENDIX A: CALCULATION OF THE

FITTING FACTORS

In order to find the fitting factor of our phenomeno-
logical bank to a hybrid waveform, as well as the
best-matched parameters (αmax,ψmax), we need to per-
form a maximization of the overlap M(α,ψ) in a 12-
dimensional space, which seems a challenging task at
first sight, especially due to the oscillatory nature of the
dependence of M(α,ψ) on the components of ψ. How-
ever, due to the very high fitting factor, as well as the
linear dependence of Ψeff(ψ; f) on ψ, we have been able
to design an analytic approximation to M(α,ψ) that is
highly accurate and can be maximized over ψ analyti-
cally. In describing this approximation, we also include
ϕ0 and t0 in ψ, forming an 8-dimensional vector.
For a target hybrid waveform

h̃(f) = A(f) eiΨ(f) , (A1)

and a phenomenological template

u(f) = Aeff(α; f) e
iΨeff (ψ;f) , (A2)

the overlap M(α,ψ) can be broken into a product of
two terms,

M(α,ψ) = MA(α)MP(α,ψ) (A3)

with

MA(α) ≡
1

a

∫ ∞

0

Aeff(α; f)A(f)

Sh(f)
df (A4)

and

MP(α,ψ) ≡
1

b

∫ ∞

0

Aeff(α; f)A(f) cos[∆Ψ(f)]

Sh(f)
df

(A5)
where

∆Ψ(f) ≡ Ψ(f)−Ψeff(ψ; f) . (A6)

In the above expressions, the normalization constants a
and b are defined by

a2 ≡
∫ ∞

0

A2(f)

Sh(f)
df

∫ ∞

0

A2
eff(α; f)

Sh(f)
df, (A7)
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and

b ≡
∫ ∞

0

Aeff(α; f)A(f)

Sh(f)
df . (A8)

If the phase difference ∆Ψ(f) is small, we can approx-
imate cos∆Ψ ≈ 1−∆Ψ2/2, and rewrite MP as

MP ≈ M′

P ≡ 1− 1

2 b

∫ ∞

0

Aeff(α; f)A(f)[∆Ψ(f)]2

Sh(f)
df.

(A9)
Since Ψeff(ψ; f) is a linear function in ψ, minimizingM′

P

becomes a least-square fit with a weighting function

µ(f) ≡ Aeff(α; f)A(f)

Sh(f)
. (A10)

More specifically, writing Ψeff(ψ; f) as in Eq.(4.16), i.e.,

Ψeff(ψ; f) =
∑

j

ψj f
(5−j)/3 , (A11)

we have

1−M′

P =
1

2

[

ψ AψT − 2BψT +D
]

, (A12)

where we have defined a matrix A, a vector B and a
scalar constant D, such that

Aij ≡ 1

b

∫ ∞

0

f (10−i−j)/3 µ(f) df ,

Bj ≡ 1

b

∫ ∞

0

f (5−j)/3Ψ(f)µ(f) df ,

D ≡ 1

b

∫ ∞

0

Ψ2(f)µ(f) df . (A13)

The maximum of M′
P is then equal to

M′

Pmax = 1− 1

2

[

D −BA
−1

B
]

, (A14)

reached at

ψmax = BA
−1. (A15)

As a consequence, for each α, we are able to maximize
MP(α,ψ), and hence M(α,ψ), over ψ analytically.
The original 12-dimensional maximization is then con-
verted to a 4-dimensional maximization, only over the
amplitude parameters, on which the overlap depends in
a non-oscillatory way.

APPENDIX B: COMPUTING THE HORIZON

DISTANCE

Here we describe how we compute the horizon dis-
tance of different searches discussed in Section IVF. An
alternative way of computing the horizon distance can
be found in Ref. [92].

1. Search using post-Newtonian templates

In the restricted post-Newtonian approximation, the
Fourier transform of the gravitational signal from an
optimally-oriented binary located at an effective distance
d can be written in the following way:

h(f) =
M5/6

d π2/3

(

5 η

24

)1/2

f−7/6 ei[2πft0−ϕ0+ψ(f)−π/4]

(B1)
where M is the total mass, η is the symmetric mass
ratio, t0 is the time of arrival and ϕ0 is the initial phase.
The phase ψ(f) is computed using the stationary phase
approximation.
The optimal SNR in detecting a known signal h buried

in the noise is given by

ρopt = 2

[
∫ ∞

0

df
h(f)2

Sh(f)

]1/2

, (B2)

where Sh(f) is the one-sided PSD of the noise. The
optimal SNR in detecting the signal given in Eq.(B1)
can thus be computed as:

ρopt =
M5/6

d π2/3

(

5 η

6

)1/2
[

∫ fupp

flow

df
f−7/3

Sh(f)

]1/2

, (B3)

where flow is the low-frequency cutoff of the detector
noise and fupp is upper frequency cutoff of the template
waveform. The effective distance to a binary which can
produce an optimal SNR ρopt can be computed by in-
verting the above equation.
The standard post-Newtonian waveforms are trun-

cated at fupp = fISCO, where fISCO = (63/2πM)−1 is
the GW frequency corresponding to the innermost sta-
ble circular orbit (ISCO) of the Schwarzschild geome-
try with mass equal to the total mass M of the bi-
nary. The effective one body (EOB) waveforms are trun-
cated at fupp = fLR, where fLR = (33/2πM)−1 is the
GW frequency corresponding to the light ring of the
Schwarzschild geometry with mass M . Both of these
quantities are computed assuming the test particle limit.
It may be noted that, for the EOB waveforms, an analyt-
ical Fourier domain representation is not available. They
cannot be expressed in the form given in Eq.(B1). But
for the purpose of the estimation of the horizon distance,
these formulas give a reasonable approximation.

2. Search using ring down templates

The ring down portion of the GW signal from a coa-
lescing binary, considering only the fundamental quasi-
normal mode, corresponds to a damped sinusoid. This
can be written as [103]

hring(t) = Aring exp

[

−πfQNR(t− t0)

Q

]

× cos (−2πfQNR(t− t0) + ϕ0) , (B4)
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where Aring is the amplitude, t0 is the start time of the
ring down, ϕ0 the initial phase, M is the mass of final
black hole, fQNR and Q are the central frequency and the
quality factor of the ringing. For the fundamental mode,
a good fit to the frequency fQNR and quality factor Q,
within an accuracy of 5%, is given by

fQNR ≈ [1− 0.63(1− a)3/10]
1

2πM
, (B5)

Q ≈ 2(1− a)−9/20 , (B6)

where aM2 is the spin angular momentum, and a is the
Kerr parameter [103].
To compute the optimal SNR in detecting this signal

present in the data, we proceed as in [104], assuming
that for t < t0, hring(t) is identical to t > t0 except for
the sign in the exponential, and dividing by a correcting
factor of

√
2 in amplitude to compensate for the doubling

of power:

h̄ring(t) =
Aring√

2
exp

[

−πfQNR |t− t0|
Q

]

× cos (−2πfQNR(t− t0) + ϕ0) . (B7)

Its Fourier transform then becomes

˜̄hring(f) =
Aring fQNR√

2πQ
ei2πft0

(

eiϕ0

g2 + 4 (f − fQNR)2

+
e−iϕ0

g2 + 4 (f + fQNR)2

)

, (B8)

where g = fQNR/Q.
In general, it is not easy to estimate Aring, or the two

polarization amplitudes; they depend upon the detailed
evolution of the merger epoch, as well as variables such
as the orientation of the final merged remnant. A reason-
able hypothesis [105, 106, 107] is that their ratio follows
the ratio of the inspiral polarization amplitudes. With
this hypothesis, the overall amplitude of the signal from
an optimally located and oriented binary, requiring that

the ring down radiate some fraction ǫ of the system’s
total mass, becomes

Aopt
ring =

√

5ǫ

4π

M

d

2
√

MfQNRQF (Q)
(B9)

where F (Q) = 1 + 7
24Q2 and d is the distance to the

source. The optimal SNR ρ can now be computed as

ρopt = 2

[

∫ fupp

flow

df
|˜̄hring|2
Sh(f)

]1/2

, (B10)

where flow and fupp are the lower and upper cutoff fre-
quencies of the detector noise. As in the previous case,
the horizon distance can be computed by inverting this
equation.
3. Search using the template family proposed in

this paper

The phenomenological waveforms in the frequency do-
main are given in Eqs.(4.12– 4.17). The optimal SNR in
detecting this signal can be computed as:

ρopt =
M5/6 f

−7/6
merg

d π2/3

(

5 η

6

)1/2
[

∫ fmerg

flow

df
(f/fmerg)

−7/3

Sh(f)

+

∫ fring

fmerg

df
(f/fmerg)

−4/3

Sh(f)

+ w2

∫ fcut

fring

df
L2(f, fring, σ)

Sh(f)

]1/2

, (B11)

where L(f, fring, σ) is defined in Eq.(4.14), and
fmerg, fring, fcut and σ are given by Eq.(4.18).

This equation can be inverted to calculate the effec-
tive distance to the optimally-oriented binary which can
produce an optimal SNR ρopt.
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