

Citation for published version:
Staikopoulos, A, Cliffe, O, Popescu, R, Padget, J & Clarke, S 2010, 'Template-based adaptation of semantic
web services with model-driven engineering', IEEE Transactions on Services Computing, vol. 3, no. 2, pp. 116-
130. https://doi.org/10.1109/TSC.2010.30

DOI:
10.1109/TSC.2010.30

Publication date:
2010

Link to publication

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Athanasios Staikopoulos, Owen Cliffe, Razvan Popescu, Julian Padget, Siobhán Clarke, "Template-Based
Adaptation of Semantic Web Services with Model-Driven Engineering," IEEE Transactions on Services
Computing, vol. 3, no. 2, pp. 116-130, Apr.-June 2010, doi:10.1109/TSC.2010.30

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/TSC.2010.30
https://doi.org/10.1109/TSC.2010.30
https://researchportal.bath.ac.uk/en/publications/5440799f-97af-484a-9581-fcf179d5104f

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Template-Based Adaptation of Semantic
Web Services with Model-Driven Engineering

Athanasios Staikopoulos, Owen Cliffe, Razvan Popescu, Julian Padget, and Siobhán Clarke

Abstract— Service-oriented enterprise systems, which tend to be heterogeneous, loosely-coupled, long-lived and continuously
running, have to cope with frequent changes to their requirements and the environment. In order to address such changes,
applications need to be inherently flexible and adaptive, supported by appropriate infrastructures. In this article, we propose a
model-driven approach for the dynamic adaptation of Web services based on ontology-aware service templates. Model-driven
engineering raises the level of abstraction from concrete Web service implementations to high level service models, which leads
to more flexible and automated adaptations through template designs and transformations. The ontological semantics enhances
the service matching capabilities required by the dynamic adaptation process. Service templates are based on OWL-S
descriptions and provide the necessary means to capture and parameterise specific behaviour patterns of service models. In
this paper we apply our approach in the context of the EU-funded ALIVE project and illustrate, as an example, how the
proposed framework supports the adaptation of the authentication mechanism used by an interactive tourist recommendation
system.

Index Terms— D.2.7.e Evolving Internet applications, D.2.1.e Methodologies, D.2.11 Software Architectures, D.4.1.0 Support
for Adaptation, M.3 Web services, M.3.0.a Web services Modeling, M.6.0.d Formalization of Services Composition, M.7.1.d
Process Re-engineering Methodology.

—————————— � ——————————

1 INTRODUCTION
he reality of many of today’s software systems is that
their operating environments are highly dynamic.
Changes to the environment and indeed, to their re-

quirements, happen continuously, both explicitly and
implicitly. This is more and more evident for systems that
tend to be heterogeneous, loosely-coupled, long-lived and
that are required to run continuously, such as business-
based, service-oriented systems.

Web services provide the basic fundamental unit for
constructing such systems, representing a specific busi-
ness activity or functionality. Once services are exposed
and become available for use by other services and re-
sources on the Web, they can establish more complicated
structures and interactions, providing new added-value
aggregate services. In order to effectively support the
highly dynamic nature of such systems, services need to
be handled as flexible, composite and adaptive units, so
they can be substituted, converted or even composed eas-
ily with other services.

In general, adaptation is an essential quality for ser-
vices that operate within dynamic environments and that
provide high availability with reduced system downtime.
Through adaptation, service-oriented systems can achieve

higher levels of maintenance and autonomy. The adapta-
tion process serves, for example, to ensure that:

- The application is compatible with all its clients

(e.g., an e-commerce platform has to be compatible
with both old and new clients).

- The application maintains a desired quality of ser-
vice (QoS) (e.g., an online video-sharing applica-
tion has to scale up with an increasing number of
active clients).

- The application is fault tolerant (e.g., an applica-
tion should provide an alternative authentication
service, should the main one fail).

An adaptation can be enforced either at design, or at

run-time, and it can be triggered either by the human de-
signer or operator of the application, or by a monitoring
process. Several techniques have been defined for the
monitoring and adaptation of applications. They gener-
ally tackle issues such as interface [1], behavioural [2],
quality-of service [3], service-level agreement [4], or pol-
icy mismatches [5]. However, such techniques usually
work in isolation and cannot be easily integrated to tackle
complex monitoring and adaptation scenarios [6].

A consolidated and flexible framework is required to
allow developers to integrate such adaptation techniques
to tackle complex application requirements within such
dynamic environments. The framework should monitor
the execution of services within their operating environ-
ment and should direct and trigger dynamic adaptations
on services, once problems or requirements arise.

In addition, a methodology that supports the effective

————————————————
� A. Staikopoulos is at Lero and Trinity College Dublin, Ireland, E-mail:

Athana-sios.Staikopoulos@cs.tcd.ie.
� O. Cliffe is at University of Bath, UK, E-mail: O.C.Cliffe@bath.ac.uk
� R.Popescu is at Lero and Trinity College Dublin, Ireland, E-mail: rpope-

scu@cs.tcd.ie
� J. Padget is at University of Bath, UK E-mail: jap@cs.bath.ac.uk
� S. Clarke is at Lero and Trinity College Dublin, Ireland, E-mail: Sio-

bhan.Clarke@cs.tcd.ie.

T

2 IEEE TRANSACTIONS ON SERVICES COMPUTING

design, development and native capabilities of such sys-
tems is essential [7]. Model-driven engineering (MDE) [8]
offers a number of benefits to the software development
process by raising the level of abstraction in which we
develop software from low-level concrete implementa-
tions to high-level model abstractions. So, it is possible to
reason about the properties of a system through visual
representations (models) and automatically create im-
plementations for a variety of problems via transforma-
tions. MDE also provides all the necessary ingredients
(e.g., theoretical foundations, standards, toolsets) for the
systematic engineering, modelling and automation of
dynamic service-oriented systems and their adaptations.

The ALIVE project [9-10] proposes an advanced MDE
supported framework for the disciplined, systematic and
engineered development and management of service-
oriented systems, based on coordination and organisation
mechanisms often seen in human and other societies.

In this paper, we describe an approach for the dynamic
adaptation of services supported by the ALIVE frame-
work. The adaptation approach consists of an MDE proc-
ess based on ontology-aware service templates. This
process leads to flexible adaptations through design tem-
plates and automated transformations. The ontological
semantics enhances the service matching capabilities re-
quired by the dynamic adaptation process. Service tem-
plates are based on OWL-S descriptions [11] and provide
the necessary means to capture and parameterise specific
behavioural patterns of service models, for example, cap-
turing a common “authentication” mechanism.

In the context of this paper, service adaptations are
considered as substitutions (for run-time adaptation),
conversions, composition or direct modifications of the
service properties and parts (for design-time adaptation).
A given service is substituted by an equivalent one or
synthesised (composed) from existing services. The syn-
thesis process is facilitated by the specification of service
templates at design time. Developers may generate tem-
plates either manually, or semi-automatically with the
help of third-party adaptation techniques [1-5]. Service
templates capture well-known types and patterns of ser-
vice interactions, providing adaptation solutions for a
specific type of problem. They are used for applying
planned adaptations according to a given service type.
Alternatively, run-time adaptations are supported via the
direct substitution of services from equivalent ones via
semantic matching and configuration.

In a nutshell, our MDE-based adaptation approach
brings the following advantages:

- It allows the capture of high-level abstractions of

the domain through service models and templates
(patterns). The same service model or template can
be synthesised into concrete services and adapters,
in different applications.

- It sets the basis for the integration of third-party
adaptation techniques needed to tackle complex
application requirements (e.g., employ existing
adaptation techniques for the generation of service
templates).

- It enhances the generation of services and adapters
from service templates from a manual, error-prone
process to a semi-automated, engineered one.

- It allows for the development of heterogeneous
services and adapters (through the use of service
models and templates as common service and
adapter description language).

- It supports the development of tools that assist the
developer in the process of generating and cus-
tomising services and adapters.

The flexibility introduced by the MDE approach and

the use of service templates allows application developers
to apply the adaptation process to various application
domains, such as e-commerce (e.g., to cope with changes
in the business process requirements), crisis management
(e.g., due to changes in the environment), and user enter-
tainment (e.g., so as to offer customised services).

In this paper, we illustrate the applicability of our ap-
proach by showing how it can be employed for the run-
time adaptation of an interactive tourist recommendation
system. In particular a detected failure on a security re-
quirement (via a monitoring mechanism) triggers an ad-
aptation process to replace the initial user authentication
protocol with an alternative one. Similarly, other QoS
properties such as performance and availability can be
monitored and once problems are diagnosed, different
adaptation templates that are in-place may be applied.
These may replace communication protocols with more
efficient ones or substitute services with more reliable
ones.

The remainder of this article is organised as follows:
Section 2 provides background information. Section 3
presents a motivating example. Section 4 proposes a
methodology for the adaptation of services based on a
model-driven approach. Section 5 presents our approach
in the context of the ALIVE framework. Section 6 pro-
vides a critical discussion of our approach. Section 7 de-
scribes related work. Finally, section 8 summarises the
main contributions of our approach.

2 BACKGROUND INFORMATION
In this section, we outline the basic concepts of the para-
digms, technologies and methodologies referred to across
this article.

2.1 Service-Oriented Computing and Architecture
Service Oriented Architecture (SOA) is a standardised
representation of the service-oriented computing para-
digm, which defines a conceptual infrastructure for de-
signing and developing service architectures, based on a
set of open standards. SOA proposes a layered architec-
ture for organising services, which can be published, dis-
covered, invoked and combined to create more complex
services [12]. Key SOA roles are the service provider, re-
questor and registry.

2.2 Semantic Web Services
Web service descriptions (e.g., WSDL [13]) are superficial
and lacking in any perspective of the service’s semantics.

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 3

As a result, searching, extracting and matching services
are correspondingly difficult, and limited by the lack of
precision and depth in the description of each service. For
example, UDDI [14] service registries feature keyword-
based service matching mechanisms for WSDL services.

The semantic Web has emerged as a solution [15] ex-
tending the current Web technologies with well-defined
meanings to existing services and resources. This is sup-
ported by annotations with (ontological) semantics
through languages that can be interpreted and processed
by computers. Ontologies [16] are used to provide a for-
mal and explicit specification of the domain concepts,
logical relations, restrictions and properties used. Seman-
tic reasoners use this information to perform automatic
analysis and assertions of Web services and resources.

Consequently, semantic Web technologies provide ad-
ditional scope for (semi-)automated service analysis, se-
lection and matching, providing automated processing
and decision-making based on semantic descriptions.
These processes can then be exploited in the context of
service composition and adaptation.

2.3 Semantics-driven Service Matchmaking
Given a client query (e.g., consisting of desired service
inputs and outputs), service matchmakers typically start
by building a candidate set of services by querying avail-
able service directories for potentially matching services.
For instance, a typical criterion may be whether service
descriptions refer to similar terms or ontologies to those
referred to by the query. Following the construction of a
candidate set, for each service in the candidate set a com-
parison is made against the query and a rank is computed
based on one or more similarity metrics (e.g., [17]). Ser-
vices may then be selected either automatically or manu-
ally according to their rank as part of a system (re-) con-
figuration.

2.4 Service Adaptation
The unavailability of services, unexpected failures,
changes of QoS requirements, alterations to communica-
tion protocols and incompatibilities of the data exchanged
can occur both explicitly and implicitly. These problems
can be resolved to some degree through an adaptation
process, where services are modified, substituted or even
composed transparently to perform their originally re-
quired or equivalent functionality. In this manner, adap-
tation can contribute to the high availability of services
within changing environments. This is especially impor-
tant for service-oriented business-based systems that are
long-lived and continuously running and that operate
within changing environments and requirements.

2.5 Model-Driven Software Engineering
A model-driven approach to development is generally
based on a set of open standards and related technologies,
and is built on a metamodel foundation, enabling a de-
velopment framework for standard specification and in-
teroperability among tools. Systems and applications are
formalised with metamodel descriptions and are visual-
ised by models as metamodel instantiations, using tools.
Actual code implementations or other artefacts (e.g., jar)

are created automatically by applying predefined trans-
formations from source models to target models or lan-
guages.

Figure 1 illustrates the model-driven process. Within
the meta-modelling layered foundation [18], at the top
level, there is a meta-meta model specifying the necessary
constructs to build metamodels, such as for SOA. The
metamodels themselves can be specified at varying levels
of abstraction; from highly abstracted and independent
models - Platform Independent Models (PIMs), to more
technological and implementation specific - Platform Spe-
cific Models (PSMs). Once a mapping is specified between
corresponding meta-modelling constructs, a transforma-
tion language implements the mapping and converts a
model(s) of the source metamodel to a corresponding
model(s) (M2M) or converts code (M2T) to another
metamodel or language.

Fig. 1.Conceptualisation of the Model-Driven Approach.

Model-Driven Engineering (MDE) offers a number of
benefits to the software development process. In particu-
lar, it a) provides visual representations as an aid to
communication and understanding, b) captures applica-
tions and systems at various levels of abstractions, allow-
ing separation of concerns and better complexity man-
agement, c) allows analysis of certain system properties
and d) creates parts (technological implementations)
automatically via transformations.

3 MOTIVATING EXAMPLE
As previously mentioned, service adaptation helps to
solve various problems due to e.g., interaction protocol or
QoS mismatches, or service failures. These issues can be
found in all application domains that require the inclu-
sion of new application features, the scalability of ser-
vices, or their replacement with alternative ones.

For example, in order to target new clients, the creators
of an e-commerce application platform decide to extend it
through the inclusion of new features (e.g., inclusion of a
one-click checkout protocol). The interaction protocol
required by the new clients might be different from the

4 IEEE TRANSACTIONS ON SERVICES COMPUTING

old one. In this case, the application can be adapted to
support both interaction protocols so as to sure that the
enhanced version of the application (transparently) offers
the required functionality to all its clients – both old and
new. Another example is an online video-sharing applica-
tion that has to allocate resources in order to scale up with
an increasing number of online clients. Such an applica-
tion has to provide a flexible adaptation to the resource
availability (e.g., upload and download bandwidth) and
protocols (e.g., routing protocol for data streaming) that
allows it to support a desired quality of the user experi-
ence. The adaptation may depend on the number of ac-
tive users, their subscription plan, their current activities
and physical location.

In this paper, we focus on an example that illustrates
the adaptation of an authentication service due to the
failure of one of its components. This example is based on
the experiences of Tech Media Telecom Factory SL
(TMT)1

In the scenario, a series of user interactions occur and
are mediated by the system via an orchestrated dialog in
the form of a workflow (see figure 2). In this example, we
focus on a particular aspect of the overall system func-
tionality, which deals with user admission and authenti-
cation.

, a partner in the ALIVE project. The scenario de-
fines a tourist recommendation system that interacts with
users via a distributed, interconnected system of smart
terminals. These terminals provide information, recom-
mendations, and bookings for tourist services such as
restaurants, cinemas, or events in a geographical area
based on users’ personal preferences. The system consists
of a centralised control service (core system) and a large
number of client devices. Each client device (smartpoint),
is remote and is connected to the core via the internet.
The smartpoints act as service consumers (e.g., of travel
information services) and as service providers. They ex-
pose functionality as a set of services that allow the core
system to interact with the user and vice versa.

Fig. 2. TMT Scenario for admission and authentication.

The scenario is as follows: In order to gain access to the
recommendation system functionality, the workflow il-
lustrated in figure 2 is invoked within the system (i.e.,
initiated by some user interaction at one of the smart-
points). The workflow takes a device identifier (i.e., a
URL which refers to the specific smartpoint) as input and
first queries the device for the user’s authentication de-
tails which, if successful, yields a user name. Then it is
mapped into an internal system identifier for that user via
an internal system service/component. Subsequently, the

1 http://www.tmtfactory.com/

system queries a profile service to retrieve (or create) the
user’s profile and queries the user’s device for its capabili-
ties. The user identifier, user profile and device capabili-
ties are then returned by the workflow.

As deployed, the authentication action is a simple chal-
lenge-response call, which queries the user’s device for a
user name and credentials (see figure 3). These are then
checked internally against an internal database, where
they are mapped into an internal system identifier, corre-
sponding to the user’s identity in future transactions.

Fig. 3. Initial Authentication action.

We express the specification of the authenticate call (see
the Authenticate User task in figure 2) using a simple
(OWL-S [11]) process with the following inputs, outputs,
preconditions and effects:

Preconditions: none,
Inputs: DeviceID uri,
Outputs: UserName user,
Effects: is_authenticated(user).

where DeviceID and UserName denote OWL classes [19]
referring to the URI of a particular device and the name of
a user respectively, user and uri denote parameter identi-
fiers for input and output parameters of the process and
is_authenticated(user) is a semantic predicate (expressed in
SWRL [20]), which indicates that following the successful
execution of the process the user is successfully authenti-
cated at the device in question.

In this motivating example, the adaptation required is
the replacement of the authentication call with an alterna-
tive system. This may be necessary because of a) the fail-
ure or removal of the existing authentication database, or
b) because of changes in the requirements of the call.

Where the authentication service ceases to be available,
the whole authentication workflow will fail persistently.
We assume that such a failure is detectable. In this case
the system would try to find an alternative to the failed
service, - that is, a service which takes a username and
password and asserts that the user belonging to the user
name is authenticated. When this process fails, the entire
sub-workflow becomes invalid and a new workflow ful-
filling the same requirements must be constructed.

 Where the requirements have changed, we assume
that an alternative means of authentication is available
and operates using a different underlying user-system
protocol to the original authentication mechanism.

The alternative protocol is summarised as follows2

2 The protocol here is based on the OpenID [21] authentication system
(

:

http://www.openid.org) however the overall flow of interaction is
similar to that found in other web-redirection protocols such as Shibbo-
leth (http://shibboleth.internet2.edu) or Microsoft Passport
(http://www.passport.net))

Query Device for
user credentials

Check username/
passwordstart Finish

Device ID
User name

Password

User name

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 5

The protocol is initiated by a calling service that interacts
with the user who has to be authenticated. The calling
service queries the user for a personal URL (e.g.,
http://ist-alive.eu/thanos), that acts as an identifier from
the perspective of the user. The system then performs a
query using this URL (typically by fetching the URL itself
and retrieving some header information) in order to de-
termine the authentication service that should be used to
authenticate the user. The user’s Web browser (or a
browser-based interface on the target device) is redirected
to the (external) authentication service which then
prompts the user for authentication. This redirection in-
cludes a return URL which is owned by the calling ser-
vice. Following successful authentication, the authentica-
tion service redirects the user back to the specified return
URL (within the calling service) with a cryptographically
signed token indicating the user’s identity. Finally, this
token is checked by the calling service before allowing the
authenticating user to proceed.

Figure 4 shows the workflow for a client, where the
lighter (blue) boxes indicate protocol specific calls and
darker (green) boxes indicate application specific calls,
which must be filled by the client application invoking
the protocol. The outcome of the protocol is a User Re-
source Identifier (URL) and an assertion that the user
with that URL is authenticated (as with the previous pro-
tocol). The process of adaptation discussed in the remain-
der of this paper relates to the process by which the initial
authentication process is replaced by the redirection pro-
tocol described below.

Fig. 4. OpenID, alternative authentication mechanism.

4 PROPOSED SOLUTION
This section introduces an approach to the development
and adaptation of service-oriented applications based on
semantic descriptions and model-driven techniques. The
proposed development process is based on the concepts
of a) model-driven engineering b) semantic technologies
for selection and reasoning and c) service adaptations
based either on service templates or direct modifications.

Our approach considers service adaptations primarily
as substitutions, conversions, composition or direct modi-
fications of the service properties and parts. In addition,
they are distinguished into:

- Planned, when the semantic reasoner matches and

selects appropriate concepts and services that pa-
rameterise pre-build service templates. As a result
of this parameterisation, an adapted service is cre-
ated and deployed.

- Spontaneous, when the adaptation is performed

without the use of predefined service templates
but with the direct modification of properties and
parts of the service model.

In the first case, the adapted service is created as a re-

sult of model synthesis (service model + template +
matched services), and in the second case, as direct modi-
fication of the model’s properties and parts. Both service
adaptations are performed with model-driven means and
accompanied with semantic reasoning tools.

The development process involves the following steps:
a) modelling and meta-modelling b) automatic creation of
implementation artefacts c) execution and monitoring d)
semantic analysis and e) application of adaptations. Fig-
ure 5 outlines graphically the process steps.

Fig. 5. Proposed Development Process.

Step 1: Modelling & Metamodelling: Model-Driven
Engineering is used for a) the specification of service
and template metamodels, b) the creation of special
purpose editors capturing services, and service tem-
plates with models abstractions, and c) the specifica-
tion of adaptation mechanisms that will perform the
model synthesis and transformation process.

Step 2: Automated Service Creation: Service implemen-
tations are automatically created after applying pre-
defined transformations among source models (e.g.,
service models) to target languages (e.g., Java Web
services). MDE is also used to bind specific services
and parameters to predefined service templates to
create and deploy new adapted services within a ser-
vice-oriented environment.

Step 3: Execution and Monitoring: The actual execution
and monitoring of services is implemented using exe-
cution engines for Web services and special purpose-
built components that observe the service interac-
tions, state transitions, failures and environmental
properties, against certain conditions and require-
ments. Details of the actual execution and monitoring
mechanism are left outside the scope of this paper.
However, for more details we point the reader to [22].

Step 4: Semantic Analysis and Selection: Semantic
analysis and selection of services are based on onto-
logical descriptions and reasoning tools. Service se-
lection refers to the process of locating an existing
service based on the description of their functional or
non functional semantics. Within MDE the service
models are annotated with semantic descriptions that

6 IEEE TRANSACTIONS ON SERVICES COMPUTING

are transformed to OWL-S descriptions. By using
standard means of logic reasoning, it is possible to
determine the semantic relevance (matching) of a
service to particular requested service characteristics.

Step 5: Service Adaptation: Service adaptations are per-
formed on service models, representing real service
entities, which are created via automated transforma-
tions from service templates. The adaptation itself is a
process of substituting one service for another, con-
verting and composing new services from existing
ones, as well as applying direct modifications on ser-
vice properties and parts. In particular, composition
and conversion are supported by the definition of
service templates at design time. Third-party adapta-
tion techniques can also employed to support the
semi-automated generation of service templates.

In general, the introduced benefits are in the formula-

tion of service templates that provide patterns of service
adaptation with metamodels, the capture of templates at
design time with model abstractions by using specific
purpose build editors that are created semi-automatically,
and the automatic creations, at run time, of the adapted
services by parameterising the service templates with
services that are dynamically selected.

The proposed approach and methodology is illustrated
using the ALIVE framework (see section 5). In particular,
figure 6 depicts the primary components that will realise
the proposed development process within a service-
oriented framework, in this case, in ALIVE.

In brief, the development process is initiated by the
“modelling & metamodelling” step where a service
metamodel is formally specified using the Ecore [23]
metamodel language (section 5.1 explains in detail the
metamodel segments used in ALIVE). Similarly, meta-
models are used to specify service templates (see section
5.3). Service templates are designed to accommodate spe-
cific types of problems. They combine and convert exist-
ing services based on the input and output parameters
and the pre and post conditions of services. When these
templates are bound to specific services either at design
or run-time, they form adaptors. Adaptors expose the
new services either as a result of composition (composite
services) or conversion (wrappers). Next, based on the
metamodel a graphical editor is created so that specific
service models can be captured (instantiated) by a soft-
ware designer (see section 5.2).

At the “automated creation” step, predefined model-
to-text (M2T) transformations are applied on these mod-
els by model-driven tools to automatically generate asso-
ciated syntactic and semantic implementation artefacts (in
the form of e.g., WSDL or OWL-S) descriptions, service
implementations (in the form of Java skeletons), deploy-
ment descriptors (e.g., WSDD for Axis) and publish regis-
try entries (e.g. UDDI). In this way, the metamodel fully
supports the development of semantic service-oriented
applications with model-driven means.

At the “execution and monitoring” step, the deployed
services are executed by the execution engine and moni-
tored by the monitoring framework that is composed of

components observing the service enactment. Once a
problem or an error occurs, the enactment engine will try
to first handle the error with the in-place mechanisms
(e.g., error handlers, roll-back activities, transaction con-
text, etc.) and second generate a relevant event that will
be passed to the monitoring mechanism that will try to
resolve the problem via an adaptation process.

Fig. 6. Components realising the development process of our ap-
proach.

At the “semantic selection and analysis” step the se-
mantic framework (composed by matchmakers and rea-
soning tools) will analyse the events generated and select
via matchmaking the templates or other suitable adapta-
tions, offering an alternative service or a modified service
to address a stated problem (see section 5.4).

Finally the “service adaptation” step refers to the proc-
ess initiated by the adaptation framework (a tool that util-
ises a model-driven transformation approach) to synthe-
sise the new adapted services from service templates and
services indentified at the matchmaking process with a
model-to-model (M2M) transformation (see section 5.5).

5 SOLUTION APPLIED TO ALIVE
In this section, we demonstrate how our approach is ap-
plied within the framework of the ALIVE project [10] to
perform an adaptation of the authentication service (see
motivation example). The approach is realised using tools
such as Eclipse editors, semantic tools (OWL-MX) [24]
and transformation (QVTO) [25] tools.

The ALIVE project proposes a new approach to the
engineering of service-oriented systems based on coordi-
nation and organisation mechanisms often seen in human
and other societies. To achieve this, it 1) develops an ad-
vanced framework for application development, deploy-
ment and management in service environments, 2) util-

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 7

ises model-driven engineering techniques and tools 3)
provides a dynamic methodology for service design, ad-
aptation and maintenance, and 4) supports an alignment
with other emerging architectures and standards [10]

5.1 Service-Oriented Metamodel Engineering
In ALIVE, the service-oriented paradigm is conceptual-
ised and formalised with a metamodel specification
(Ecore). The service-oriented metamodel (see figure 14 in
the appendix) defines and supports fundamental service
concepts and characteristics such as service providers,
consumers and registries, allowing the self-description,
publishing and discovery of services via corresponding
metamodels. At run time, the described metamodel capa-
bilities become implemented functionalities of actual ex-
ecutable components that are derived via model-driven
transformations. Due to paper length restrictions we de-
scribe only the elements and supporting infrastructure
that are related to the adaptation of services.

The ALIVE services metamodel is structured into four
parts: a) syntactic b) semantic c) architectural and d) ser-
vice templates. Figure 14 in the appendix depicts parts of
the service-oriented metamodel. In the diagram, the ser-
vice-oriented concepts/entities are depicted as EClasses
(rectangular) whereas the relationships among concepts
are illustrated with links (EReferences).

The syntactic part of the metamodel defines the ele-
ments required to specify a service’s functionality as an
exposed interface. A service is likely to have operations
with input and output parameters, types of generated
faults, as well as protocol details and interaction styles.
From the syntactic part of the service model, a service’s
description (e.g., WSDL) could be automatically gener-
ated and exposed to a registry (e.g., UDDI), so it can be
located and used by other services.

More specifically, a Service represents a modular func-
tionality unit, has a textual name, description and name-
space in which it is defined and is available. A specific
service consists of a concrete Endpoint from where it can
be invoked and an abstracted InterfaceDescription provid-
ing the functional signature of the service. Endpoints cap-
ture the location of the service together with information
Binding that provides protocol details (such as encoding
and style to be used) and transport mechanisms (such as
SOAP over HTTP). The InterfaceDescription has a name
and a number of operations (OperationDescription), refer-
ring to the functionalities exposed by the service. Each
OperationDescription has ordered inputs, outputs and
faults, all of which are of type Message. A Message refers to
the data-types and concepts exchanged during the service
invocation. They refer to XML Schema Elements and Com-
plexTypes that can be either defined inline (within) the
service description or separately.

The semantic part of the metamodel specifies what the
service does, by providing ontological annotations for
various service elements. It has ServiceProfile, ProcessModel
and ServiceGrounding elements. The semantic parts of the
model are mapped to corresponding parts of the OWL-S
specification [11], so the semantic description of the ser-
vice can be generated. The semantic part is used by the

matchmaking process to select services based on certain
criteria.

A ServiceProfile provides a higher taxonomic descrip-
tion of the service, so it can be selected by category or
other non-functional properties. The semantic functional-
ity of a service is described by the ProcessModel. The Proc-
essModel provides a semantically grounded description of
a service’s invocation in terms of the inputs, outputs, pre-
conditions and effects (IOPEs). It gives a high-level inter-
pretation of a given service call, where each input or out-
put corresponds to an ontological concept such as OWL
[24] and where each precondition and effect relates to a
rule-based language such as SWRL [20]. For a given ser-
vice, ServiceGrounding binds the syntactical parts of its
interface description to the corresponding semantic (onto-
logical concepts) parts of its ProcessModel. So, it enables a
service to be invoked accordingly to its semantic descrip-
tions and conditions.

The architectural part of the metamodel captures the
elements used by the execution framework such as the
enactment and monitoring components. In turn the en-
actment component may be related to exception handlers
and transactional coordinators that perform transactional
protocols within a specific context. In this case the trans-
actional model employs WS-TX concepts to generate the
transactional context for the processing for the enacted
services. Actual details of the execution and monitoring
mechanism are outside the scope of this paper, so they are
not shown in detail.

The template part of the metamodel provides the ele-
ments required to specify service templates as means of
service adaptation. A service template acts as a collective
description of abstracted process models that resolve to a
specific functionality or goal. Similar to services, tem-
plates are stored in template repositories. They are dis-
covered by matchmaking components that implement
them with concrete services.

Each ServiceTemplate has a URI uniquely identifying
the template. It also has parameters of type Concept (refer-
ring to ontological resources), a TemplateFlow and an ex-
posed AbstractProcessModel. The exposed AbstractProc-
essModel defines the abstracted process model type for an
adapted service. An AbstractProcessModel becomes con-
crete (bound) once the template is instantiated via an
adaptor (ServiceAdaptor), so it can be exposed as a service.
It consists of abstracted parameters (inputs, outputs) and
conditions (effects and preconditions). The TemplateFlow
provides a container in which abstracted partner proc-
esses (AbstractProcessModels) are specified. AbstractProc-
essModels of a TemplateFlow are connected with Links via
the source and target associations. A Link connects two or
more AbstractProcessModels to specify ordered interactions
among participant partner processes. Conditions are speci-
fied on links, which, once they are satisfied, activate the
target of the link. A number of MapConcept elements can
be specified on links in order to map outputs variables of
one process model to input variables of another, for ex-
ample (outConcept1 >> inConcept2, outConcept2
>> inConcept1, ...). In this way, multiple Concepts
can be passed from one process to another. With Links, it

8 IEEE TRANSACTIONS ON SERVICES COMPUTING

is possible to specify sequences, flows, loops and condi-
tional execution, similar to the links in WS-BPEL [26].

A ServiceAdaptor provides a particular implementation
of a ServiceTemplate using bindings from the abstracted
process models (BindProcessModel) and parameters (Bind-
TemplateParmeter) to actual process models and parame-
ters of available services. An actual adapted service is
exposed for use, fulfilling (implementing) the requirements
of the service template. A BindTemplateParmeter is an ele-
ment of the adaptor that maps abstracted template pa-
rameters, which are related to ontological concepts, to
specific service parameters and concepts. Similarly, the
BindProcessModel is an element of the adaptor that maps
the abstracted process models of a template to actual
process models of real services.

5.2 Modelling the TMT Case Study
This section presents how the TMT motivating scenario is
captured as a model (see figure 7) of the ALIVE meta-
model, with an Eclipse graphical editor created with the
Graphical Modeling Framework (GMF) [27].

Fig. 7. TMT scenario service model (left) and XMI serialised format
(right).

The user may invoke the findEvents operation of a TMT
Interface of a TMT Service. The service internally triggers
a workflow that authenticates the user and identifies
his/her preferences. The workflow, which is part of the
ALIVE’s coordination level, involves four services; Direct
Authentication, Identity Map Service, User Profile Service and
a Device Capability Service. Multiple workflows or services
may be specified – in this example, OpenID Provider is
available in the system, though not part of the findEvents
workflow. The services are registered with a Service Direc-
tory so they can be located and dynamically invoked by
other services.

A Service model consists of two compartments. The
upper one provides the syntactic description of a service

with interfaces, endpoints and bindings, whereas the lower
part contains its semantic description with a Grounding,
Profile and ProcessModel. The compartments are not ex-
panded for the other services, so their internal parts are
hidden. Similarly a ProcessModel has compartments for
inputs, outputs, preconditions and effects.

5.3 Specifying Service Templates
Next, we illustrate how to specify, via a service template
model, an alternative authentication mechanism that pro-
vides a general authentication solution, allowing the user
(agent) to be authenticated via redirection to an external
authentication authority (refer to motivating example).
Should the direct user authentication fail, the adaptation
module will attempt to find available services satisfying
the service template’s requirements (inputs, outputs, pre-
conditions and effects) and expose a new service (e.g.,
OpenID Service Provider) replacing the previous so the
authentication can continue. Figure 8 depicts the service
template model for the redirection authentication.

Fig. 8. Specifying a service template for redirecting authentication.

The service template editor depicts service templates
as a rectangle with two compartments. The lower com-
partment contains the template’s flow, which connects the
AbstractedProcessModels of participant services. Each of
the AbstractedProcessModel services such as Ser-
vice_Requestor contains compartments specifying the ab-
stracted inputs, outputs, preconditions and effects with con-
cepts and rules. Next, on the links the output concepts are
matched with input concepts in the form of A.target
>> B.reqTarget. Preconditions and effects are applied
to make the flow deterministic. The upper compartment
contains the AbstractedProcessModel, exposed by the tem-
plate and which is the result of interaction among the par-

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 9

ticipating services.
In this case, the abstracted partner processes involved

are those of Service_Requestor, a Service_Provider and an
Authentication_Service. The flow is initiated when the Ser-
vice_Requestor makes a request for a target resource to a
Service_Provider by using his/her userIdentifier. The Ser-
vice_Provider responds with the location of the Authentica-
tion_Service to be used by the Service_Requestor for authen-
tication. By using this location (target), the Ser-
vice_Requestor makes a contact with the Authentica-
tion_Service by providing a username and password. The
login phase is performed as before, however now it is
validated by an external authority. In response, the Au-
thentication_Service creates a signed assertion, which is sent
back to Service_Requestor to be forwarded to Ser-
vice_Provider as a new signed request. The Service_Provider
validates the signed request with the Authentica-
tion_Service and if it is valid the validated username in re-
turned as output of the flow.

5.4 Template Matchmaking & Selection
Existing matchmaking approaches compare queries
against single service descriptions. Templates add an-
other dimension to this approach, in that we must decide
whether or not a template should be used for a given
query, which template to use and which partner services
best fit to provide a final composed template match.

In order to accommodate the matching of templates
against queries we use an extended hybrid matchmaking
approach described as follows. Each matchmaking phase
starts with a service query consisting of a set of IOPEs
and a service profile. We assume the presence of an exist-
ing hybrid matching function MatchSingle which takes a
query and determines the most appropriate single service
for that query using a number of matching metrics, or
returns nothing if no single service is found. Candidate
template sets are selected using the SearchTemplates,
which selects possible candidate templates by performing
a keyword search based on the ontologies and terms re-
ferred to in a query and those of the known templates
stored in a common repository. This operates in a similar
fashion to the candidate service selection process used in
conventional matchmaking described in Section 2.4. In
order to accommodate the case where a query may be
matched by a single service without the need for template
adaptation we define a function BuildSingleton which con-
structs a special singleton template based on a query con-
sisting of a single slot that corresponds to the query itself
such that matching against this template is equivalent to
searching for a single service which satisfies the query.

MatchMaker(Q,D = 0):BEGIN
 If D > MaxDepth: BEGIN
 Return [28]
 END
 STQ := BuildSingleton(Q)
 CT := {STQ} + SearchTemplates(Q)

BTS := {}
For each template T in CT: BEGIN
 BL := {}

 SS := {}
For each service slot L in T: BEGIN
 SS += MatchSingle(QL)

SS += MatchMaker(QL, D+1)
If SS is empty: Skip to next template

 SL := Rank(SS)[0]
 BL += {L -> SL}

 END
BTS += {BindTemplate(T,BL)}

 END
 Return first (Rank(BTS))

END

Fig. 9. Template matching algorithm.

The template matchmaking process (shown in figure 9)
operates as follows: If the matchmaker has reached the
maximal defined depth it returns with no results. We
then build a singleton template based on the query and
combine this with the set of templates returned by Sear-
chTemplates to give a candidate template set CT. For each
candidate template in this set we then iterate over each of
the unbound slots (L) and first try and find a single ser-
vice which matches the slot (MatchSingle) before repeating
the template matchmaking process for the given slot.
Where a service result is found for the given slot (SL) we
store the possible binding in the map BL. In the case that a
slot cannot be satisfied, we skip to the next template.
When all slots are satisfied the template and its bindings
are stored as a candidate match in the set BTS. Finally, all
candidate matches are ranked and the most appropriate
match is returned.

As each bound template has an exposed process model
we can apply the same matching metrics to bound tem-
plates as we do to single services. It is also possible to
consider metrics which take into account the structure
and properties of the services of sub-templates which
make up the template itself. S van Splunter et al [29] sug-
gest a number of such metrics such as preferring single-
ton matches (single services) over templates, preferring
template matches with fewer slots (dependent services) or
preferring templates with the highest aggregate match
quality for the underlying services.

5.5 Applying Model-Driven Adaptations
In this section, we present how the redirected authentica-
tion template is parameterised on the fly from semantic
tools in order to create an adapted (collaboration) service
via model transformation.

During semantic matchmaking the semantic tools will
select the appropriate services and concepts satisfying the
implementation requirements of a service template. Fol-
lowing, the adaptation module triggers the corresponding
transformation at run-time (see figure 10) and passes the
selected elements to the transformation description (see
figure 11).

engine = TransformationDef(“RedirectAuthService”);
engine.executeTransformation
(TMTScenario::ServiceModel,

10 IEEE TRANSACTIONS ON SERVICES COMPUTING

 RedirectTemplate::TemplateModel,
 mapServices::Map(abst::Service, conc::Service)
 mapConcepts:: Map(abst::Concept, conc::Concept)
, ...);

Fig. 10. Adaptation module triggering the transformation description
to createAdaptor with parameters resolved by matchmaking.

The transformation definition (RedirectAuthSer-
vice) performs the adaptation on the TMTScenario
and the RedirectTemplate models. The parameters
passed to the transformation engine are a) a map with
the abstract and concrete Services and b) a map with
the abstract and concrete Concepts matched during the
matchmaking process. The actual transformation is per-
formed with tuples that are standard OCL elements [30],
expressing maps where Services and Concepts are
actual model elements.

Within the transformation definition, a createAdap-
tor mapping (see figure 11) is applied by taking as in-
puts the template for the adaptation, a pm Tuple (map)
among the AbstractProcessModels and Process-
Models as well as cn Tuple among the abstracted and
concrete Concepts produces the ServiceAdaptor
model element.

//map definition to create a ServiceAdaptor model
mapping createAdaptor(
 in template: ServiceTemplate,
 in pm: Tuple(absProcessModel:AbstractProcess
 Model),conProcessModel:ProcessModel),
in cm: Tuple(absConcept:(Concept),
 conConcept:(Concept))

):ServiceAdaptor {

//create Service Adaptor model
result := object ServiceAdaptor{
 name := template.URI + '_Adaptor' ;

//bind the (abstract <-> concrete) processmodels
of the partner processes wirthin the TemplateFlow
 bindProcessModel += object BindProcessModel{
 concrete := pm.conProcessModel->at(index);
 abstract := pm.absProcessModel->at(index);
 };

//assign the implemantion template
 implement := template;

//create actual service model that will be ex-
posed. Later will be transformed to WSDL
 expose := object Service{
 name:= "ServiceExposed";
 describedBy := object ProcessModel{…};};

//bind the (abstract <-> concrete) processmodels
for the exposed adapted service
 bindProcessModel += object BindProcessModel{
 concrete := result.expose;
 abstract := template.exposed;
};

Fig. 11. Adaptor and exposed service is created via transformation.

Once the transformation is completed, an adaptor
model and an exposed service are created. Figure 12 de-
picts the creation of the adaptor and service.

Fig. 12. Adapted service (exposed) is created via a transformation.

Next, a model-to-text transformation (see figure 13)
creates the actual code (e.g. WSDL, WS-BPEL) and de-
ploys the service for usage to its environment. For exam-
ple, the following extract shows how the Service and Port
elements of WSDL are created for the adapted service.
The transformation is applied with the Acceleo3

 script
transformation language. In particular the code snippet
defines two scripts (mappings); the mapService and
mapPort. The former creates a WSDL service with name
and description and which triggers the latter in order to
create within the service, a WSDL port for each endpoint
defined in the model, with name, binding, transport pro-
tocol (SOAP or HTTP) and location.

//For every exposed service create a Service WSDL
<%script type="Service" name="mapService" %>

//assign exposed model’s name and description to
service
<service name= "<%name%>" >
 <documentation> <%description%></documentation>
//create WSDL port
 <%mapPort(prefix)%>
</service>

//create WSDL port
<%script type="Service" name="mapPort" %>
//for every endpoint
<%for (endpoint){%>
//assign the port name and binding
<port name="<%name%>" binding= <%binding.name%>">
<%if (binding.transport.equals("SOAP")){%>
 <soap:address location="<%location%>"/>
<%}else{%>
 <%if (binding.transport.equals("HTTP")){%>
 <http:address location="<%location%>"/>
 <%}%>
<%}%>
</port>

Fig. 13. An acceleo model-to-text transformation script generating
the WSDL Service and Port elements for the exposed service.

Similarly, model-driven adaptations can be applied di-

3http://www.acceleo.org

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 11

rectly to modify the service’s properties and parts, with-
out the use of service templates. For example, input or
output types of interfaces may be changed and additional
preconditions and effects may be imposed dynamically.
When compared to template adaptation, this kind of ad-
aptation is less complicated. However as previously, the
transformation process is directed from the adaptation
and matchmaking process to create, delete or modify ex-
isting modelling elements of the service model and pro-
vide their implementation parts.

6 CRITICAL DISCUSSION
The core of our service adaptation approach is based on
the modification of service models, using model-driven
engineering, service templates and semantic matchmak-
ing based on ontological descriptions. The synergy of
these technologies introduces many benefits to our adap-
tation approach, such as:

a) Abstraction: the level of abstraction is raised via the
use of models and the specification of adaptations,
captured as template models (patterns, types) of
common behaviours.

b) Automation: service implementations are automated
by the application of transformations and automated
semantic matchmaking.

c) Usability is enhanced with the use of Eclipse editors
and graphical notations, the application of prede-
fined transformations and provision of libraries of
service templates.

d) Effectiveness of development as transformations are
pre-tested.

e) Interoperability: connectivity among external tools
and formats is enabled through the use of open
standards.

f) Extensibility: third-party adaptation techniques may
be employed to support the semi-automated genera-
tion of service templates, which may be needed to
cope with complex adaptation scenarios that require
solving several issues (e.g., behavioural and QoS
mismatches).

In general, dynamic software adaptations are supported
by reflection and late-binding. Reflection is the process
where a system can observe and modify its own structure
and behaviour [31]. The observation property is referred
to as introspection, and the alteration property as inter-
spection. MDE supports both reflection properties
natively, via its architectural design and by providing a
powerful API for meta-object management. Late-binding
refers to mechanisms where decisions can be resolved at a
later point in time such as run-time. Late-binding capa-
bilities are also possible for MDE as its actual implemen-
tation is based on programming languages such as Java.
So, MDE supports both properties to enable dynamic
software adaptations in a similar way as with object-
oriented and component techniques. When compared to
other approaches and methodologies (see section 7) we
provide an adaptation process which is based on model

abstractions, and where service templates represent ab-
stracted solutions for specific types of problems.

The template matchmaking component presents a
challenge with respect to the complexity of finding suit-
able configurations to adaptation problems in a reason-
able time. The search space for any automatic configura-
tion problem in a service-oriented system will inevitably
be large, as a large number of services may be present as
candidate matches for a given query. Template matching
enlarges this space further by allowing for multiple can-
didate templates and multiple candidate services for slots
those templates. To a certain extent, this complexity can
be curtailed by limiting the scope of the matchmaking
search by terminating the search after a given period of
time, or by restricting the depth of template query
matches. The crisp, semantic component of the match-
maker (determining whether the IOPEs of a given query
satisfy a given query) lends itself well to current state of
the art planning approaches in the artificial intelligence
community such those based on SAT solvers and non-
monotonic logic programming techniques. Within the
project, we are developing a constraint-based search sys-
tem which uses the Answer Set Programming [32] non-
monotonic logic-programming language to encode tem-
plate configurations and service descriptions in order to
facilitate more efficient template-based matchmaking.

Generally, the ALIVE framework and methodology are
evaluated step by step by applying case-study based
evaluation against three large scale scenarios from differ-
ent domains, provided by our industrial partners. The
motivating example presented in this paper is part of one
of those scenarios.

Finally, we advocate that our suggested methodology
is pragmatic as it is based on existing and well established
development methodologies, web and semantic tech-
nologies, and is applied in realistic examples.

7 RELATED RESEARCH WORK
In this section we consider active research from the fields
of service composition and adaptation supported by
model-driven techniques or other means.

Model-driven approaches and frameworks supporting
adaptation include DIVA, MADAM and Rainbow [33-35].
In DIVA [33], an application is modelled at design time
with a base model (containing the common/core func-
tionalities), a set of variant models (capturing the variabil-
ity of the adaptive application) and an adaptation model
(specifying which variants should be used according the
rules and current context of the executing system). At
runtime, the models are processed by model composers
that produce the system’s configuration. By comparison,
ALIVE takes a more light-weight approach as it is not
based on a dedicated metamodel for an adaptation
framework, but rather uses parameterised adaptation
templates to adapt a specific type of functionality. Selec-
tion and substitution is based on semantic matchmaking
of services in the application domain.

MADAM [35] achieves runtime adaptation through
the use of architectural models. Comparatively, their in-

12 IEEE TRANSACTIONS ON SERVICES COMPUTING

terest is in adapting and configuring architectures of mo-
bile adaptive systems, while adaptations in ALIVE are
performed on services not their underlying middleware,
so modifications are applied on service’s behaviours,
structures and organisations.

Rainbow [34] provides an adaptation framework based
on an abstract architectural model to monitor runtime
properties to accommodate, for example, resource vari-
ability and system faults. Similarly in ALIVE our architec-
tural model represents the execution environment that
monitors and evaluates certain rules attached to service
models, based on which a model-driven adaptation is
triggered. However, in both cases, adaptations are speci-
fied and implemented differently.

In addition, there are several approaches and tech-
niques dealing with the broader concept of service adap-
tation. For example, Chang [7] proposes service adapta-
tion based on four types of service variability, which can
be implemented in a typical Web service environment.
These include a) workflow variability (different invoca-
tion orders) b) composition variability (more than one
services can be bound) c) interface variability (interface
signatures, when their semantics does not match) d) logic
variability (concept variation, semantics). It also identifies
seven adaptation methods, namely a) delegation b) selec-
tion c) plug-in d) external profile e) mediator f) trans-
former g) enhancer. These mechanisms (patterns) are de-
rived from Object Oriented Programming (OOP) tech-
niques. An adaptation manager resolves these four types
of service variability. In our case, the adaptation manager
utilises the semantic matchmaker and triggers model-
driven transformations to perform adaptations.

Another framework for the dynamic customisation of
services is proposed by Sam et al [36]. In this case, cus-
tomisation is based on syntactic, semantic and constraint
comparison of input and output types between requested
and available services using the LARKS [28] Web-
description language (a predecessor to current semantic
web service languages such as OWL-S). In their approach
only sequential compositions of services are considered,
whereas we permit arbitrary structural compositions as
specified by template descriptions.

Jiang et al [37] address the notion of reuse in Web ser-
vice development. Reusability is supported via categori-
sation of possible variation points to support a family of
services having common architecture and functionalities.
Management of variation points is based on a pattern
based approach. In contrast, our approach is not based on
variation points but service templates.

There are also techniques considering service adapta-
tion as substitutions to facilitate high availability of ser-
vices. For example, Birman et al. [38] propose a set of ex-
tensions to the Web services architecture that allows ap-
plication developers to enhance the reliability and avail-
ability of service-based applications. While their approach
somewhat tackles adaptation issues at the lower layers of
the Web services stack, we aim to define an adaptation
framework that tackles adaptation issues at business
process layers such as behavioural or QoS issues. These
two approaches complement each other and may be used

in conjunction to provide highly adaptive service-based
applications.

In addition, Liang et al. [39] propose a novel Web ser-
vice matching technique to support service substitutions
when using different service domain ontologies. The
matching employs a term categorisation step and a rule-
based service matchmaker. The former selects terms in
the service descriptions, while the latter applies semantic
rules to check whether the compared services are equiva-
lent with respect to the categorisation results. The ap-
proach then selects the best match as candidate for substi-
tution. In our approach the run-time substitution of ser-
vices employs a matching process that assumes a com-
mon ontology for service descriptions. While our ap-
proach will match fewer services, we believe that using a
common ontology minimises the chances of false positive
matches and hence it allows us to have a better service
matching precision.

Emerging approaches to adaptation of services based
on compositions include Sheng et al [40] who present a
system supporting configurable and adaptive composi-
tion of Web services. It is based on three core services; a
coordination service, a context service and an event ser-
vice that automatically schedule and implement user con-
figured adaptations at runtime. Composition is achieved
with a process schema similar to a UML statechart. In our
case, the equivalent concept is that of abstracted template
flow, which is dynamically parameterised by concrete
services and concepts.

Other emerging techniques for flexible software adap-
tation are based on Aspect-Oriented Programming (AOP)
[41]. For example, Hirschfeld and Kawamura [42] address
dynamic service adaptation by using the aspect modular-
ity construct to represent units of change. Language re-
flection and dynamic aspect-oriented programming allow
the adaptation of services when it is required. When
compared to our approach, we use model adaptation
where modularity is represented by the service model
element itself.

Another aspect-oriented approach for service adapta-
tion is by Kongdenfha [43]. Here, the approach is based
on a taxonomy of mismatch types on the invocation sig-
nature based on input types, their ordering as well as
flow of exchanged messages. In our case, we do not pro-
vide an explicit classification ontology; however this is
possible by either extending the ontological description of
our service domain or by reusing existing ones.

Finally, Hibner, and Zielinski [44] propose a semantic
based dynamic service composition and adaptation
framework. Their work is based on the Web Service Mod-
eling Ontology (WSMO) [45] to semantically compose
services using backward chaining reasoning. WSMO pro-
vides the semantic descriptions and deals with interop-
erability between different elements via mediators. There
are four types a) ontology mediators b) web service c)
goal and d) services and goals. An Enterprise Service Bus
(ESB) executor creates the complex service. The paper
also distinguishes two kinds of adaptation a) external (as
service composition) b) internal (within a service). In our
approach, workflow composition is based on GPGP plan-

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 13

ning [46]. In the role of ESB executor, the adaptation
module performs the transformation and creates/adapts
the service. The concept of external adaptation corre-
sponds to that of service templates, and internal adapta-
tion corresponds to the direct adaptation of the service
model.

8 CONCLUSIONS
In this article, we have presented a model-driven ap-
proach for the dynamic adaptation of service and busi-
ness-oriented applications to cope with implicit and ex-
plicit changes to their requirements and the environment.
Adaptation is an essential property for such long-lived
enterprise systems, which need to achieve higher levels of
autonomy and handle unexpected problems to be con-
tinuously running. In the context of this paper, service
adaptations are performed on abstracted service models
as a result of a transformation process. This has the fol-
lowing main advantages. First, it raises the level of ab-
straction through which the designer can reason about
adaptations. Second, pre-defined transformations and
automation reduce the extent to which errors can be in-
jected into the development process. Third, the usability
is enhanced through the provision of purpose-built edi-
tors that facilitate the methodology steps. Finally, the ap-
proach can be used in conjunction with third-party adap-
tation techniques to semi-automatically generate service
templates, from which one can deploy service adapters.

After the models are adapted through transformation,
adaptations are then reflected back to the corresponding
service implementations. Service adaptations are sup-
ported in two ways; a) using service template specifica-
tions that capture parameterised models of service behav-
iour allowing us to perform adaptations in the form of
composition, conversion or substitution, and b) by the
direct modification of structural, functional and non-
functional parts of the service model. In both cases, the
selection of services and their parts is resolved at run time
via the use of ontological descriptions and semantic
matchmaking. Semantic matchmaking has the advantage
of increasing the level of detail that it is possible to in-
clude in the process of finding matching services, thereby
increasing the possibility of finding alternative or more
appropriate services.

 For the purposes of this paper, our approach was
evaluated by application to an industry case-study, de-
scribed as examples in each section.

ACKNOWLEDGMENT
This work was carried out as part of ALIVE project
(www.ist-alive.eu), funding by the EU Commission under
the 7th framework program. This work was also sup-
ported, in part, by the Science Foundation of Ireland grant
03/CE2/I303_1 to Lero – the Irish Software Engineering
Research Centre (www.lero.ie).

REFERENCES
[1] M. Dumas, M. Spork, and K. Wang, ʺAdapt or Perish: Algebra

and Visual Notation for Service Interface Adaptationʺ, in Business
Process Management, vol. 4102, Springer, 2006, pp. 65-80.

[2] A. Brogi and R. Popescu, ʺAutomated Generation of BPEL
Adaptersʺ, in Service-Oriented Computing (ICSOCʹ06) vol.
4294, LNCS, Springer, 2006, pp. 27-39.

[3] J. Harney and P. Doshi, ʺSpeeding up Adaptation of Web Service
Compositions Using Expiration Timesʺ, in 16th International
Conference on World Wide Web, USA, 2007, pp. 1023-1032.

[4] N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, and R.
Ramkumar, ʺRun-Time Adaptation of Non-functional Properties of
Composite Web Services Using Aspect-Oriented Programmingʺ, in
ICSOC, vol. 4749, LNCS, Springer, 2007, pp. 546-557.

[5] A. Erradi, P. Maheshwari, and S. Padmanabhuni, ʺTowards a
Policy-Driven Framework for Adaptive Web Services Compositionʺ,
in International Conference on Next Generation Web Services
Practices, IEEE Computer Society, 2005, pp. 33-38.

[6] S-Cube, ʺPO-JRA-1.2.1: State of the Art Report, Gap Analysis of
Knowledge on Principles, Techniques and Methodologies for
Monitoring and Adaptation of SBAsʺ, 2008.

[7] S. H. Chang, H. J. La, and S. D. Kim, ʺA Comprehensive
Approach to Service Adaptationʺ, in IEEE International
Conference on Service-Oriented Computing and Applications,
IEEE Computer Society, 2007.

[8] B. Selic, ʺThe Pragmatics of Model-Driven Developmentʺ, IEEE
Software, vol. 20, no. 5, pp. 19-25, Sep, 2003.

[9] ALIVE, ʺCoordination, Organisation and Model Driven
Approaches for Dynamic, Flexible, Robust Software and Services
Engineeringʺ, European Commission Framework 7 ICT Project,
2009, available from http://www.ist-alive.eu.

[10] S. Clarke, A. Staikopoulos, S. Saudrais, J. Vázquez-Salceda, V.
Dignum, W. Vasconscelos, J. Padget, T. Quillinan, L.
Ceccaroni, and C. Reed, ʺALIVE: A Model Driven approach to
Coordination and Organisation for Dynamic Services Engineeringʺ,
in MODELS 2008 Research Projects Symposium, 2008.

[11] W3C, ʺOWL-S: Semantic Markup for Web Servicesʺ, 2004,
available from http://www.w3.org/Submission/OWL-S/.

[12] M. P. Papazoglou and Jean-jacques Dubray, ʺA Servey of Web
Service Technologiesʺ, Technical Report DIT-04-058, Informatica
e Telecomunicazioni, University of Trento, 2004.

[13] W3C, ʺWeb Services Description Language (WSDL) Version 2.0ʺ,
June 2007, available from http://www.w3.org/TR/wsdl20/.

[14] OASIS, ʺUniversal Description, Discovery and Integration
(UDDI), available from http://www.oasis-open.org/specs/ʺ, 2002.

[15] G. Antoniou and F. vanHarmelen, ʺA Semantic Web Primerʺ,
MIT Press, 2004.

[16] T. Gruber, ʺOntologyʺ, to appear in the Encyclopedia of
Database Systems, Springer-Verlag, 2008.

[17] M. Klusch, B. Fries, and K. Sycara, ʺAutomated Semantic Web
Service Discovery with OWLS-MXʺ, 5th International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS) Hakodate, Japan, ACM Press, 2006.

[18] C. Atkinson and T. Kuhne, ʺModel-driven development: a
metamodelling foundationʺ, IEEE Software, IEEE computer
Society, vol. 20, no. 5, pp. 36-41, Sep, 2003.

[19] W3C, ʺOWL Web Ontology Language Overview ʺ, 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[20] W3C, ʺSWRL: A Semantic Web Rule Language Combining OWL
and RuleMLʺ, 2004, http://www.w3.org/Submission/SWRL/.

[21] D. Recordon and D. Reed, ʺOpenID 2.0: a platform for user-
centric identity managementʺ, in 2nd ACM workshop on Digital
identity management, Virginia, USA, ACM, 2006.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING

[22] A. Staikopoulos, S. Saudrais, S. Clarke, J. Padget, O. Cliffe, and
M. D. Vos, ʺMutual Dynamic Adaptation of Models and Service
Enactment in ALIVEʺ, Models@run.time ʹ08 in Models, 2008.

[23] Eclipse, ʺEclipse Modeling Framework (EMF)ʺ, 2009, available
from http://www.eclipse.org/emf/.

[24] M. Klusch, B. Fries, and K. Sycara, ʺOWLS-MX: A hybrid
Semantic Web service matchmaker for OWL-S servicesʺ, Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 7, no. 2, pp. 121-133, 2009.

[25] Eclipse, ʺOperational QVT Language (QVTO)ʺ, 2009, http://wiki.
eclipse.org/M2M/Operational_QVT Language _(QVTO).

[26] OASIS, ʺWeb Services Business Process Execution Language (WS-
BPEL) Version 2.0ʺ, 2007, available from http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[27] Eclipse, ʺGraphical Modeling Framework (GMF)ʺ, 2009, available
from http://www.eclipse.org/gmf/.

[28] S. Katia, S. Widoff, M. Klusch, and L. Jianguo, ʺLARKS:
Dynamic Matchmaking Among Heterogeneous Software Agents in
Cyberspaceʺ, Autonomous Agents and Multi-Agent Systems,
2002.

[29] S. van Splunter, F. M. T. Brazier, J. Padget, and O. Rana,
ʺDynamic Service Reconfiguration and Enactment Using an Open
Matching Architecureʺ, in International Conference on Agents
and Artificial Intelligence, Porto, Portugal, 2009.

[30] OMG, ʺObject Constraint Language Specification, version 2.0ʺ,
2006, http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

[31] P. Maes, ʺConcepts and experiments in computational reflectionʺ,
SIGPLAN, vol. 22, no. 12, pp. 147-155, 1987.

[32] C. Baral, ʺKnowledge Representation, Reasoning and Declarative
Problem Solvingʺ, Cambridge Press, 2003.

[33] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J.-M.
Jézéquel, ʺModeling and Validating Dynamic Adaptationʺ,
Models@Runtime Workshop in MODELS ʹ08, 2008.

[34] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P.
Steenkiste, ʺRainbow: architecture-based self-adaptation with
reusable infrastructureʺ, IEEE Computer, vol. 37, no. 10, pp. 46-
54, Oct, 2004.

[35] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E.
Gjorven, ʺUsing architecture models for runtime adaptabilityʺ,
IEEE Software, vol. 23, no. 2, pp. 62-70, March-April, 2006.

[36] Y. Sam, O. Boucelma, and M.-S. Hacid, ʺweb services
customization: a composition-based approachʺ, in 6th International
Conference on Web engineering, California, USA, ACM, 2006.

[37] J. Jiang, A. Ruokonen, and T. Systa, ʺPattern-based Variability
Management in Web Service Developmentʺ, in Third European
Conference on Web Services, IEEE Computer Society, 2005.

[38] K. Birman, R. van Renesse, and W. Vogels, ʺAdding High
Availability and Autonomic Behavior to Web Servicesʺ, 26th
International Conference on Software Engineering (ICSEʹ04),
IEEE Computer Society, 2004, pp. 17-26.

[39] Q. A. Liang, H. Lam, L. Narupiyakul, and P. C. K. Hung, ʺA
Rule-Based Approach for Availability of Web Serviceʺ, in
International Conference on Web Services (ICWSʹ08), IEEE
Computer Society, 2008, pp. 153-160.

[40] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. H. Ngu,
ʺConfigurable Composition and Adaptive Provisioning of Web
Servicesʺ, IEEE Transactions Services Computing, vol. 2, no. 1,
pp. 34-49, 2009.

[41] G. Murphy and C. Schwanninger, ʺSpecial Issue on Aspect-
Oriented Programmingʺ, IEEE Software, vol. 23, pp. 20-23, 2006.

[42] R. Hirschfeld and K. Kawamura, ʺDynamic service adaptationʺ,
in Distributed Computing Systems Workshops, pp. 290-297,
2004.

[43] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati,
ʺAn Aspect-Oriented Framework for Service Adaptationʺ, Service-
Oriented Computing – ICSOC 2006, vol. 4294, pp. 15-26, 2006.

[44] A. Hibner and K. Zielinski, ʺSemantic-based Dynamic Service
Composition and Adaptationʺ, 2007 IEEE Congress on Services,
pp. 213 - 220, 2007.

[45] M. Stollberg, D. Roman, J. d. Bruijn, D. Fensel, H. Lausen,
A.Polleres, and J.Domingueʺ, Enabling Semantic Web Services:
The Web Service Modelling Ontologyʺ, Springer, 2006.

[46] V. R. Lesser, ʺEvolution of the GPGP/TAEMS domain-
independent coordination frameworkʺ, in first international joint
conference on Autonomous agents and multiagent systems,
Bologna, Italy, ACM, 2002.

Athanasios Staikopoulos is a Research
Fellow of Trinity College Dublin. His research
interests include Model-driven Engineering,
Component based Development, Coordina-
tion and Composition of (Web) services. He
received an advanced MSc and PhD in com-
puter science from University of Birmingham.

Owen Cliffe is a Research Officer at the
University of Bath. His research interests
include non-monotonic reasoning, knowledge
representation, declarative problem solving
and representing and reasoning about norma-
tive and legal aspects of distributed and
autonomous systems. He received a BSc in
Computer Science from the University of
Southampton and his PhD in computer sci-
ence from the University of Bath.

Razvan Popescu is a Research Fellow of
Trinity College Dublin. His research interests
include the discovery, composition and adap-
tation of (Web) services. He received his PhD
in Computer Science from the University of
Pisa and his BSc in Computer Science from
the “Politehnica” University of Bucharest.

Julian Padget is a Senior Lecturer at the
University of Bath where he leads the Agents
Research Group. His research interests range
from intelligent agents, electronic commerce,
distributed systems, electronic commerce to
mathematical web services, programming
language design and computer music. He
received his BSc from the University of Leeds
and a PhD in computer science from the Uni-
versity of Bath.

Siobhán Clarke is a Senior Lecturer and
Fellow of Trinity College Dublin, where she
leads the Distributed Systems Group and is a
Research Area Leader in Lero: The Irish
Software Engineering Research Centre. Her
research interests are design and program-
ming models for advanced distributed sys-
tems. She received her BSc and PhD de-
grees in Computer Science from Dublin City
University.

STAIKOPOULOS ET AL.: TEMPLATE-BASED ADAPTATION OF SEMANTIC WEB SERVICES WITH MODEL DRIVEN ENGINEERING 15

Appendix

Fig. 14. Service-Oriented Metamodel (including syntax, semantics and templates).

