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Abstract Reference anatomies of the brain and corresponding atlases play a central role in
experimental neuroimaging workflows and are the foundation for reporting standardized results.
The choice of such references —i.e., templates— and atlases is one relevant source of
methodological variability across studies, which has recently been brought to attention as an
important challenge to reproducibility in neuroscience. TemplateFlow is a publicly available
framework for human and nonhuman brain models. The framework combines an open database
with software for access, management, and vetting, allowing scientists to distribute their
resources under FAIR —findable, accessible, interoperable, reusable— principles. TemplateFlow
supports a multifaceted insight into brains across species, and enables multiverse analyses
testing whether results generalize across standard references, scales, and in the long term,
species, thereby contributing to increasing the reliability of neuroimaging results.

Brains are morphologically variable, exhibiting diversity in such features as overall size (Lüders
et al., 2002), sulcal curvature (Tosun et al., 2015), and functional topology (Tavor et al., 2016;Mars
et al., 2018). Morphological variability manifests not only in differences between brains but also
in the way that a brain changes across its lifespan, as it is remodelled by development, aging, and
degenerative processes (Courchesne et al., 2000; Good et al., 2001; Sowell et al., 2003). Thesemor-
phological differences often correspond with the effects of interest in neuroimaging studies and
hinder direct spatial comparisons between brain maps (Brett et al., 2002). The substantial vari-
ability within and between individual brains necessitates a means of formalizing population-level
knowledge about brain anatomy and function. Neuroscientists have answered this need by cre-
ating brain atlases as references for understanding and contextualizing morphological variability.
Atlases map landmarks, features, and other knowledge about the brain as annotations that are
consistent across individual brains.

The development of atlases in neuroscience has accelerated knowledge discovery and dissem-
ination. Early endeavors, epitomized by the groundbreaking work of Brodmann (2006, originally
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published in German in 1909) and complemented by Von Economo and Koskinas (2008, originally
published in German in 1925), leveraged careful scrutiny of microanatomy and cytoarchitectonic
properties in small numbers of brains. Concurrentmacroanatomical approaches, by contrast, iden-
tified common features in nuclear boundaries and cortical gyrification. Modern atlases advanced
on these approaches by incorporating stereotaxy, defining a basis set of coordinate axes over
the brain and anchoring neural landmarks to coordinates. Talairach’s assiduous postmortem ex-
amination of a single brain produced a stereotaxic atlas that saw wide use (Talairach et al., 1957).
Stereotaxywas a fundamental feature to unfold surgical neuronavigation systems. Schurr andMer-
rington (1978) developed the first sterotaxic apparatus to surgically induce targeted brain lesions
on cats. This early antecedent of neuronavigation informed early sectional atlases of the cat and
macaque brains. Since then, neuroscientists have directed great efforts to improve existing (Ta-
lairach and Tournoux, 1988) and generate new atlases of the neurotypical adult human (Landman

et al., 2012) and nonhuman (Paxinos and Watson, 1997; Martin and Bowden, 2000) brain; as well
as developing, aging, and neurologically atypical brains. For instance, new atlases and represen-
tative stereotaxic maps can be created for diseased (Dickie et al., 2015), infant (Matsuzawa et al.,
2001; Fonov et al., 2011; Shi et al., 2011), and elderly (Buckner et al., 2004) human populations or
to capture the rapid postnatal development of nonhuman species (Calabrese et al., 2013; Szulc
et al., 2015). Advancing beyond the volumetric constraints of stereotaxy, researchers of primate
neocortex have also devised standard spaces based on geometric reconstructions of the cortical
surface. This surface-based approach has the advantage of respecting the intrinsic topology of
cortical folds, a development that has led to further improvements in spatial localization (Coalson
et al., 2018). On account of its relatively high spatial resolution, its capacity to image the entire
brain, and its non-invasive acquisition protocols, magnetic resonance imaging (MRI) has revolu-
tionized neuroscience in general and the atlasing endeavor (Evans et al., 2012) in particular. In
combination with software instruments’ progress to map homologous features between subjects
supported by regular grids (Avants et al., 2008) or reconstructed anatomical surfaces (Robinson
et al., 2014), MRI has enabled researchers to create population-averagemaps of a particular image
modality and/or particular sample with relative ease. These maps, called “templates”, are typically
created by averaging features across individuals that are representative of the population of inter-
est to a study (Dickie et al., 2017). As a result, atlasing endeavours have been made contingent on
templates, and have largely shifted away from the search for a single universal neuroanatomical
pattern, instead making use of increasingly large samples with the aim of representing a popula-
tion average of the distribution of morphological patterns.

Such resources as atlases and templates, which provide standardized prior knowledge, have be-
come an indispensable component of modern neuroimaging data workflows for two cardinal rea-
sons. First, group inference in neuroimaging studies requires that individuals’ features are aligned
into a common spatial frame of reference where their location can be called standard (Brett et al.,
2002). Second, templates engender a stereotaxic coordinate system in which atlases can be de-
lineated or projected. Associating atlases with template coordinates also facilitates the mapping
of prior population-level knowledge about the brain into images of individual subjects’ brains (for
instance, to sample and average the functional MRI signal indexed by the regions defined in an
atlas; Yeo et al. (2011)).

Because they are integral to analyticworkflows, templates and atlases are frequently distributed
as part of neuroimaging software libraries. For the most part, the developers of these libraries
have substantial commitments apart from template aggregation and curation; thus, most libraries
are practically limited in the subset of templates and atlases that they include. As an unfortunate
consequence of this distribution model, access to and reuse of templates and atlases has become
tightly coupled to a user’s choice of software library. As an alternative to this software-bound
distribution model, some laboratories and institutions maintain repositories where templates and
atlases can be downloaded. TheMontreal Neurological Institute (MNI) has spearheaded this mode
of distribution and offers a large portfolio of human and non-human templates and atlases (Evans
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et al., 1993; Mazziotta et al., 1995; Holmes et al., 1998; Collins et al., 1999; Mazziotta et al., 2001;
Fonov et al., 2011) accessible via a web site (MNI, n.d.). These templates and atlases have evolved
iteratively (Evans et al., 2012), preserving spatial alignment to the “MNI Average Brain (305 MRI)
Stereotaxic Registration Model” (“MNI305”; Evans et al., 1993). As a consequence, it is common
to find references to them in the literature under the umbrella term of “MNI space”. Indeed, the
default templates distributed with the popular FSL (Jenkinson et al., 2012) and SPM (Friston et al.,
2006) software packages are generally referred to as being “defined in MNI space,” even though the
specific templates differ.

The limitations of the software-bound distribution model underscore three separate problems
that arise in common practice. First, software-default templates are not generalizable to many use
cases. When the population targeted by a study substantially deviates from neurotypical human
adults (e.g., infants, elderly, or nonhuman animals), using an inadequate reference such as the
defaultMNI space offered by a software library can introduce so-called “template effects” that bias
morphometric analyses and produce incorrect results (Yoon et al., 2009). There is not yet any stan-
dard distance function that can objectively determine whether a template choice is phenotypically
proximal to the study’s sample, and thus whether template effects will be relevant. For example,
since most MNI templates are created with a sample of adults of European ancestry, a study in-
volving East Asian adults might require a non-default template. Because of the relative scarcity of
nonhuman imaging resources, exposure to template effects is even more pressing in the nonhu-
man context: e.g., is it appropriate to use a mouse template for the spatial standardization of rat
images? Not only are nonhuman templates and atlases scarce, accommodation of such resources
in popular software tools is generally limited. For instance AFNI (Cox and Hyde, 1997) includes a
rat template that can be applied in some contexts, while SPM provides functionality only through
third-party add-ons (e.g., Sawiak et al., 2009). Second, deviating from software defaults places a
knowledge burden on the user. Once the researcher has selected a reference standard space that
is suitable for their study population, if their choice is not included by default with the software
they plan to use, they must then locate and download the reference template or atlas and inte-
grate it within their analytic pipeline. This kind of excursion from defaults is far from frictionless
and will often require expertise in template spaces and pipeline informatics. The required exper-
tise is greater still when a researcher is workingwith an under-represented population for which no
suitable template currently exists. In this situation, researchers often develop and make available
new templates and atlases based on their own data samples, afterward distributing the new data
assets using institutional websites or data storage systems such as FigShare (RRID:SCR_004328) or
Dryad (RRID:SCR_005910). The lack of a centralized index for such templates propagates a share of
the knowledge burden to researchers who stand to benefit from reusing them. Usersmust instead
be aware not only of the prior existence of a template, but also where to locate it and the methods
required to access it. Finally, as illustrated by the case ofMNI space, it is not always clear what tem-
plate a study is using. Since the templates most often used in the literature are software library
defaults, reporting of spatial standardization is generally implicit (e.g., Carp, 2012b, for functional
MRI studies). In addition, template and atlas curators do not generally mint universally unique
identifiers (such as the Research Resource Identifier, RRID; Bandrowski and Martone, 2016) to pre-
cisely report spatial standardization and analysis. Therefore, deviating from software defaults has
some potential to endanger reproducibility of studies due to template/atlas accessibility (and conti-
nuity thereof through time) and the risk of misreporting. Additional concerns regarding the repro-
ducibility of spatial standardization in research include unlicensed distribution and provenance
tracking. Errors in template and atlas resources are not common, but have been reported (e.g.,
Rohlfing, 2013; Halchenko, 2013). Using version control for templates and atlases has traditionally
been considered too onerous and requires an expertise thatmay exceed the resources of research
teams.

Overall, current practices in management and stewardship of group-standardized data (tem-
plates, atlases, and associated resources) do not follow “Findability, Accessibility, Interoperability,
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Figure 1. Representative

views of 15 templates

currently available in the

TemplateFlow Archive. The
7 templates highlighted in
blue are constituents of the
Montreal Neurological
Institute (MNI) portfolio.
WHS (Waxholm space) and
Fischer344 correspond to
rat templates. fsaverage

and fsLR are surface
templates; the remaining
templates are volumetric.
Each template is distributed
with atlas labels,
segmentations, and
metadata files. The 15
templates displayed here
are only a small fraction of
those created as stereotaxic
references for the
neuroimaging community.
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and Reusability (FAIR) Guiding Principles” (Wilkinson et al., 2016), making it difficult for researchers
to locate and use these data assets and thereby reducing their long-term value. To address the
need for a centralized resource for the archiving and redistribution of templates and atlases that
allows programmatic access to human and nonhuman resources, we have developed Template-

Flow. This resource implements the FAIR Guiding Principles, effectively decoupling standardized
spatial data from software libraries while maximizing the flexibility of emerging processing and
analysis workflows (e.g. Esteban et al., 2017, 2019). TemplateFlow comprises a cloud-based repos-
itory of human and nonhuman imaging templates —the “TemplateFlow Archive”, Figure 1— paired
with a Python-based library —the “TemplateFlow Client”— for programmatically accessing template
resources. The resource is complemented with a “TemplateFlow Manager” tool to upload new or
update existing resources. When adding a new template, the Manager initiates a peer-reviewed
contribution pipeline where experts are invited to curate and vet new proposals. These software
components, as well as all template resources, are version-controlled. Therefore, not only does
TemplateFlow enable access to templates “off-the-shelf” by humans and machines, it also permits
researchers to share their resources with the community. To implement several of the FAIR Prin-
ciples, the TemplateFlow Archive features a tree-directory structure, metadata files, and data files
following an organization inspired by the Brain Imaging Data Structure (BIDS; Gorgolewski et al.,
2016). BIDS is a widespread standard that balances the needs for human- andmachine-readability.
The online documentation hub and the resource browser located at TemplateFlow.org provide fur-
ther details for users.
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Table 1. Digital templates included in TemplateFlow. TemplateFlow is designed to maximise the discoverability and accessibility of new
templates, minimise redundancies in template creation, and promote standardisation of processing workflows. To enhance visibility of existing
templates, TemplateFlow includes a web-based browser indexing all files in the TemplateFlow Archive (templateflow.org/browse/).

Template ID Description

MNI152Lin
Neurotypical adult human template created as the average from a linear mapping of 152 subjects from the MNI cohort of the
ICBM registered to the earlier MNI305 template (Mazziotta et al., 1995, 2001).

MNI152NLin6Asym
FSL’s version of the MNI152 neurotypical adult human template created using iterative nonlinear registration and averaging
(Evans et al., 2012).

MNI152NLin6Sym Symmetric version of MNI152NLin6Asym (Evans et al., 2012).

MNI152NLin2009cAsym
Update of the MNI152 neurotypical adult template with nonlinear registration. The mapping and averaging proceeded over 40
iterations beginning from the earlier MNI152 template (Fonov et al., 2011; Collins et al., 1999).

MNI152NLin2009cSym Symmetric version of MNI152NLin2009cAsym (Fonov et al., 2011; Collins et al., 1999).

MNIInfant
Series of human infant templates created from 11 cohorts of infants and young children. Each cohort spans a different age
range between 0 and 60 months (Fonov et al., 2011).

MNIPediatricAsym
Series of human pediatric templates created from 6 partially overlapping cohorts of children and young adults. Each cohort
spans a different age range between 4.5 and 18.5 years (Fonov et al., 2011; Collins et al., 1999).

NKI
Template created for the NKI-Rockland sample using ANTs diffeomorphic registration and averaging (Avants et al., 2011; Nooner
et al., 2012).

OASIS30ANTs
Template created using ANTs diffeomorphic registration and averaging for the Open Access Series of Imaging Studies (OASIS)
(Avants et al., 2011;Marcus et al., 2007).

PNC
Pediatric and young adult template created using ANTs diffeomorphic registration and averaging for the Philadelphia
Neurodevelopmental Cohort (Satterthwaite et al., 2016).

UNCInfant
Series of human infant templates created from a 95-subject longitudinal sample comprising three scans: as neonates, as
one-year-olds, and as two-year-olds (Shi et al., 2011).

WHS
Waxholm space template created as an atlas of the Sprague-Dawley rat brain (Kjonigsen et al., 2015; Osen et al., 2019; Papp
et al., 2014, 2015).

Fischer344 Rat template created as the average of 41 four-month-old animals from the Fischer 344 strain (Goerzen et al., 2020).

fsLR Surface-based Freesurfer template created for the Human Connectome Project (HCP) (Van Essen et al., 2012).

fsaverage Surface-based average Freesurfer template (Fischl et al., 1999).
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Results

Management and stewardship following the FAIR Guiding Principles

The specific and measurable FAIR principles of Wilkinson et al. (2016) are reproduced in Sup-
plementary Box S1. Principles are indexed by their category and numbering, e.g., principle I3 –
“(meta)data include qualified references to other (meta)data” belongs in the “to be Interoperable” cat-
egory. We describe how TemplateFlow implements each of these specific principles in the follow-
ing. Every template and all associatedmetadata, atlases, etc. are assigned a unique and persistent
identifier (principle F1). BIDS prescribes a file naming scheme comprising a series of key-value pairs
(called “entities”) that are ordered hierarchically. Following BIDS’ patterns, the template identifier
is an alphanumeric label that is unique across the Archive, signified with the key tpl- (e.g., tpl-
MNI152Lin ). TemplateFlow therefore adapts BIDS to the specific domain of templates and atlases,
affording the tool with a robust implementation of the principles I1-3 (interoperability). Table 1 enu-
merates several templates currently distributed with the Archive, and their corresponding unique
identifiers. The unique identifier resolves the issue of inaccurate reporting, as it unambiguously
designates one specific template. In addition, because the repository is versioned, researchers can
easily retrieve and report the exact version of the template or atlas that was used in their study.
Suppl. Table S2 summarizes the available entities and shows a segment of the file organization
of the Archive. For each template, the TemplateFlow database includes reference volumetric tem-
plate images (e.g., one T1-weighted and one T2-weighted average map; all must be in register), a
set of atlas labels and voxelwise annotations defined with reference to the template image, and
additional files containing the template and atlas metadata. Correspondingly, TemplateFlow allows
surface-based resources such as average features, geometry files, annotations, or metadata.

Template resources are described with rich metadata (principles F2 and R1), ensuring that the
data usage license is clear and accessible (R1.1), data and metadata are associated with detailed
provenance (R1.2), and data and metadata follow a domain-relevant structure transferred from
the neuroimaging community standards of BIDS (R1.3). Figure 2 summarizes the data types and
metadata that can be stored in the Archive. Figure 3 provides an overview of the Archive’s metadata
specification, showing that metadata clearly and explicitly include the identifier of the data they de-
scribe (F3). Data and metadata are retrievable using several open, free, standard communications
protocols without need for authentication (A1) by using DataLad (Halchenko et al., 2021). Cloud
storage for the Archive is supported by the Open Science Framework (osf.io) and Amazon’s Simple
Storage Service (S3). Version control, replication, and synchronisation of template resources across
filesystems is managed with DataLad. Leveraging DataLad, metadata are stored on GitHub, ensur-
ing accessibility to metadata even when corresponding data are no longer available (A2). DataLad
is based on Git and Git-Annex, which index all data and metadata (F4). Although DataLad also pro-
vides searching tools that are applicable to TemplateFlow’s resources, the TemplateFlow framework
provides a client tool that facilitates searching and querying.

An indexed resource, searchable with a TemplateFlow “Client”

TemplateFlow’s Python client provides human users and software tools with reliable and program-
matic access to the archive. The client can be integrated seamlessly into image processing work-
flows to handle requests for template resources on the fly. It features an intuitive application pro-
gramming interface (API) that can query the TemplateFlow Archive for specific files (Figure 5). The
BIDS-inspired organization enables easy integration of tools and infrastructure designed for BIDS
(e.g., the Python client uses PyBIDS (Yarkoni et al., 2019) to implement queries like those listed in
Suppl. Table S2). To query TemplateFlow, a user can submit a list of arguments corresponding to
the BIDS-like key-value pairs in each entity’s file name (e.g., atlas="Schaefer2018" to return files
containing voxelwise annotations by Schaefer et al. (2018)).

To integrate template resources into neuroimaging workflows, traditional approaches required
deploying an oftentimes voluminous tree of prepackaged data to the filesystem. By contrast, the
TemplateFlow client implements lazy loading, which permits the base installation to be extremely
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NIfTI images include 
population-average 
templates and tissue 
class segmentations.

Masks are binary-
valued NIfTI images 

indicating whether each 
voxel is in a region.

Atlases are NIfTI 
images that assign 

anatomical or functional 
labels to template voxels.

Transformations are 
HDF5 files containing 

maps between template 
coordinate spaces.

Cohort directories 
contain template 

resources specific to a 
sub-cohort of 
participants.

JSON metadata 
summarise information 

about templates, 
resolutions, and cohorts.

Tabular metadata 
contain dictionaries 

that pair atlas regions 
with anatomical labels.

A changelog 
chronicles changes 

and updates made to 
template resources.

License files specify 
usage rights for 

template resources.

Python scripts are 
used to prepare 

template resources.

Figure 2. The TemplateFlow Archive contains template resources. Left, common file formats included in the TemplateFlow Archive. Right, view
of the TemplateFlow Archive’s browser, accessible at TemplateFlow.org, with a single template resource directory expanded. Template data are
archived using a BIDS-like directory structure, with top-level directories for each template. Each directory contains image files, annotations, and
metadata for that template. Following BIDS specifications, volumetric data are stored in NIfTI-1 format. Further surface-based data types are
supported with GIFTI (surfaces) and CIFTI-1 (mixed volumetric-and-surface data).
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{

  "Authors": [

    "Fonov V",

    "Evans AC",

    "Botteron K",

    "Almli CR",

    "McKinstry RC",

    "Collins DL"

  ],

  "Curators": [

    "Esteban O"

  ],

  "Identifier": "MNIPediatricAsym",

  "License": "MIT-derived. See LICENSE file",

  "Name": "MNI's unbiased standard MRI template for

           pediatric data from the 4.5 to 18.5y age

           range",

  "RRID": "SCR_008796",

  "ReferencesAndLinks": [

    "https://doi.org/10.1016/j.neuroimage.2010.07.033",

    "https://doi.org/10.1016/S1053-8119(09)70884-5",

    "http://nist.mni.mcgill.ca/?p=974",

    "https://doi.org/10.1007/3-540-48714-X_16"

  ],

  "TemplateFlowVersion": "1.0.0",

  "cohort": {

    "1": {

      "age": [

        4.5,

        18.5

      ],

      "name": "whole age range",

      "units": "yr"

    },

    "2": {

      "age": [

        4.5,

        8.5

      ],

      "name": "prepuberty",

      "units": "yr"

    },

  . . .

  },

  "res": {

    "1": {

      "origin": [

        -98.0,

        -134.0,

        -72.0

      ],

      "shape": [

        197,

        233,

        189

      ],

      "zooms": [

        1.0,

        1.0,

        1.0

      ]

    },

  . . . 

  }

}

Field Type Description

Authors

Curators

Identifier

License

Name

RRID

ReferencesAndLinks

TemplateFlowVersion

Array
(String)

Array

String

String

String
String

Array

String

Names of authors who created the template.

Publications to reference when using the template,
and salient links for template information.

Research Resource Identifier for the TemplateFlow
dataset.

Names of TemplateFlow curators who contributed
or manage the dataset.
Unique human-readable template identifier within
TemplateFlow.
License under which template resources are
available.
Full descriptive name of the template.

Version of TemplateFlow under which the dataset
was distributed.

Field Type Description

1, 2, ...

age

name

units

Object

Array
(Number)

String
String

Cohort identifiers. Each has a subdirectory in the
template data directory, and each has a
metadata object nested in the cohort field.
2-tuple array indicating the lower and upper
bounds for participant age in the cohort, if the
cohorts are stratified by age.
Full descriptive name of the cohort..
Units for cohort age bounds.

cohort Object Top-level field containing all cohort metadata
objects.

Field Type Description

1, 2, ...

origin

shape

zooms

Object

Array

Array
Array

Resolution identifiers. Each has a metadata
object nested in the res field. The metadata
for each resolution apply to all images whose
name includes res-<identifier>. The identifier
itself does not necessarily correspond to the voxel
size.
(x, y, z) spatial location of the voxel origin
relative to the physical origin in mm.
(x, y, z) shape of the image in voxels.
(x, y, z) size of each voxel in mm.

res Object Top-level field containing all resolution metadata
objects.

General metadata

Cohort metadata

Resolution metadata

Figure 3. Overview of the metadata specification of the TemplateFlow Archive. TemplateFlow’s metadata are formatted as JavaScript Object
Notation (JSON) files located within each template set. An example template_description.json metadata file is displayed at the left for
MNIPediatricAsym . In addition to general template metadata, datasets can contain cohort-level and resolution-level metadata, which are nested
within the main metadata dictionary and apply only to subsets of images in the dataset.
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lightweight. Instead of distributing neuroimaging data with the installation, TemplateFlow allows
the user to dynamically pull from the cloud-based storage only those resources they need, as they
need them. After a resource has been requested once, it remains cached in the filesystem for
future utilization.

We demonstrate benefits of centralizing templates in general, and the validity of the Template-
Flow framework in particular, via its integration into fMRIPrep (Esteban et al., 2019), a functional
MRI preprocessing tool. This integration provides fMRIPrep users with flexibility to spatially nor-
malize their data to any template available in the Archive (see Box 1). This integration has also
enabled the development of fMRIPrep adaptations, for instance to pediatric populations or rodent
imaging (MacNicol et al., 2021), using suitable templates from the archive. The uniform interface
provided by the BIDS-like directory organisation and metadata enables straightforward integra-
tion of new templates into workflows equipped to use TemplateFlow templates. Further examples
of tools leveraging TemplateFlow include MRIQC (Esteban et al., 2017) for quality control of MRI;
PyNets (Pisner and Hammonds, 2020), a package for ensemble learning of functional and struc-
tural connectomes; ASLPrep (Adebimpe et al., 2021), an ASL pre-processing pipeline that makes
use of TemplateFlow through sMRIPrep —the spin-off structural pipeline from fMRIPrep; and Net-

PlotBrain (Thompson and Fanton, 2021), which uses TemplateFlow to display spatially standardized
brain network data.

A framework for researchers who generate and share spatially-standardized data

A centralized repository for neuroimaging templates should also address the needs of template
creators, enabling peer-reviewed integration of new templates with minimal informatic overhead.
Inspired by the Conda-forge community repository and the Journal of Open Source Software, the
GitHub-based “templateflow” organisation is a site for dialogue between members of the neu-
roimaging community and TemplateFlow Archive curators. GitHub issues offer any communitymem-
ber the ability to share their needs with developers and Archive curators, for instance by identify-
ing templates or workflow features for potential inclusion in the project. “Pull requests” provide
a means for members of the community to directly contribute code or template resources to the
TemplateFlow Archive.

This peer-reviewed contribution process is facilitated through the Python-based TemplateFlow
Manager. The TemplateFlow Manager automates the work of synchronizing data from a local di-
rectory to cloud storage in OSF. Furthermore, it creates a GitHub repository containing git-annex
pointers that enable DataLad to download template data from cloud storage to anymachine with a
copy of the repository. Finally, it opens a new pull request to propose adding the newly contributed
template repository into the main TemplateFlow Archive (Figure 6). Synchronization of spatial data
assets to the TemplateFlow Archive affords data producers an immediate way to distribute their
data according to FAIR principles and thereby increase its reach.

Unambiguous and precise reporting of spatially standardized processing and analysis.

To explore the coupling between software libraries and standard spaces, we conducted a topic
modeling analysis (Blei et al., 2003) of MNI space in the neuroimaging literature. We identified a
coupling between the reporting of spatial standardization and software libraries across 6,048 arti-
cles containing the term MNI and published in two leading domain-specific journals (NeuroImage
and NeuroImage: Clinical). To demonstrate the heterogeneity in the reported standardization to
MNI space, we sorted topics according to their dominance in articles (i.e., the topic with the high-
est model score in MNI-related sentences; Figure 4). Out of 15 topics we modeled, two of the
most dominant topics contained software tool names as well as the names of related scientists.
As shown in Figure 4, around 500 articles (each term) contained either “SPM” (9% of the docu-
ments) or “FSL” (8%). Interestingly, the two words do not ever appear together, suggesting that
researchers stick with one or another in their analyses. Additional topics that seemingly relate to
the provenance of templates and atlases —beyond the ubiquitous “Montreal”, “Neurological” and
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#1: 1048 documents (17.23%) #2: 735 documents (12.08%) #3: 537 documents (8.83%) #4: 493 documents (8.10%)

#5: 469 documents (7.71%) #6: 397 documents (6.53%) #7: 394 documents (6.48%) #8: 383 documents (6.30%)

Figure 4. The FSL and SPM software tools associate with dominant topics of sentences including the term “MNI” across the literature.
We performed topic modeling with latent Dirichlet allocation (LDA; Blei et al., 2003) on text sentences extracted from 6,048 articles that
contained the word “MNI”. For each topic identified, the 20 words with the highest loadings on that topic are displayed in a word cloud with
larger font size indicating higher loading of the word on the corresponding topic. Word clouds are sorted by descending topic dominance.
Ranking and relative dominance are shown above each topic’s cloud. Only the top 8 dominant topics are shown here (full model is reported in
Suppl. Figure S1). Two top-dominant topics —#3 and #5— are associated with SPM and FSL respectively.

“Institute” for MNI— are those that ranked #4, #13, #14, which include “SPM” and other terms such
as “McGill”, “Wellcome”, “UCL”, or the “parametric” in SPM (see Suppl. Figure S1). The remainder
of topics appears to relate to miscellaneous aspects of spatial standardization, such as “anatom-
ical”, “smoothness”, “map/mapping”, “standard”, “normalization”, “(re)align/alignment”, etc., with
no apparent relationship to the actual origin of the resource. These interpretations suggest that
“MNI space” can refer to any of a family of templates and is not a unique identifier. As a matter of
fact, studies carried out with SPM96 (Friston et al., 2006) and earlier versions report their results
in MNI space with reference to the single-subject Colin 27 average template (Holmes et al., 1998).
However, beginning with SPM99, SPM updated its definition ofMNI space to the template that MNI
released in 2001: an average of 152 subjects from the ICBM database, aligned by means of lin-
ear registration. In SPM12 (the latest release at the time of writing), the meaning of MNI template
varies by submodule: different modules alternately use the Linear MNI152 template (Mazziotta
et al., 1995) and a new, nonlinear revision from 2009 (Fonov et al., 2011). By contrast, the MNI

template bundled with the FSL toolbox was developed by Dr. A. Janke in collaboration with MNI
researchers (Evans et al., 2012). Although it was generated under the guidance of and using the
techniques of the 2006 release of nonlinear MNI templates, this template is not in fact part of the
official portfolio distributed by MNI. Nonetheless, our results suggest that the MNI templates bun-
dled with SPM and FSL have historically gained broader currency as a result of the widespread use
of these software libraries.

Discussion
The use of templates and atlases is ubiquitous in neuroimaging, and the emerging challenges re-
garding template use accordingly merit immediate attention. In an early perspective, Van Essen
identified a set of desiderata for brain templates (Van Essen, 2002). Above and beyond anatomical
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fidelity, he called for connecting templates in an aggregation of databases with “powerful and flex-
ible options for searching, selecting, and visualizing data”. Finally, he stressed the importance of
resource accessibility. TemplateFlow provides a framework that satisfies all of the aforementioned
desiderata while following the FAIR principles (Wilkinson et al., 2016). We elaborate that most of
the issues concerning the reliability of neuroimaging research relating to standardized spatial ref-
erences stem from the lack of a centralized repository designed to meet FAIR principles. We show
how we effectively implement such principles with the adoption of a BIDS-like structure for the
data andmetadata in the resource, and with DataLad to support the core of the data management
system. We complete the implementation with an easy-to-use client tool.

When researchers develop a new brain template or atlas for public dissemination, there exists
no standard channel or format for distributing their work. With no central repository or uniform
organizational scheme, template creators are often tasked with the responsibilities of maintain-
ing template resources and managing access on an ad hoc basis and sustaining them over time
with limited to no support. While the quality of peer reviewed template resources is assessed
once prior to publication, reviewers often focus on perceived academic merit to the exclusion of
FAIR principles. This can lead to poor resource adoption and low community value even for high-
quality resources. Informal vetting of resources is prone to more clerical errors such as missing
or corrupted files and/or metadata, or unlicensed distribution, which nonetheless may make the
resource unusable. Conversely, users are confronted with a surfeit of available templates and
atlases, many with unclear provenance, absent licensing terms, and the attendant challenges of
accessing them and integrating them into workflows.

Without a uniform distribution format, integrating a template into software requires a custom
solution for every new template, increasing the burden on developers. Consistently with the pre-
vious investigation by Carp (2012b) in the domain of functional MRI, our text mining exploration
illustrates a strong coupling between software library and the templates and atlases of choice. In-
deed, Carp (2012b) analysed 241 functional MRI studies of which 90.9% reported normalizing brain
images to a common template. Of those, 79.0% indicated the target space used for spatial normal-
ization. Few studies reported critical parameters, and only 50 specified the template image: 26.0%
used “theMNI152 template”, and 26.0% the “SPM library’s echo-planar imaging template”. Unfortu-
nately, template selection is seen as a default parameter of the software library, which lends itself
to assuming that the target normalization space is implicitly reported by identifying the software
tools of choice. Bowring et al. (2019) wrote comparable pipelines in three software suites (AFNI,
FSL and SPM) in order to identify challenges to reproducing published studies with openly shared
raw data. When discussing differences among pipelines, they noted that, “while all packages are
purportedly using the sameMNI atlas space, an appreciable amount of activation detected by AFNI
and FSL fell outside of SPM’s analysis mask“.

This coupling seems to also limit the utilization of templates other than those defaulted by the
software. Custom templates (i.e., those not included as default option for the software tool) range
from population-specific templates to ad hoc templates created by averaging images of the study
at hand. In some settings, the use of default templates risks introducing “template effects” that
confound the interpretation of results (such as those introduced in pediatric imaging studies by
using an adult template, Yoon et al., 2009). As the target population moves away from that with
which a default template was created, “template effects” become more concerning and custom
templates more necessary. The problem is exacerbated in the case of nonhuman imaging, as the
scarcity (or absence) of specific templates available within software packages hinders already chal-
lenging translational endeavors. Further, the consistency across templates and atlases is report-
edly low (Bohland et al., 2009), and although there has not been any programmatic comparison
to understand the extent to which this inconsistency alters the spatial interpretation of results, it
is reasonable that templates and atlases introduce a decision point and therefore are sources of
some analytical variability.

One ostensible caveat regarding centralized and FAIR-principled knowledge repositories such
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as TemplateFlow is that, by increasing the findability and reuse potential of data resources, they
also open the door to increased methodological flexibility. Carp empirically investigated the con-
sequences of such methodological flexibility in neuroimaging, demonstrating that decision points
in workflows can lead to substantial variability in analysis outcomes. In a contemporaneous paper,
Carp (2012b) contextualized these findings vis-à-vis the inflated risk of false positives, underscoring
that analytical variability degrades the reproducibility of studies only in combination with (intended
or unintended) selective reporting of methods and results. Selective reporting, in this particular ap-
plication, would mean that a researcher explores the results with reference to several templates
or atlases and reports only those that confirm the research’s hypotheses. TemplateFlow’s standard-
ization preempts the problem of unintended selective reporting: the provenance of all resources is
tracked, all resources are accessible, and comprehensivemetadata are generated.ß More recently,
Botvinik-Nezer et al. (2020) advocated for another solution to the problem of analytical variability:
“multiverse” analyses, whereinmany combinations ofmethodological choices are all thoroughly re-
ported and cross-compared when presenting results. Applied to the particular choice of template
and atlas combinations, it would thus be desirable to report neuroimaging results with reference to
several standard spaces and determine whether the interpretations hold across those references
and atlases. TemplateFlow’s interoperability empowers users to incorporate this type of analysis
into their research by easily making template or atlas substitutions for cross-comparison. For in-
stance, Box 1 shows how TemplateFlow works with fMRIPrep to automate preprocessing of outputs
in multiple standard spaces. This facilitates assessment of the robustness of a result with respect
to the template or atlas of choice in accordance with the multiverse approach.

Limitations
TemplateFlow affords researchers substantial analytical flexibility in the choice of standard spaces
of reference. Such flexibility helps researchersminimize “template effects”—by easily inserting the
most adequate template— but also opens opportunities for incomplete reporting of experiments.
Using DataLad or the TemplateFlow Client, researchers have at their disposal the necessary tooling
for precise reporting: unique identifiers, provenance tracking, version tags, and comprehensive
metadata. Therefore, the effectiveness of TemplateFlow to mitigate selective reporting is bounded
by the user’s discretion. Similarly, the resource is limited at the time of writing to MRI templates,
but it readily supports such other modalities as nuclear imagingmaps (e.g., PET/SPECT), and would
support others with minimal adaptations (e.g., protein expression maps, or 3D reconstructions
from histology).

As a research resource, the scope of this manuscript is limited to describing the framework and
infrastructure of TemplateFlow, highlighting how neuroscientists can leverage this new data archive
and the tooling around it. Therefore, some fundamental issues related to this workmust be left for
future investigation: (i) the overarching problems of cross-template and cross-atlas consistency;
(ii) comparative evaluation of methodological alternatives for producing new templates, atlases
and related data; (iii) providing neuroimagers with more objective means to determine the most
appropriate template and atlas choices that apply to their research, aswell as better understanding
“template effects”; (iv) the adequacy of original (MRI, nuclear imaging, etc.) and derived (regularly
gridded images, surfaces, etc.) modalities for a specific research application; or (v) the study of the
validity and reliability of inter-template registration, as well as the evaluation of such a component
of the TemplateFlow framework.

In more practical terms, TemplateFlow is limited to the redistribution of resources under per-
missive licenses, without any access restrictions.

Conclusion
We introduce an open framework for the archiving, maintenance and sharing of neuroimaging
templates and atlases called TemplateFlow that is implemented under FAIR data sharing principles.
We describe the current need for this resource in the domain of neuroimaging, and further discuss
the implications of the increased analytical flexibility this tool affords. These two facets of repro-
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ducibility —availability (under FAIR guiding principles) of prior knowledge required by the research
workflow, and the analytical flexibility such availability affords— are ubiquitous concerns across
disciplines. TemplateFlow’s approach to addressing both establishes a pattern broadly transfer-
able beyond neuroimaging. We envision TemplateFlow as a core research tool undergirding multi-
verse analyses —assessing whether neuroimaging results are robust across population-wide spa-
tial references— as well as a stepping stone towards the quest of mapping anatomy and function
across species.
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Online methods

Design and architecture

TemplateFlow comprises four cardinal components: (i) a cloud-based archive, (ii) a Python client for
programmatically querying the archive, (iii) automated systems for synchronizing and updating
archive data, and (iv) inter-template registration workflows. Here, we discuss the details of each
component’s implementation in turn, aswell as themanner inwhich they interact with one another
to form a cohesive whole.

The TemplateFlow Archive.
The archive itself comprises directories of template data in cloud storage. For redundancy, the
data are stored on both Google Cloud using the Open Science Framework (OSF) and on Amazon’s
Simple Storage Service (S3). Prior to storage, all template data must be named and organized in
directories conforming to a data structure adapted from the Brain Imaging Data Structure (BIDS)
standard (Gorgolewski et al., 2016). The precise implementation of this data structure is a living
document and is detailed on the TemplateFlow homepage (http://www.templateflow.org). Wedetail
several critical features here.

The archive is organized hierarchically, and descriptive metadata follow a principle of inher-
itance: any metadata that apply to a particular level of the archive also apply to all deeper lev-
els. At the top level of the hierarchy are directories corresponding to each archived template. If
applicable, within each template directory are directories corresponding to sub-cohort templates.
Names of directories and resource files constitute a hierarchically ordered series of key-value pairs
terminated by a suffix denoting the datatype. For instance, tpl-MNIPediatricAsym_cohort-3_res-
high_T1w.nii.gz denotes a T1-weighted template image file for resolution “high” of cohort “3” in the
“MNIPediatricAsym” template (where the definitions of each resolution and cohort are specified in
the template metadata file, TemplateFlow Archive). The most common TemplateFlow datatypes are
indexed in Suppl. Table S2; an exhaustive list is available in the most current version of the BIDS
standard (https://bids.neuroimaging.io/).

Within each directory, template resources include image data, atlas and template metadata,
transform files, licenses, and curation scripts. All image data are stored in gzipped NIfTI-1 format
and are conformed to RAS+ orientation (i.e., left-to-right, posterior-to-anterior, inferior-to-superior,
with the affine qform and sformmatrices corresponding to a cardinal basis scaled to the resolution
of the image). Template metadata are stored in a JavaScript Object Notation (JSON) file called tem

plate_description.json ; an overview ofmetadata specifications is provided in Figure 3 of themain
manuscript. In brief, templatemetadata files contain general templatemetadata (e.g., authors and
curators, references), cohort-specific metadata (e.g., ages of subjects included in each cohort), and
resolution-specific metadata (e.g., dimensions of images associated with each resolution). Atlas
metadata are often stored in TSV format and specify the region name corresponding to each atlas
label. Transformfiles are stored inHDF5 format and are generated as a diffeomorphic composition
of ITK-formatted transforms mapping between each pair of templates.

The archive has a number of client-facing access points to facilitate browsing of resources. Key
among these is the archive browser on the TemplateFlow homepage, which indexes all archived
resources and provides a means for researchers to take inventory of possible templates to use for
their study.

The Python client.
TemplateFlow is distributed with a Python client that can submit queries to the archive and down-
load any resources as they are requested by a user or program. Valid query options correspond
approximately to BIDS key-value pairs anddatatypes. A compendiumof commonquery arguments
is provided in Suppl. Table S2, and comprehensive documentation is available on the TemplateFlow
homepage.

When a query is submitted to the TemplateFlow client, the client begins by identifying any files
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Figure 5. Example usage of

the Python-based

TemplateFlow Client. After
importing the API, the user
submits a query for the
T1-weighted FSL version of
the MNI template at 1 mm
resolution. The client first
filters through the archive,
identifies any files that
match the query, and finds
their counterparts in cloud
storage. It then downloads
the requested files and
returns their paths in the
local TemplateFlow
installation directory. Future
queries for the same
resource can be completed
without any re-downloading.

>>> from templateflow import api as tflow

>>> tflow.get('MNI152NLin6Asym', desc=None, resolution=1,

...           suffix='T1w', extension='nii.gz')

PosixPath('/templateflow_home/tpl-MNI152NLin6Asym/tpl-        

          MNI152NLin6Asym_res-01_T1w.nii.gz')

in the archive that match the query. To do so, it uses PyBIDS (Yarkoni et al., 2019), which exploits
the BIDS-like architecture of the TemplateFlow Archive to efficiently scan all directories and filter any
matching files. Next, the client assesses whether queried files exist as data in local storage. When a
user locally installs TemplateFlow, the local installation initially contains only lightweight pointers to
files in OSF cloud storage. These pointers are implemented using DataLad (Halchenko et al., 2021),
a data management tool that extends git and git-annex. TemplateFlow uses DataLad principally to
synchronize datasets across machines and to perform version control by tracking updates made
to a dataset.

If the queried files are not yet synchronized locally (i.e., they exist only as pointers to their
counterparts in the cloud), the client instructs DataLad to retrieve them from cloud storage. In
the event that DataLad fails or returns an error, the client falls back on redundancy in storage and
downloads the file directly from Amazon’s S3. When the client is next queried for the same file, it
will detect that the file has already been cached in the local filesystem. The use of resource pointers
with the client thus enables lazy loading of template resources. Finally, the client confirms that the
file has been downloaded successfully. If the client detects a successful download, it returns the
result of the query; in the event that it detects a synchronization failure, it displays a warning for
each queried file that encountered a failure.

Continued functionality and operability of the client is ensured through an emphasis on maxi-
mizing code coverage with unit tests. Updating the client requires successful completion of all unit
tests, which are automatically executed by continuous integration (CI) and continuous delivery (CD)
services connected to GitHub. CI and CD also keep the web-based archive browser up to date by
automatically indexing data files.

Ancillary and managerial systems.
TemplateFlow includes a number of additional systems andprograms that serve to automate stages
of the archive update process, for instance addition of a new template or revision of current tem-
plate resources. To facilitate the update and extension process, TemplateFlow uses GitHub actions
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Box 1. Integration of TemplateFlow in processing workflows

TemplateFlow maximizes the accessibility and reuse potential of templates and atlases. For example, let’s reuse the base
configuration file for FSL FEAT we proposed in our paper (Esteban et al., 2019). The design file design.fsf specifies
a simple preprocessing workflow with FSL tools. The simplified code listing below shows that, just to make non-default
templates available to FSL using the graphical user interface (GUI), at least four steps are necessary:

# 1. User determines two nondefault templates they want to spatially normalize into

# 2. User manually download templates, extract the required files from packages

$ curl -sSL <url> | tar zxv --no-same-owner -C /data/templates/

# 3. User opens FSL's GUI, edits the target template box content pointing to the appropriate files

# 4. User generates FSL configuration files to permit batch execution on the command line

# 5. For the default and the two nondefault templates, execute FSL's feat:

$ feat design_<template>.fsf

The outputs of each feat design_<template>.fsf call will follow the pre-specified patterns of FSL, with whatever cus-
tomization the user has introduced into the design file. The user, therefore, must then adapt the downstream analysis
tools to correctly interpret the derived dataset, in each standard space, or reformat the output dataset according to the
expectations of the analysis tools.
The user is also responsible for all aspects of provenance tracking and adequately reporting them in their communications.
Information such as version of the template (or download date), citations to relevant papers, and other metadata (e.g.,
RRIDs) must be accounted for manually throughout the research process.

In contrast, tools using TemplateFlow dramatically simplify the whole process (note that MNI152NLin2009cAsym and OA

SIS30Ants are the two templates not found within the FSL distribution, and MNI152NLin6Asym denotes FSL’s MNI space (i.e.,
the default FSL template):

$ fmriprep /data /derivatives participant --output-spaces MNI152NLin2009cAsym MNI152NLin6Asym OASIS30Ants

fMRIPrep generates the results with BIDS-Derivatives organization for the three templates. The tool also leverages Tem-
plateFlow to generate a boilerplate citation text that includes the full names, versions and references to credit the template’s
authors for each of the templates involved.
fMRIPrep internally stages one spatial normalization workflow for each of the output spaces. Each of these normaliza-
tion sub-workflows uses a simple line of Python code to retrieve the necessary resources from TemplateFlow using the
TemplateFlow Client interface (Figure 5):

>>> from templateflow.api import get

>>> tpl_ref_file = get("MNI152NLin6Asym", desc=None, resolution=1, suffix="T1w", extension="nii.gz")

One detail overseen in the FSL example is that, for a robust spatial normalization process, a precise binary mask of the
brain is generally used. While FSL would require the user to manually set this mask up in the GUI, in the case of Template-
Flow, it requires a second minimal call:

>>> msk_ref_file = get("MNI152NLin6Asym", desc="brain", resolution=1, suffix="mask", extension="nii.gz")

These examples are extreme simplifications of what a pipeline developer can automate and make more robust by inte-
grating TemplateFlow in their workflows.
For further examples on how TemplateFlow can be leveraged, PyNets is a package for ensemble learning of functional and
structural connectomes (Pisner and Hammonds, 2020), and NetPlotBrain for visualization (Thompson and Fanton, 2021).
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INTAKEDESC

>>  tfmgr add tpl-test

Figure 6. Contributing a new resource with the TemplateFlow Manager. To contribute a new template to
TemplateFlow, members of the community first organize template resources to conform to the BIDS-like
TemplateFlow structure. Next, tfmgr (the TemplateFlow Manager, see Suppl. Table S3) synchronizes the
resources to OSF cloud storage and opens a new pull request proposing the addition of the new template. A
subsequent peer-review process ensures that all data are conformant with the TemplateFlow standardd.
Finally, TemplateFlow curators merge the pull request, thereby adding the template into the archive.

to automatically synchronize dataset information so that all references remain up-to-date with the
current dataset. These actions are triggered whenever a pull request to TemplateFlow is accepted.
For example, GitHub actions are used to update the browser of the TemplateFlow Archive so that it
displays all template resources as they are uploaded to the archive.

Whereas the TemplateFlow Client synchronizes data from cloud storage to the local filesystem,
a complementary TemplateFlow Manager handles the automated synchronization of data from the
local filesystem to cloud storage. The Python-based manager is also used for template intake, i.e.,
to propose the addition of new templates to the archive. To propose adding a new template, a user
first runs the TemplateFlow Manager using the tfmgr add <template_id> --osf-project <project_id>
command.

The manager begins by using the TemplateFlow client to query the archive and verify that the
proposed template does not already exist. After verifying that the proposed template is new, the
manager synchronizes all specified template resources to OSF cloud storage. It then creates a fork
of the tpl-intake branch of the TemplateFlow GitHub repository and generates an intake file in
Tom’s Obvious Minimal Language (TOML) markup format; this intake file contains a reference to
the OSF project where the manager has stored template resources. The TemplateFlow Manager

commits the TOML intake file to the fork and pushes to the user’s GitHub account. Finally, it re-
trieves template metadata from template_description.json and uses the metadata to compose
a pull request on the tpl-intake branch. This pull request provides a venue for discussion and
vetting of the proposed addition of a new template.

Inter-template registration workflow.
To enable the flowof knowledge across template spaces, TemplateFlow includes aworkflow for com-
puting robust transformations between any pair of adult human template spaces. To compute a
transformation between two template spaces, the inter-template registration workflowmakes use
of 10 of the high-quality T1-weighted adult human brain images used in the creation of the MNI
152 template portfolio. In the first step of the workflow, these 10 images are registered to both
template spaces using the symmetric normalization (SyN) algorithm (Avants et al., 2008). Next, a
10-channel registration is performed in ANTs using the SyN algorithm. Thus, the workflow com-
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putes a single transformation that simultaneously optimizes the alignment between all 10 images
in both coordinate spaces.

MNI space text mining analysis.

To investigate the use of the term “MNI” in the neuroimaging literature, we conducted an ex-
ploratory text mining analysis. For this, we used the Elsevier API to download the entire corpus
of two leading journals of neuroimaging methodology, NeuroImage and NeuroImage: Clinical. In
this way, we retrieved a total 16,812 full-text articles that were subsequently segmented into lists
of sentences. A scan of these sentences revealed 14,870 sentences across 6,048 articles that con-
tained the word “MNI”. Sentences were cleaned (i.e., removing punctuation, single letters, accents,
numbers) and tokenized into words, which were subsequently lemmatized (i.e., converted to base
form) using the NLTK wordnet lemmatizer. From the lemmatized words, we filtered out stopwords
(i.e., NLTK stopwords and a custom list) and included words with a frequency above 10 as part of
our “dictionary”; this yielded a dictionary size of 2,324 words.

Next, we computed a sparse dictionary by article count matrix (i.e., 2,324 × 6,048), on which we
performed topic modelling with latent Dirichlet allocation (LDA; Blei et al., 2003, implementation
from scikit-learn with the learning decay hyperparameter set to 0.7). The number of topics (k=15)
was selected by identifying the LDAmodel yielding the lowest perplexity (Blei et al., 2003) sweeping
the interval [8-16] for the parameter. The 20 words from the dictionary that loaded the highest on
the 15 topics were visualized using word clouds. Topics were sorted by descending dominance,
and the dominance fraction (number of articles where the topic is the most loaded with respect
to the total 6,048 documents) was included above the corresponding topic’s word cloud (Figure 4,
and Suppl. Figure S1).
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Supp. Box S1. The FAIR Guiding Principles

(Reproduced fromWilkinson et al., 2016, Box 2)

To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describes
F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized communications protocol

A1.1. the protocol is open, free, and universally implementable
A1.2. the protocol allows for an authentication and authorization procedure, where necessary

A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

To be Reusable:
R1. (meta)data are richly described with a plurality of accurate and relevant attributes

R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards
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Supp. Box S2. Quick start with the TemplateFlow Client API

Finding templates
At the time of writing there are 15 templates available within the resource, and all the unique identifiers can be accessed
with the templates() method:

>>> from templateflow.api import templates

>>> f"{', '.join(templates())} ({len(templates())} templates)"

"""Fischer344, MNI152Lin, MNI152NLin2009cAsym, MNI152NLin2009cSym, MNI152NLin6Asym, MNI152NLin6Sym,

MNIInfant, MNIPediatricAsym, NKI, OASIS30ANTs, PNC, UNCInfant, WHS, fsLR, fsaverage (15 templates)"""

Accessing Metadata
We can querymetadata associated to individual data files (e.g., a volume or a surface) or general metadata of the template.
For example, the get_metadata(<template_id>) returns the general metadata as a dictionary. Hence, consulting the full
name corresponding to some template identifiers yields:

>>> from templateflow.api import get_metadata

>>> [(tpl, get_metadata(tpl)["Name"]) for tpl in templates()[:3]]

[("Fischer344", "MRI-Derived Neuroanatomical Atlas of the Fischer 344 Rat Brain"),

("MNI152Lin", "Linear ICBM Average Brain (ICBM152) Stereotaxic Registration Model"),

("MNI152NLin2009cAsym", "ICBM 152 Nonlinear Asymmetrical template version 2009c")]

Similarly, we can check the license of a given template:

>>> get_metadata("UNCInfant")["License"]

"CC-BY"

Or the proper citations (please note that the output in this example has been manipulated for demonstration purposes):

>>> print(get_citations("UNCInfant", bibtex=True)[0])

@article{uncinfant1,

doi = {10.1371/journal.pone.0018746},

year = 2011,

volume = {6},

number = {4},

pages = {e18746},

author = {Feng Shi and Pew-Thian Yap and Guorong Wu and Hongjun Jia and John H. Gilmore and

Weili Lin and Dinggang Shen},

title = {Infant Brain Atlases from Neonates to 1- and 2-Year-Olds},

journal = {{PLoS ONE} {ONE}}

}

>>> from templateflow.api import get

>>> print(get("MNI152NLin6Asym", desc=None, resolution=1, suffix="T1w"))

Downloading https://templateflow.s3.amazonaws.com/tpl-MNI152NLin6Asym/tpl-MNI152NLin6Asym_res-01_T1w.nii.gz

100%|###################################################################| 3.29M/3.29M [00:01<00:00, 2.11MB/s]

/home/oesteban/.cache/templateflow/tpl-MNI152NLin6Asym/tpl-MNI152NLin6Asym_res-01_T1w.nii.gz
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Supp. Table S1. Common terms and definitions.

Atlas
A map between spatial coordinates and knowledge-based
annotations, such as neuroanatomical structures or
functional brain networks.

Template

A digital image that is representative of a population of
interest (for instance an average of individual images from
the population) and can be used as a spatial reference for
that population.

Volumes and
surfaces

Two common schemes for spatially organising brain data.
Volumetric data are situated in the Euclidean topology of
physical three-dimensional space, while surface data
make use of the native topology of the cortex’s sulcal
curvature.

Stereotaxic
coordinate system

A three-dimensional coordinate system that can be
referenced to unambiguously localise a position in the
brain, defined using an origin together with a basis set of
axes.

Standard space

A coordinate system engendered by a template, which can
be used as a reference when studying a population. A
volumetric template engenders a stereotaxic coordinate
system, which can be annotated in different ways to define
brain atlases.

Transform

A diffeomorphic function that maps a set of spatial
coordinates to their analogues or homologues in another
coordinate space. For example, transforms can map from
structures in the brains of individual subjects to analogous
structures in a population-average template.
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Supp. Table S2. TemplateFlow data entities.

Data entity API query example Description

Template "MNI152Lin"
The template dataset to which an image or other data
file belongs.

Resolution res=1

The image resolution. Each resolution is assigned a
key, which is defined in the res field of
template_description.json .

Mask desc="brain", suffix="mask"
Indicates that the image is a binary-valued annotation,
where voxels labelled 1 are part of the mask.

Discrete segmentation desc="malf", suffix="dseg"

Indicates that the image is an integer-valued
annotation. Each segmentation image file ( .nii.gz

format) is paired with a dictionary of segment names (
.tsv format).

Probabilistic segmentation label="CSF", suffix="probseg"

Indicates that the image is a probabilistic annotation,
wherein the value of each voxel indicates the
probability of that voxel belonging to the specified
label.

Atlas atlas="Schaefer", desc="7Network" The atlas to which a segmentation file belongs.

Transformation from="MNI152Lin", suffix="xfm"

File containing a mapping between 2 stereotaxic
coordinate spaces. The source space is defined in the
from field, while the target space is defined in the tpl

field.

Image modality suffix="T1w"

For non-annotation brain images, the suffix indicates
whether the image is T1-weighted ( T1w ), T2-weighted (
T2w ), proton density-weighted ( PD ), or T2*-weighted (
T2star ).

Template cohort cohort=1
Subsample of a dataset used to generate an average
template.
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Supp. Table S3. Command-line interface for TemplateFlow Manager.

Argument Environment variable Specifications

template_id Identifier of the template. This is the value of the tpl field in all file names.

--osf-project OSF_PROJECT

The OSF project where the template data are to be stored. The project must
be writable by the user account whose credentials are specified in the
--osf-user and --osf-password arguments.

--osf-user OSF_USERNAME Account username or identifier for OSF cloud storage.
--osf-password OSF_PASSWORD Account password for OSF cloud storage.

--osf-overwrite
Flag that indicates that the OSF client should force the overwrite of any
existing files in the OSF project that have names conflicting with those of
new files.

--gh-user GITHUB_USER
Account username for GitHub. The user account whose credentials are
provided must have a fork of the TemplateFlow repo.

--gh-password GITHUB_PASSWORD Account password for GitHub.

--path OSF_PROJECT

Path to a local directory where template resources are located. The path
must either be a directory whose name is tpl-<template_id> or contain
such a directory.

--nprocs
Maximum number of parallel processes to run when uploading to or
fetching from OSF.
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#1: 1048 documents (17.23%) #2: 735 documents (12.08%) #3: 537 documents (8.83%) #4: 493 documents (8.10%)

#5: 469 documents (7.71%) #6: 397 documents (6.53%) #7: 394 documents (6.48%) #8: 383 documents (6.30%)

#9: 352 documents (5.79%) #10: 314 documents (5.16%) #11: 289 documents (4.75%) #12: 234 documents (3.85%)

#13: 167 documents (2.74%) #14: 141 documents (2.32%) #15: 131 documents (2.15%)

Supp. Figure S1. Full report for the topic modeling exploration. All 15 topics modeled are represented —sorted by dominance— in this
figure, completing the partial results of Figure 4.
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