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Abstract—Designing an optimal power delivery network (PDN) is a
time-intensive task that involves many iterations. This paper proposes a
methodology that employs a library of predesigned, stitchable templates,
and uses machine learning (ML) to rapidly build a PDN with region-wise
uniform pitches based on these templates. Our methodology is applicable
at both the floorplan and placement stages of physical implementation.
(i) At the floorplan stage, we synthesize an optimized PDN based
on early estimates of current and congestion, using a simple multi-
layer perceptron classifier. (ii) At the placement stage, we incrementally
optimize an existing PDN based on more detailed congestion and current
distributions, using a convolution neural network. At each stage, the
neural network builds a safe-by-construction PDN that meets IR drop
and electromigration (EM) specifications. On average, the optimization
of the PDN brings an extra 3% of routing resources, which corresponds
to a thousands of routing tracks in congestion-critical regions, when
compared to a globally uniform PDN, while staying within the IR drop
and EM limits.

I. INTRODUCTION

Power delivery network (PDN) design is highly constrained due to

limited voltage headroom, high on-chip simultaneous switching noise,

high wire resistances, and high switching currents. PDNs compete

for scarce on-chip wiring resources with signal and power nets [1],

and PDN planning throughout the design cycle is key to managing

interconnect resources, aiding design closure. Prior work on PDN

optimization has been constrained by the large size of the power

grid, which may contain millions to billions of nodes. Optimization

must invoke circuit analysis, which involves the solution of a large

system of equations, GV = J, where G is the conductance matrix

for the PDN, J is the vector of current sources, and V is the set

of voltages at each node in the PDN. Several techniques for solving

PDNs have been explored, based on multigrid methods [2], exploiting

hierarchy [3], [4], or working in the frequency domain [5].

An optimized PDN must satisfy several specifications: IR drop

constraints bound the allowable voltage drop from the pads to

each node; electromigration (EM) constraints limit the maximum

current density in wires; and congestion constraints balance PDN

routing resources with contending signal/clock interconnects. Thus,

optimization must invoke PDN analysis in its inner loop, which makes

it highly computational [1], [6]–[8]. To avoid this, [9] proposes a

methodology for PDN synthesis at the placement stage, and constructs

a uniform grid across the chip that meets an IR drop specification.

In this case, the uniform grid is possibly sub-optimal (over-designed)

when compared to an irregular PDN constructed based on the

variations in current and congestion distributions across the chip.

As against the extremes of the conventional ad hoc irregular PDN or

this fully uniform PDN, we propose a structured yet flexible approach

to PDN design that places several restrictions on the optimization

search space:

(i) We use unidirectional wires in every metal layer. This is consistent

with design rules for FinFET nodes, where layout restrictions dictate

gridded layout with strict directionality requirements. The power grid

in the lower layers (M1/M2) lines up with the standard cells and is

already regular. We maintain this regularity over all utilized layers.

(ii) Rather than allowing arbitrary combinations of pitches over all
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layers, we limit the choices to a few fixed templates. The metal pitch

for each template is constant in each metal layer, but may vary across

layers. Pitches are chosen so that the templates can be readily abutted.
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Figure 1: A template-based PDN with piecewise uniform pitches.
Specifically, this work tessellates the entire chip into rectangular

regions (Fig. 1), each of which uses one of the templates; different

regions may use different templates. This resembles the idea of locally

regular, globally irregular grids in [10] for two top-level metal layers,

but we (i) use a limited set of templates, and (ii) apply this approach

across the entire interconnect stack. The PDN design problem then

reduces to mapping templates to regions of the chip.
A structured template-based grid in itself does not overcome the

computational bottleneck of PDN analysis: the grid still has a very

large number of nodes. Our PDN optimizer completely bypasses an

expensive PDN analysis step in the inner loop by building an ML

model to construct the optimal template set, for a given distribution

of currents drawn from the grid and a distribution of congestion. The

major insight of this work is that by pushing analysis into a one-time

training step, we can train a neural network to synthesize a PDN

with very low computational cost in the inference step.

(a) (b)

Figure 2: Current distribution of Core1 at the (a) floorplan block-level
granularity and (b) detailed granularity after global placement. The design
has 171,697 cells and 10 macros and is designed in a foundry 16nm
FinFET (16FF) technology. Although the latter has more hot spots, the
early floorplan-stage prediction provides a good estimate of the average
current distribution.

Our approach consists of two types of neural networks, one

applicable to the early floorplanning stage of design and another



for the later placement stage. These stages differ in the amount of

design detail that is available for PDN design. The neural networks are

devised to operate self-consistently so that placement-stage PDN design

corresponds to an incremental refinement, i.e., a small perturbation of

floorplan-stage design. This provides predictability in PDN congestion,

which aids design closure. Both neural networks are trained to

synthesize a safe-by-construction PDN.

Fig. 2 shows the current distributions at the floorplan and placement

stages for a RISC-V core [11] (Core1). From the figure, it is seen

that the underlying data is of coarser granularity at the floorplan stage

than at the placement stage. Here, the PDN can be synthesized using

a simple multilayer perceptron (MLP) classifier. At the placement

stage, current distributions involve higher-dimensional fine-grained

data; therefore, PDN synthesis at this stage requires a more complex

convolution neural network (CNN) that navigates this complexity.

An overview of our ML-based flow, which uses a set of user-defined

PDN templates (Section II), is illustrated in Fig. 3. The training flow

(left) is a one-time expense that is performed offline; given a large

training set, it uses a high-quality simulated annealing (SA) heuristic

to find an optimized template for a given current and congestion

distribution (Section III). In the inference flow (right), for any design

the slow SA-based optimizer is replaced by a trained CNN or MLP

inference engine (depending on the stage in the design flow) that

can rapidly synthesize the optimal template for each region of a

design. We evaluate our proposed methodology on example circuits

in Section IV.

Figure 3: PDN optimization scheme: The training flow produces the
“golden” data and trains the neural network, while the inference flow uses
the trained network to synthesize the PDN.

II. PDN TEMPLATES

A. Template Definition

Each template uses a constant wiring pitch in each layer, though the

pitch may vary across layers. The selection of templates must be

cognizant of the factors that influence PDN wiring resources:

• The design rules on each metal layer dictate the pitch (stripe

width, stripe spacing between consecutive stripes), metal density,

via densities, and the preferred direction (horizontal/vertical).
• The spatial distribution of currents drawn from the PDN

influences the required wire density in the PDN.
• The signal/clock routing congestion in each region of the chip

constrains the resources available to the PDN.

VDD/VSS package bumps are distributed uniformly over the chip.

A critical requirement in the construction of the PDN templates

is their stitchability, i.e., if two templates are placed side by side,

they should align at the edges. In each layer, if the pitches of the

PDN stripes are an integer multiple of the minimum track spacing

in that layer, the wires are well connected to each other at the edges

of each template, though perhaps not on each track, e.g., a template

with 2× pitch connects with every other wire from one with 1× pitch.

It is important to avoid choosing template pitches that are coprime;

instead, we select pitches that have a small least common multiple.

We choose templates with varying pitches to provide choices

across a range of PDN utilizations for the intermediate layers in

the BEOL stack. Our templates with constant stripe width to help

enable predictable obstacles for signal/clock routing [10]. Table I

shows a sample template in the solution space, with fixed metal

widths and pitches for the intermediate metal layers.

Table I: A PDN template for a 11-metal-layer stack in a 16nm technology.

Metal layer Direction
Power stripe

utilization

Width

(µm)

Pitch

(µm)

M11 V 40% w11 p11

M10 H 40% w10 p10

M7 V 15% w7 p7

M6 H 10% w6 p6

M5 V 5% w5 p5

In modern designs, the top two metal layers are largely reserved

for the PDN, while the supply network in the bottom two layers

corresponds to a set of fixed power rails associated with the standard

cells. By varying the pitches in M5–M7, a set of |T | templates can

be built. With three possible pitch combinations for M5–M7, we

obtain |T | = 27. In this paper, we design templates for two foundry

technologies: 16nm FinFET (16FF) and 65nm low power bulk (65LP).

B. Ranking and Pruning the Template Set

Two primary properties characterize each PDN template: quality,

measured by its equivalent resistance; and utilization, measured by

wire density. A denser template (with a higher wire width and lower

pitch) has a lower equivalent resistance than a sparser template, but

has greater congestion and may create signal/clock wiring bottlenecks.

Next, we rank-order the templates to create a Pareto-optimal list.

Quality: We estimate the equivalent resistance for a case where a

uniformly distributed current is drawn at the lowest-level nodes of the

template. We assume that the pad locations are uniformly distributed

over the chip area, and that templates are built in such a way that

the pad locations are the same for all chip regions. If we simulate

the injection of a unit current to pass through the pads, the computed

worst-case IR drop for each template corresponds to its resistance.

This resistance is used to rank-order each template in terms of their

power integrity.

Utilization: The resource utilization of each template is a multidimen-

sional vector in each layer. The relative ordering of two templates Ti

and Tj in terms of utilization is not obvious if Ti is denser than Tj in

some metal layers but sparser in others. To enable a linear comparison

between templates, we find the fraction of resources/tracks used by

each template across all layers based on the width, pitch, and track

spacing of every layer in the template for a particular technology.
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Figure 4: Template ranking based on resistance and utilization.

Fig. 4 shows the plot of utilization versus equivalent resistance

for each of the 27 templates, numbered 0 through 26. Despite being

denser, a few templates are of poorer quality when compared to others.

This scenario occurs when a template has a higher utilization in a

lower metal layer when compared to a higher metal layer. In this case,

the additional stripes in the lower metal layer add to the congestion

without significantly improving the quality of that template. These

templates are suboptimal and are pruned from the set. The underlying
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cause for this suboptimality is that a designer may build the template

set based on purely geometric width/pitch considerations, neglecting

electrical considerations.

Proposition: Let Ri and Ui denote the equivalent resistance and

utilization of template Ti; template Ti is suboptimal if there exists

another template Tj such that Ri > Rj and Ui > Uj .

A variation on the criterion is to enforce a requirement that the Pareto

front must provide at least a minimum improvement in resistance

per unit increase in the density, and to drop points that fail this

requirement, i.e., a template whose equivalent lies within ǫ of another

template that has a lower utilization, is eliminated. We refer to all

dropped templates as dominated templates. As a result of this pruning

approach the original set of 27 templates is reduced to 8 nondominated

templates (i.e., 0, 9, 12, 21, 24, 22, 25, and 26).

III. MODEL TRAINING

A. Generating Training Data

To generate the “golden” data that trains the neural networks (NNs),

we use a simulated annealing (SA) optimizer to find an optimal power

grid for a given chip configuration. We justify the use of SA due to

the large discrete solution space, e.g., for Tr = 16 regions, with 8

templates per region, there are 816 possible solutions.

The NN models are parameterized by dc, Jc, the template set T ,

the package bump distribution, and region sizes. It is sufficient to

characterize a small number of typical region sizes for a technology

node: the trained NNs can then be used over all designs. Thus, the

SA computation is a one-time cost, and it is important for it to be

accurate; computational efficiency is not a significant consideration.

The SA method stochastically explores the solution space to

determine a close-to-optimal solution. Its inputs are:

• The current density map of the chip
• The locations of the C4 bumps (power pads)
• The static IR drop limit, dc
• The EM constraint (maximum wire current density, Jc)
• The congestion distribution map for signal/clock nets
• The number of regions on the chip and their size
• A pruned set of templates

We leverage the principle of locality [12] in a power grid, which

states that the current paths to a node depend primarily on the density

of nearby regions, to build NNs that are independent of the chip size.

The use of this principle dictates the need for establishing guidelines

for defining template sizes. We suggest using region sizes that are

approximately equal to the VDD/VSS bump pitch. This guideline

provides a lower bound to the template size ensuring the principle of

locality holds, and an upper bound to obtain compelling congestion

improvements. Using this guideline in our experiments, we found

that the choice of an optimal template for each region depends on

the region and its (up to) 8 nearest neighbor regions.1 Thus, it is

adequate to train a model based on current and congestion in 9

regions, enabling the tiling of power grid templates over a chip with

an arbitrary number of regions. Additionally, this speeds up training

as it reduces the dimensionality of NN input data.

The training set consists of 500 separate testcases, each corre-

sponding to a spatial distribution of chip current and congestion.

We synthetically generate these testcases by superimposing random

Gaussian distributions of different mean and standard deviations

to represent placement current maps. Congestion estimates for the

training set are also generated randomly, maintaining a correlation

between congestion and current density. For the 16FF designs, in

each region, the current and congestion maps are discretized into

125× 125 subregions for placement-stage CNN training. To maintain

consistency between the MLP and the CNN while reflecting the

1Regions with < 8 neighbors at the edge of the chip are zero-padded to ensure the
dimensions of all the data points match, irrespective of their location.

limited information available at the floorplan stage, the training set for

floorplan-stage MLP training averages/blurs current maps to coarser

16× 16 subregions, and congestion maps to one subregion per region.

We use 4 × 4 regions over the chip area for the 16FF designs and

10× 8 regions for the larger 65LP designs that were available to us.

We then optimize these 500 testcase designs using the SA optimizer

(Section III-B) that provides the optimal template for each region.

Next, from this optimized data, we extract the training set for the

NNs. Based on power grid locality, the template in each region is

dependent on the current distribution in a 3× 3 window around the

current region. Therefore, for a 4× 4 tessellation, we can extract 16

3× 3 regions that constitute elements of the training set for the NN,

including the zero-padded corner regions. Over 500 testcases, this

yields 500× 16 = 8, 000 training set elements.

To summarize, for each of the 16 regions, each training set element

at the 16FF node (65LP designs are handled similarly) consists of

• (for the floorplan-stage MLP) current distributions at the granular-

ity of 16×16 subregions of each region, and a single congestion

number for the region.
• (for the placement-stage CNN) finer-grained current and conges-

tion distributions of 125× 125, one per gcell in the layout.

Based on this information, the MLP and CNN are each trained

to compute the correct output (optimized) template for the region,

while incentivizing the CNN to match the MLP for similar current

distributions, thus maintaining design predictability.

To train the network for each neural net, we divide the data from

the golden SA optimizer into training (80% of the data), validation

(10%), and test data (10%). The training data set is normalized, i.e.,

we subtract the mean of the data and divide by the standard deviation.

This ensures that both inputs are on the same scale and neither

dominates the other. The mean and standard deviation values of the

training set are stored to normalize the test data during inference.

B. Optimization Problem Formulation for Generating Training Data

To generate floorplan-stage training data, the SA solver for the 500

testcases, finds a solution that optimizes, across all the regions on

the chip, the utilization of the PDN, the maximum IR drop for better

power integrity, and maximum current density for greater EM safety,

For placement-stage training, in addition to these constraints, the

SA solver must ensure proximity of the solution to the floorplan-stage

solution, in order to ensure consistency, i.e., minimal perturbation

between the optimal floorplan-stage template set and the corresponding

placement-stage template set. This consistency ensures that under

normal floorplan-to-placement refinements, with small perturbations

in the current distributions, the optimal template obtained at the

floorplan stage is not greatly perturbed at the placement stage, i.e., the

placement-stage solution is an incremental refinement to the floorplan-

stage PDN. We use the following notations for region r:

• sr is signal/clock congestion

• ui,r is the PDN utilization of the template i
• dr is the maximum voltage drop

• Jr is average current density

• pF l,i,r and pl,i,r are the pitch of layer l in template i for floorplan-

stage and placement-stage optimization, respectively.

• L is the total number of layers in the PDN

The total congestion is then cr = sr + ui,r , and the optimization

problem at the placement-stage can be formulated as:

Minimize:
∑Tr

r=1
[cr + dr,norm + Jr,norm(+∆pr,norm)] (1)

Subject to: dr,norm = dr/dc ≤ 1

Jr,norm = Jr/Jc ≤ 1

cr ≤ 1
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where ∆pr,norm = 1

L

∑L

l=1

|pF l,i,r−pl,i,r|

pF l,i,r
, which appears only in

placement-stage optimization, is the term that minimizes the distance

between the floorplan-stage and placement-stage PDNs. The terms

Jr,norm and dr,norm encourage denser templates while cr encourages

sparser templates. Together, these three terms encourage the optimizer

to seek a balance between power integrity and PDN utilization. The

normalization ensures that the magnitudes of the terms in the objective

function are comparable so that no one term dominates the others.

The constraints represent fundamental specifications on the PDN.

The constrained optimization problem (1) is converted into an uncon-

strained minimization by using the penalty function method [13]: In the

cost function, the form of the penalty function is (αi max[0,−slacki]),

where i ∈ {congestion, IR drop, EM current density}. Here, slacki

is the constraint slack; if negative, a penalty is applied. We use αi =
100, 200, and 200, for congestion, IR drop limit, and EM current

density, respectively, penalizing hard constraint violations on IR and

EM more strongly than congestion violations, which can be mitigated

by detouring wires through less congested regions.

Each step of the SA optimization involves finding the solution to

the system of equations, GV = J globally, i.e., across the entire

chip. After every move, the conductance matrix, G, is incrementally

updated by using the previously stored conductance matrix for each

template. While this method is slow due to the cost of formulating

and solving the PDN, it is a one-time characterization per technology

where it is important to near-optimal solutions. We find that these

solutions can be obtained using reasonable computational resources.

C. Neural Network Topologies

Next, we describe the two proposed neural networks.

MLP for floorplan-stage design: The structure of the MLP is

depicted in Fig. 5(a). The input layer is of size 48×48, corresponding

to a 3×3 region with 16×16 subregions for current, and 9 additional

nodes representing the 9 congestion values in the 3× 3 neighborhood.

Therefore, the input layer has 2295 nodes. The input layer is followed

by three hidden layers each of which comprises of 256, 128, and

64 nodes. Each of these fully connected layers has an associated

dropout layer at the output. The dropout factor ensures the model

does not overfit the training data. This factor is selected by tuning

it in combination with the other hyper parameters of the MLP. The

output layer has a width of 8 nodes, representing the 8 possible classes

corresponding to the 8 nondominated templates.

Input layer 3 hidden layers Output layer

(16 x 16 x 9) + 9 

= 2313 nodes

256 nodes 128 nodes 64 nodes 8 nodes/

classes
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Figure 5: (a) An MLP with three hidden layers that synthesizes the
optimal PDN at the floorplan-stage. (b) Hyper-parameter tuning: width
of the three layers in the MLP are varied to find the combination that
maximizes validation accuracy.

The size of each layer and the number of layers are the most critical

hyper-parameters for the MLP. For example, Fig. 5(b) provides the

mean and standard deviation in the validation accuracy when the

widths of the 3 layers are varied individually while keeping the

other two constant. Our grid search algorithm enumerates 64 possible

solutions where the widths of the three layers can take any one of

the following values: 256, 128, 64, and 32. From the plot, it can

be seen that beyond certain widths, the MLP begins to overfit the

training data, i.e., the mean validation accuracy decreases. Therefore,

we choose a layer width of 256, 128, and 64 for the first, second, and

third hidden layers, respectively.

CNN for placement-stage PDN design: The placement-stage CNN

is sufficiently complex that we can use a standard CNN topology:

we choose a LeNet [14] based architecture (Fig. 6). LeNet consists

of two convolution layers: the first uses 32 5 × 5 filters, while the

second uses 64 3 × 3 filters. The input is a 3 × 3 window around

a region with 125× 125 subregions, each with its own current and

congestion attribute. Therefore, the input layer is of size 375×375×3,

where the three sets correspond to the placement current distributions,

detailed placement congestion estimates, and the optimal template

map obtained from the MLP. Each convolution layer is followed by a

ReLU activation function [15], and there are two max pooling layers,

which operate with zero-padding and a filter size of 2× 2. The final

fully-connected layer vector is of size 1024 and feeds the 8 CNN

outputs, corresponding to the 8 nondominated templates. Similar to

the MLP, the fully connected layer is followed by a dropout mask to

prevent overfitting.

375 x 375 x32

188 x 188 x32

Convolution Max-Pool Convolution Max-Pool

94 x 94 x 64

1024 + 9

8

188 x 188 x 64

Figure 6: Modified LeNet-based CNN which is trained for PDN
optimization at the placement-stage.

An ADAM optimizer [16] is used for training, which updates the

learning rate during every iteration based on the second moment of

the gradient. This optimizer provides faster training when compared to

the classical stochastic gradient descent which uses a constant learning

rate. It is important to note that it is not necessary to minimize the

distance between the optimal PDN at the floorplan stage and the

placement output since this is inherently captured by the fact that the

training data for both NNs comes from the same SA optimizer.

We perform a grid search for hyper-parameter tuning, which

involves searching through a portion of the solution space for various

combinations of the hyper-parameters, to find a solution that minimizes

validation error. For example, we search through a predefined solution

space for various combinations of the batch size and number of

epochs to provide a value that minimizes the validation accuracy of

our model. Similarly, we tune the dropout factor, and the combination

of momentum and learning rate of the CNN.

IV. EVALUATING THE ML MODEL

For implementation purposes, the properties of every template

including its layers, width and pitch of each layer, VDD-VSS stripe

spacing, sheet resistances, and via resistances are stored in a JSON

format. The SA optimizer, implemented in Python 3.7, uses the JSON

file and a modified nodal analysis solver to estimate the cost at

every iteration by solving the system equations. All experiments are

performed on a 2.20 GHz Intel R© Xeon R© Silver 4114 CPU.

Today, it is customary to use a static IR drop limit of 1% of

Vdd [17], [18] in industry, and we set dc according to this guideline

in this work. Many older works on PDN synthesis (e.g., [10]) place a

limit of 10% on the total IR drop, and today’s tighter static IR drop

limit is driven by the increased level of dynamic IR drop: standard

industry flows first optimize a design for static IR at this tighter

Vdd specification, which helps reduce dynamic IR drop as well. We
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use EM current density constraints of Jc = 3MA/cm2 at 16FF and

Jc = 4.8MA/cm2 [19] at 65LP.

We measure the improvement in resource utilization, based on the

widely-used ACE metric [20], which estimates the improvement in

congestion only if the region is critical, i.e., if it has an average signal

congestion value greater than a certain threshold, set here to 50%.

The metric thus determines where the saved PDN resources can be

potentially utilized for signal/clock routes.

Since the SA algorithm must analyze a PDN with over 1 million

nodes at each iteration, it takes around 20 minutes to converge to a

near-optimal solution for our each of testcases and a fixed template set.

To obtain our complete data set with 500 testcases (with 16 regions

each, a total training set size of 500× 16 = 8000) we execute over

30 processes in parallel. The MLP and CNN are both implemented

using TensorFlow and trained on the same system described above.

The MLP takes 24s to train, while the CNN takes 178 minutes. It is

important to note that both the training data generation and the training

itself are one-time non-recurring costs for a specific technology and

specific region size, and therefore their overhead is worthwhile as

it delivers fast near-optimal, safe-by-construction PDN synthesis for

any design with no human in the loop. We train the neural networks

based on the parameters of foundry 16FF and 65LP technologies.

A. Inference Scheme

Each test design provides a full-chip current distribution and conges-

tion map as shown in Fig. 8(a). For each region on the chip, we select

the template (chosen to have the same area as in the training set), by

taking the 3 × 3 neighborhood of the region extracting the current

distribution and congestion distribution according to the subregion

granularity (16× 16 for current and a single number for congestion

at the floorplanning stage; 125 × 125 [175 × 175] for current and

congestion at the placement stage for 16FF [65LP]). Finally, for each

testcase, we take one region and its 3×3 window at a time, and input

the normalized current and the congestion values (by subtracting the

mean and dividing by the standard deviation of the training set) into

the MLP or CNN, which selects the optimal PDN template ID.

B. Validating the Neural Network Classification

1) Validation on synthetic testcases: As stated earlier, 10% of the

generated data points in Section III-A are used to test the results

of training. The confusion matrix which depicts the classification

accuracy for the test set is shown for both the MLP and CNN in

Fig. 7(a) and (b), respectively. In each matrix, the classes are sorted

in the decreasing order of their equivalent resistance. Therefore, any

misclassification which lies in the lower triangle of the confusion

matrix is still IR-safe. Hence, for the MLP we get a 98.875% IR-safety

guarantee and for the CNN we get a 97% IR-safety guarantee. It is

important to note that the confusion matrix is a conservative predictor

of the accuracy of our overall PDN synthesis scheme. This matrix

represents the accuracy for the template ID for only one region of the

chip, considering a 3× 3 window around the region. It is likely that

if one template is optimistically chosen, the templates of the regions

around it will be conservatively chosen (as seen from the confusion

matrix, a vast majority of template choices are pessimistic). This

observation is borne out across our testcases and results in Table II,

where all our synthesized grids are IR-safe and EM-safe.

2) Validation on real testcases: Next, we validate each of the

models on current distributions obtained from real designs. The

evaluated designs include four different RISC cores, labeled Core1 [11]

with 171,697 cells and 10 macros, Core2 [21] with 209,516 cells and

26 macros, Core3 [22] with 56,954 cells and 4 macros, and Core4 [23]

with 365,075 cells and 36 macros. The first core is implemented in

16FF and the last three in 65LP technology.

Fig. 8(a) shows the input current distribution and region-wise

congestion of Core1 at the floorplan stage. The data in this figure is
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Figure 7: Confusion matrix for (a) MLP classifier with 800 floorplan
testcases and (b) CNN classifier with 800 placement testcases.

Figure 8: ML-based demonstration of the inference scheme at the
floorplan stage of Core1 [11] designed using a foundry 16nm FinFET
technology: (a) coarse current and average congestion distributions;
(b) synthesized templates in every region using MLP; and (c) average
congestion (signal + PDN) in every region after classification of different
templates (top number); average congestion (signal + PDN) in every
region after using a uniform PDN across the entire die (bottom number).

Figure 9: CNN-based demonstration of the inference scheme at the
placement stage of Core1 [11]: (a) input signal congestion map, (b)
current distribution and the synthesized template-based PDN, (c) average
congestion (signal + PDN) in every region after classification of different
templates (top number); average congestion (signal + PDN) in every
region after using a uniform PDN across the entire die (bottom number).

fed into the trained MLP to synthesize an optimal PDN (Fig. 8(b)).

The PDN is IR and EM-safe with a worst-case IR drop of 5.58mV

and maximum current density of 2.74MA/cm2.

For comparison, we optimize the power network by imposing a

uniform grid over the entire chip, enumerating the 8 choices of the

templates. The number at the bottom of each region in Fig. 8(c) is

the predicted congestion if a uniform grid which just meets IR drop

is used, while that at the top is the template-based total congestion.

For Core1, as against the uniform PDN (template 21) that satisfies

the static IR drop limit of 8mV, our floorplan-stage PDN provides an

ACE metric congestion improvement of 1.47% (1,188 tracks).

For placement-stage optimization, we use the CNN to build a

PDN based on the post-placement congestion (Fig. 9(a)) and current

(Fig. 9(b)) distribution for Core1. The CNN-synthesized output for

Core1 is depicted by the template IDs shown in Fig. 9(b), and it can

be verified to be a small perturbation to the floorplan-stage PDN in

Fig. 8(b), i.e., the templates change at most to the next denser template.

This refinement ensures the PDN still meets IR and EM constraints at

placement, and also improves the ACE metric for congestion by 2.39%
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Table II: Performance evaluation of both the neural networks on different RISC V cores implemented in 16FF and 65LP technologies.

Testcase
Static

IR limit

Tech.

node

Floorplan Placement

Uniform grid MLP-synthesized Uniform grid CNN-synthesized

Max

IR drop

EM:

Worst-case

Jr,norm

Max

IR drop

EM:

Worst-case

Jr,norm

Congestion

improvement

(ACE metric)

Average number

of tracks saved

in critical regions

Max

IR drop

EM:

Worst-case

Jr,norm

Max

IR drop

EM:

Worst-case

Jr,norm

Congestion

improvement

(ACE metric)

Average number

of tracks saved

in critical regions

Core1 [11] 8mV 16FF 5.67mV 90.45% 5.58mV 91.55% 1.47% 1,188 6.72mV 91.72% 6.74mV 93.55% 2.39% 1,360

Core2 [21] 12mV 65LP 11.56mV 96.22% 11.66mV 98.57% 2.36% 1,278 11.75mV 96.39% 11.89mV 98.71% 3.22% 2,148

Core3 [22] 12mV 65LP 10.21mV 93.66% 10.81mV 95.84% 1.91% 768 8.47mV 91.11% 10.98mV 94.13% 3.02% 1,224

Core4 [23] 12mV 65LP 11.44mV 95.32% 11.73mV 96.50% 2.66% 2,278 11.58mV 96.94% 11.82mV 98.24% 3.31% 2,574

IBM [24] 8mV 16FF 5.05mV 93.61% 5.60mV 95.18% 2.12% 1,348 – – – – – –

(a)

IR drop (mv)

(b)

Figure 10: (a) The synthesized template-based PDN (showing layers
M5-M7 only) in the 16 regions of Core1, and (b) its corresponding IR
drop map obtained from Voltus [25].

(1,360 tracks) when compared to a uniform grid (Fig. 9(c)). The red

rectangle in Fig. 9 highlights a region with a high current density

and high signal congestion. In this region, the CNN selects a sparser

template (12) and compensates for the high current by selecting a

denser template (21) in a neighboring less-congested region.

The inference scheme for Core1 has a total run-time of 1.3s for the

MLP, while the inference scheme on the CNN has a total run-time

of 20.2s, which includes 15.3s to load the TensorFlow database. The

results for Core2, Core3, and Core4 core are summarized in Table II,

which lists the congestion improvement, worst-case IR drop, and the

worst-case normalized current density (Jr,norm), defined in (1), at

both placement and floorplan stages. It is worth mentioning that a

1–3% improvement in the ACE metric for congestion is significant

for two reasons: (i) this percentage improvement releases thousands

of tracks (Table II), and (ii) by the nature of the ACE metric, which

measures the congestion in only regions which are critical (signal

congestion greater than 0.5), the released tracks have a high potential

to aid design closure. The final testcase corresponds to the widely

used IBM benchmarks [24]: although there are six such benchmarks,

all have the same underlying current distributions, which are available

at the floorplan level. Since placement-stage current distributions are

not available, we can only apply the MLP to synthesize its PDN.

The benchmark set does not provide congestion information, but we

generate this using current-congestion correlation statistics.

3) Validation with a commercial flow: We validate our methodology

using Innvous [26] on Core1 in 16FF technology. We begin at the

floorplan stage where an initial uniform PDN is synthesized across

the chip. After placement, based on the locations and power drawn by

each cell, the current distributions are generated. An early global route

provides congestion (signal and PDN) estimates. The three inputs

(i) current map, (ii) signal congestion estimates, and (iii) template

IDs from the floorplan stage, are fed into the trained CNN.

We use the inference scheme (Section IV-A) to infer the optimal

template in every region. This final synthesized template-based PDN

is shown in Fig. 10(a). The IR drop map of the design obtained

using Voltus [25] for the predicted template-based PDN is shown in

Fig. 10(b), verifying that the PDN is IR-safe (8mV limit).

V. CONCLUSION

This paper addresses the iterative and time consuming nature of a

PDN synthesis and optimization by using a two-stage neural network

approach to synthesize a IR- and EM-safe optimal PDN. The one-

time cost involved in training the models is compensated for when

an optimized PDN can be rapidly be synthesized for several designs.

On average we save about 1,850 tracks (3% congestion relief) in the

congestion-critical regions. These saved resources can potentially be

vital to aid timing closure in high performance chips.
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