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Template matching

template/pattern

1 anything fashioned, shaped, or designed to serve
as a model from which something is to be made:
a model, design, plan, outline;

2 something formed after a model or prototype, a
copy; a likeness, a similitude;

3 an example, an instance; esp. a typical model or
a representative instance;

matching to compare in respect of similarity; to examine the
likeness of difference of.
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... template variability ...
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... and Computer Vision

Many important computer vision tasks can be solved with template
matching techniques:

Object
detection/recognition

Object comparison

Depth computation

and template matching
depends on

Physics (imaging)

Probability and statistics

Signal processing
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Imaging

Perspective camera

Telecentric camera



Imaging

Photon noise (Poisson)

Quantum nature of light results in appreciable photon noisea

p(n) = e−(r∆t) (r∆t)n

n!

SNR ≤ I

σI

=
n√
n

=
√

n

a
r photons per unit time, ∆t gathering time
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Finding them ...

d(xxx ,yyy) =
1

N

N
∑

i=1

(xi − yi )
2

s(xxx ,yyy) =
1

1 + d(xxx ,yyy)

A sliding window approach
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... robustly

Specularities and noise can
result in outliers: abnormally
large differences that may
adversely affect the
comparison.

Specularities outliers
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... robustly

We downweight outliers changing the metrics:

N
∑

i=1

(zi )
2 →

N
∑

i=1

ρ(zi ), zi = xi − yi

with one that has a more favourable influence function

ψ(z) =
dρ(z)

dz

ρ(z) = z2 ψ(z) = z

ρ(z) = |z | ψ(z) = signz

ρ(z) = log

(

1 +
z2

a2

)

ψ(z) =
z

a2 + z2
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Illumination effects 1/3

Additional Template variability

Illumination variations affect images in a complex way, reducing
the effectiveness of template matching techniques
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Contrast and edge maps 2/3

Image transforms such as local
contrast can reduce the effect
of illumination:

N ′ =
I

I ∗ Kσ

N =

{

N ′ if N ′ ≤ 1
2 − 1

N′ if N ′ > 1

(f ∗ g)(x) =

Z

f (y)g(x − y) dy

Local contrast and edge maps
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Ordinal Transforms 3/3

Let us consider a pixel I (xxx) and its
neighborhood of W (xxx , l) of size l .
Denoting with ⊗ the operation of
concatenation, the Census transform
is defined as

C (xxx) =
⊗

xxx ′∈W (xxx ,l)\xxx

θ(I (xxx) − I (xxx ′))

CT invariance
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Matching variable patterns 1/2

a

Patterns of a single class may
span a complex manifold of a
high dimensional space: we
may try to find a compact
space enclosing it, possibly
attempting multiple local
linear descriptions.

astep edge, orientation θ and
axial distance ρ

Different criteria, different basis
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Subspaces approaches 2/2

PCA the eigenvectors of the
covariance matrix;

ICA the directions onto
which data projects
with maximal non
Gaussianity;

LDA the directions
maximizing between
class scatter over
within class scatter.

PCA, ICA (I and II), LDA
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Deformable templates 1/2

1 The circle representing the iris, characterized
by its radius r and its center xxxc . The interior
of the circle is attracted to the low intensity
values while its boundary is attracted to
edges in image intensity.

kv =





1 1 1
1 −8 1
1 1 1





Eyes potentials
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Deformable templates 2/2

Diffeomorphic matchinga:

A ◦ uuu(xxx) = A(u(xxx)) ≈ B(xxx)

ûuu = argmin
uuu

∫

Ω

∆(A ◦ uuu,B;xxx)dxxx + ∆(uuu)

∆(A,B) =

∫

Ω

(A(xxx) − B(xxx))
2
dxxx

∆(uuu) = ‖uuu − IIIuuu‖H1

Ω

‖aaa‖H1

Ω =

∫

xxx∈Ω

‖aaa(xxx)‖2 + ‖∂(uuu)/∂(xxx)‖2
Fdxxx

aa bijective map uuu(xxx) such that both it and its
inverse uuu

−1 are differentiable

Brain warping
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Linear structures: Radon/Hough Transforms

Rs(qqq)(I ;qqq) =

∫

Rd

δ(K(xxx ;qqq))I (xxx) dxxx

In the Radon approach (left), the supporting evidence for a shape
with parameter qqq is collected by integrating over s(qqq). In the
Hough approach (right), each potentially supporting pixel (e.g.
edge pixels AAA, BBB, CCC ) votes for all shapes to which it can potentially
belong (all circles whose centers lay respectively on circles aaa, bbb, ccc).
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Detection as Learning

Given a set {(xxx i , yi )}i , we search a function f̂ minimizing the
empirical (approximation) squared error

EMSE
emp =

1

N

∑

i

(yi − f (xxx i ))
2

f̂ (xxx) = argmin
f

EMSE
emp (f ; {(xxx i , yi )}i )

This ill posed problem can be regularized, turning the optimization
problem of Equation 1 into

f̂ (λ) = argmin
f ∈H

1

N

∑

i

(yi − f (xxx i ))
2 + λ‖f ‖H

where ‖f ‖H is the norm of f in the (function) space H to which we
restrict our quest for a solution.
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Detection as testing

The problem of template detection fits within game theory.

The game proceeds along the
following steps:

1 nature chooses a state θ ∈ Θ;

2 a hint x is generated according
to the conditional distribution
PX (x |θ);

3 the computational agent makes
its guess φ(x) = δ;

4 the agent experiences a loss
C (θ, δ).

Gaming with nature
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Hypothesis testing and Templates

Two cases are relevant to the problem of template matching:

1 ∆ = {δ0, δ1, . . . , δK−1}, that corresponds to hypothesis
testing, and in particular the case K = 2, corresponding to
binary hypothesis testing. Many problems of pattern
recognition fall within this category.

2 ∆ = R
n, corresponding to the problem of point estimation of

a real parameter vector: a typical problem being that of model
parameter estimation.

Template detection can be formalized as a binary hypothesis test:

H0 : xxx ∼ pθ(xxx), θ ∈ Θ0

H1 : xxx ∼ pθ(xxx), θ ∈ Θ1
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Signal vs. Noise

Template detection in the presence of additive white Gaussian
noise ηηη ∼ N(000, σ2I )

H0 : xxx = ηηη

H1 : xxx =

{

fff + ηηη simple
αfff + ooo + ηηη composite

An hypothesis test (or classifier) is a mapping φ

φ : (Rnd )N → {0, . . . ,M − 1}.

The test φ returns an hypothesis for every possible input,
partitioning the input space into a disjoint collection R0, . . . ,RM−1

of decision regions:

Rk = {(xxx1, . . . ,xxxN)|φ(xxx1, . . . ,xxxN) = k}.
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Error types

The probability of a type I (false
alarm) PF (size or α)

α = PF = P(φ = 1|H0)

The detection probability PD (power
or β):

β(θ) = PD = P(φ = 1|θ ∈ Θ1),

The probability of a type II error, or
miss probability PM is

PM = 1 − PD .

False alarms and detection
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The Bayes Risk

The Bayes approach is characterized by the assumption that the
occurrence probability of each hypothesis πi is known a priori.

The optimal test is the one that minimizes the Bayes risk CB :

CB =
∑

i ,j

CijP(φ(XXX ) = i |Hj)πj

=
∑

i ,j

Cij

(
∫

Ri

pj(xxx)dxxx

)

πj

=

∫

R0

(C00π0p0(xxx) + C01π1p1(xxx)) dxxx +

∫

R1

(C10π0p0(xxx) + C11π1p1(xxx)) dxxx .
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The likelihood ratio

We may minimize the Bayes risk assigning each possible xxx to the
region whose integrand at xxx is smaller:

L(xxx) ≡ p1(xxx)

p0(xxx)

H1

≷
H0

π0(C10 − C00)

π1(C01 − C11)
≡ ν

where L(xxx) is called the likelihood ratio.
When C00 = C11 = 0 and C10 = C01 = 1

L(xxx) ≡ p1(xxx)

p0(xxx)

H1

≷
H0

π0

π1
≡ ν

equivalent to the maximum a posteriori (MAP) rule

φ(xxx) = argmax
i∈{0,1}

πipi (xxx)
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Frequentist testing

The alternative to Bayesian hypothesis testing is based on the
Neyman-Pearson criterion and follows a classic, frequentist
approach based on

PF =

∫

R1

p0(xxx)dxxx

PD =

∫

R1

p1(xxx)dxxx .

we should design the decision rule in order to maximize PD

without exceeding a predefined bound on PF :

R̂1 = argmaxPD
R1:PF≤α

.
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... likelihood ratio again

The problem can be solved with the method of Lagrange
multipliers:

E = PD + λ(PF − α′)

=

∫

R1

p1(xxx)dxxx + λ

(
∫

R1

p0(xxx)dxxx − α′

)

= −λα′ +

∫

R1

(p1(xxx) + λp0(xxx)) dxxx

where α′ ≤ α. In order to maximize E , the integrand should be
positive leading to the following condition:

p1(xxx)

p0(xxx)

H1
> −λ

as we are considering region R1.
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The Neyman Pearson Lemma

In the binary hypothesis testing problem, if α0 ∈ [0, 1) is the size
constraint, the most powerful test of size α ≤ α0 is given by the
decision rule

φ(xxx) =







1 if L(xxx) > ν
γ if L(xxx) = ν
0 if L(xxx) < ν

where ν is the largest constant for which

P0 (L(xxx) ≥ ν) ≥ α0 and P0 (L(xxx) ≤ ν) ≥ 1 − α0

The test is unique up to sets of probability zero under H0 and H1.
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An important example

Discriminate two deterministic multidimensional signals corrupted
by zero average Gaussian noise:

H0 : xxx ∼ N(µµµ0,Σ),

H1 : xxx ∼ N(µµµ1,Σ),

Using the Mahalanobis distance

d2
Σ(xxx ,yyy) = (xxx − yyy)TΣ−1(xxx − yyy)

we get

p0(xxx) =
1

(2π)n/2|Σ|1/2
exp

[

−1

2
d2
Σ(xxx ,µµµ0)

]

p1(xxx) =
1

(2π)n/2|Σ|1/2
exp

[

−1

2
d2
Σ(xxx ,µµµ1)

]
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... with an explicit solution.

The decision based on the log-likelihood ratio is

φ(xxx) =

{

1 wwwT (xxx − xxx0) ≥ νΛ

0 wwwT (xxx − xxx0) < νΛ

with

www = Σ−1(µµµ1 −µµµ0), xxx0 =
1

2
(µµµ1 +µµµ0)

and PF ,PD depend only on the distance of the means of the two
classes normalized by the amount of noise, which is a measure of
the SNR of the classification problem. When Σ = σ2I and µµµ0 = 000
we have matching by projection:

ru = µµµT
1 xxx

H1

≷
H0

ν ′Λ
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... more details

PF = P0(Λ(xxx) ≥ ν) = Q

(

ν + σ2
0/2

σ0

)

= Q(z)

PD = P1(Λ(xxx) ≥ ν) = Q

(

ν − σ2
0/2

σ0

)

= Q(z − σ0)

σ2
0(Λ(xxx)) = σ2

1(Λ(xxx)) = wwwTΣwww

z = ν/σ0 + σ0/2
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Variable patterns ...

A common source of signal variability is its scaling by an unknown
gain factor α possibly coupled to a signal offset β

xxx ′ = αxxx + β111

A practical strategy is to normalize both the reference signal and
the pattern to be classified to zero average and unit variance:

xxx ′ =
(xxx − x̄)

σx

x̄ =
1

nd

nd
∑

i=1

xi

σx =
1

nd

nd
∑

i=1

(xi − x̄)2 =
1

nd

nd
∑

i=1

x2
i − x̄2
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Correlation

or, equivalently, replacing matching by projection with

rP(xxx ,yyy) =

∑

i (xi − µx)(yi − µy )
√

∑

i (xi − µx)2
√

∑

i (yi − µy )2

which is related to the fraction of the variance in y accounted for
by a linear fit of x to y ŷyy = âxxx + b̂

r2
P = 1 −

s2
y |x

s2
y

s2
y |x =

nd
∑

i=1

(yi − ŷi )
2 =

nd
∑

i=1

(

yi − âxi − b̂
)2

s2
y =

nd
∑

i=1

(y − ȳ)2
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(Maximum likelihood) estimation

The likelihood function is defined as

l(θθθ|{xxx i}N
i=1) =

N
∏

i=1

p(xxx i |θθθ)

where xxxN = {xxx i}N
i=1 is our (fixed) dataset and it is considered to

be a function of θθθ. The maximum likelihood estimator (MLE) θ̂θθ is
defined as

θ̂θθ = argmax
θθθ

l(θθθ|xxxN)

resulting in the parameter that maximizes the likelihood of our
observations.
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Bias and Variance

Definition

The bias of an estimator θ̂ is

bias(θ̂) = E (θ̂) − θ

where θ represents the true value. If bias(θ̂) = 0 the operator is
said to be unbiased.

Definition

The mean squared error (MSE) of an estimator is

MSE(θ̂) = E ((θ̂ − θ)2)
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MLE properties

1 The MLE is asymptotically unbiased, i.e., its bias tends to
zero as the number of samples increases to infinity.

2 The MLE is asymptotically efficient: asymptotically, no
unbiased estimator has lower mean squared error than the
MLE.

3 The MLE is asymptotically normal.
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Shrinkage (James-Stein estimators)

MSE(θ̂) = var(θ̂) + bias2(θ̂)

We may reduce MSE trading
off bias for variance, using a
linear combination of
estimators T and S

Ts = λT + (1 − λ)S

shrinking S towards T .

Shrinkage
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James-Stein Theorem

Let XXX be distributed according to a nd -variate normal distribution
N(θθθ, σ2I ). Under the squared loss, the usual estimator δδδ(XXX ) = XXX
exhibits a higher loss for any θθθ, being therefore dominated, than

δδδa(X ) = θθθ0 +

(

1 − aσ2

‖XXX − θθθ0‖2

)

(XXX − θθθ0)

for nd ≥ 3 and 0 < a < 2(nd − 2) and a = nd − 2 gives the
uniformly best estimator in the class. The risk of δnd−2 at θθθ0 is
constant and equal to 2σ2 (instead of ndσ

2 of the usual estimator).
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JS estimation of covariance matrices

The unbiased sample estimate of the covariance matrix is

Σ̂ =
1

N − 1

∑

i

(xxx i − x̄xx)(xxx i − x̄xx)T

and it benefits from shrinking in the small sample, high
dimensionality case, avoiding the singularity problem. The optimal
shrinking parameter can be obtained in closed form for many useful
shrinking targets.

Significant improvements are reported in template (face) detection
tasks using similar approaches.
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Error breakdown

Detailed error breakdown can
be exploited to improve system
performance.
Error measures should be
invariant to translation,
scaling, rotation.

Eyes localization errors
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Error scoring

Error weighting or scoring functions
can be tuned to tasks: errors are
mapped into the range [0, 1], the
lower the score, the worse the error.

A single face detection system can
be scored differently when considered
as a detection or localization system
by changing the parameters
controlling the weighting functions,
using more peaked scoring functions
for localization.

Task selective penalties
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Error impact

The final verification error ∆v

∆v ({xxx i}) =
∑

i

f (δδδ(xxx i );θθθ)

must be expressed as a
function of the detailed error
information that can be
associated to each localization
xxx i :

(δx1(xxx i ), δx2(xxx i ), δs(xxx i ), δα(xxx i )).

System impact

δx1
, face verification systems, FAR=false

acceptance/impostors, FRR=false rejections/true client,

HTER= (FAR+FRR)/2
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Training and testing: concepts

Let X be the space of possible inputs (without label), L the set of
labels, S = X × L the space of labeled samples, and
D = {sss1, . . . , sssN}, where sss i = (xxx i , li ) ∈ S, be our dataset.

A classifier is a function C : X → L, while an inducer is an
operator I : D → C that maps a dataset into a classifier.
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... and methods

The accuracy ǫ of a classifier is the probability
p(C(xxx) = l , (xxx , l) ∈ S) that its label attribution is correct. The
problem is to find a low bias and low variance estimate ǫ̂(C) of ǫ.
There are three main different approaches to accuracy estimation
and model selection:

1 hold-out,

2 bootstrap,

3 k-fold cross validation.
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Hold Out

A subset Dh of nh points is extracted from the complete dataset
and used as testing set while the remaining set Dt = D \ Dh of
N − nh points is provided to the inducer to train the classifier.
The accuracy is estimated as

ǫ̂h =
1

nh

∑

xxx i∈Dh

δ[J(Dt ;xxx i ), li ]

where δ(i , j) = 1 when i = j and 0 otherwise. It (approximately)
follows a Gaussian distribution N(ǫ, ǫ(1 − ǫ)/nh), from which an
estimate of the variance (of ǫ) follows.
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Bootstrap

The accuracy and its variance are estimated from the results of the
classifier over a sequence of bootstrap samples, each of them
obtained by random sampling with replacement N instances from
the original dataset.
The accuracy ǫboot is then estimated as

ǫboot = 0.632ǫb + 0.368ǫr

where ǫr is the re-substitution accuracy, and eb is the accuracy on
the bootstrap subset. Multiple bootstrap subsets Db,i must be
generated, the corresponding values being used to estimate the
accuracy by averaging the results:

ǭboot =
1

nǫ

nǫ
∑

i=1

ǫboot(Db,i )

and its variance.
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Cross validation

k-fold cross validation is based on the subdivision of the dataset
into k mutually exclusive subsets of (approximately) equal size:
each one of them is used in turn for testing while the remaining
k − 1 groups are given to the inducer to estimate the parameters
of the classifier. If we denote with D{i} the set that includes
instance i

ǫ̂k =
1

N

∑

i

δ[J(D \ D{i};xxx i ), li ]

Complete cross validation would require averaging over all
(

N
N/k

)

possible choices of the N/k testing instances out of N and is too
expensive with the exception of the case k = 1 which is also known
as leave-one-out (LOO).
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ROC representation

The ROC curve describes the performance
of a classifier when varying the
Neyman-Pearson constraint on PF :

PD = f (PF ) or Tp = f (Fp)

ROC diagrams are not affected by class
skewness, and are invariant also to error
costs.

ROC points and curves
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ROC convex hull

The expected cost of a
classifier can be computed
from its ROC coordinates:

Ĉ = p(p)(1−Tp)Cηp+p(n)FpCπn

Proposition

For any set of cost (Cηp,Cπn)
and class distributions
(p(p), p(n)), there is a point
on the ROC convex hull
(ROCCH) with minimum
expected cost.

Operating conditions
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ROC interpolation

Proposition

ROC convex hull hybrid Given two
classifiers J1 and J2 represented within
ROC space by the points aaa1 = (Fp1,Tp1)
and aaa2 = (Fp2,Tp2), it is possible to
generate a classifier for each point aaax on
the segment joining aaa1 and aaa1 with a
randomized decision rule that samples J1

with probability

p(J1) =
‖aaa2 − aaax‖
‖aaa2 − aaa1‖

Satisfying operating
constraints
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AUC

The area under the curve (AUC) gives the
probability that the classifier will score, a
randomly given positive instance higher
that a randomly chosen one. This value is
equivalent to the Wilcoxon rank test
statistic W

W =
1

NPNN

∑

i :li=p

∑

j :lj=n

w(s(xxx i ), s(xxx j))

where, assuming no ties,

w(s(xxx i ), s(xxx j)) = 1 if s(xxx i ) > s(xxx j)

The closer the area to 1, the better the
classifier.

Scoring classifiers
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Rendering

The appearance of a surface point is determined by solving the
rendering equation:

Lo(xxx ,−ÎII , λ) = Le(xxx ,−ÎII , λ)+

∫

Ω
fr (xxx , L̂LL,−ÎII , λ)Li (xxx ,−L̂LL, λ)(−L̂LL·N̂NN)dL̂LL

Roberto Brunelli Template Matching Techniques in Computer Vision



Describing reality: RenderMan R©

Projection "perspective" "fov" 35

WorldBegin

LightSource "pointlight" 1 "intensity" 40 "from" [4 2 4]

Translate 0 0 5

Color 1 0 0

Surface "roughMetal" "roughness" 0.01

Cylinder 1 0 1.5 360

WorldEnd

A simple shader

color roughMetal(normal Nf; color basecolor;

float Ka, Kd, Ks, roughness;)

{

extern vector I;

return basecolor * (Ka*ambient() + Kd*diffuse(Nf) +

Ks*specular(Nf,-normalize(I),

roughness));

}
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How realistic is it?

basic phenomena, including straight propagation, specular
reflection, diffuse reflection (Lambertian surfaces), selective
reflection, refraction, reflection and polarization (Fresnel’s
law), exponential absorption of light (Bouguer’s law);

complex phenomena, including non-Lambertian surfaces,
anisotropic surfaces, multilayered surfaces, complex volumes,
translucent materials, polarization;

spectral effects, including spiky illumination, dispersion,
inteference, diffraction, Rayleigh scattering, fluorescence, and
phosphorescence.

Roberto Brunelli Template Matching Techniques in Computer Vision



Overview
Detection as hypothesis testing

Training and testing
Bibliography

How good is ... good
Unbiased training and testing
Performance analysis
Oracles

Thematic rendering

We can shade a pixel so that
its color represents

the temperature of the
surface,

its distance from the
observer,

its surface coordinates,

the material,

an object unique
identification code.

Automatic ground truth
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