
Mathematical Programming Computation manuscript No.
(will be inserted by the editor)

Templates for Convex Cone Problems

with Applications to Sparse Signal Recovery

Stephen R. Becker · Emmanuel J. Candès · Michael
Grant

Received: October 31, 2010/Accepted: July 6, 2011

Abstract This paper develops a general framework for solving a variety of convex cone problems that
frequently arise in signal processing, machine learning, statistics, and other fields. The approach works
as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply
smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility:
for example, all compressed sensing problems can be solved via this approach. These include models with
objective functionals such as the total-variation norm, ‖Wx‖1 where W is arbitrary, or a combination
thereof. In addition, the paper introduces a number of technical contributions such as a novel continuation
scheme and a novel approach for controlling the step size, and applies results showing that the smooth
and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead
to novel, stable and computationally efficient algorithms. For instance, our general implementation is
competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO.
Further, numerical experiments show that one can solve the Dantzig selector problem, for which no
efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a
software release. This software is not a single, monolithic solver; rather, it is a suite of programs and
routines designed to serve as building blocks for constructing complete algorithms.

Keywords Optimal first-order methods · Nesterov’s accelerated descent algorithms · proximal
algorithms · conic duality · smoothing by conjugation · the Dantzig selector · the LASSO · nuclear-norm
minimization

Mathematics Subject Classification (2000) 90C05 · 90C06 · 90C25 · 62J077

1 Introduction

1.1 Motivation

This paper establishes a general framework for constructing optimal first-order methods for solving
certain types of convex optimization programs that frequently arise in signal and image processing,
statistics, computer vision, and a variety of other fields.1 In particular, we wish to recover an unknown
vector x0 ∈ R

n from the data y ∈ R
m and the model

y = Ax0 + z; (1.1)

S. Becker
Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125
Tel.: (626) 395-3551
Fax: (626) 792-4257
E-mail: srbecker@caltech.edu

E. Candès
Departments of Mathematics and of Statistics, Stanford University, Stanford, CA 94305

M. Grant
Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125

1 The meaning of the word ‘optimal’ shall be made precise later.

here, A is a known m × n design matrix and z is a noise term. To fix ideas, suppose we find ourselves
in the increasingly common situation where there are fewer observations/measurements than unknowns,
i.e., m < n. While this may seem a priori hopeless, an impressive body of recent works has shown that
accurate estimation is often possible under reasonable sparsity constraints on x0. One practically and
theoretically effective estimator is the Dantzig selector introduced in [17]. The idea of this procedure
is rather simple: find the estimate which is consistent with the observed data and has minimum ℓ1
norm (thus promoting sparsity). Formally, assuming that the columns of A are normalized,2 the Dantzig
selector is the solution to the convex program

minimize ‖x‖1
subject to ‖A∗(y −Ax)‖∞ ≤ δ,

(1.2)

where δ is a scalar. Clearly, the constraint is a data fitting term since it asks that the correlation between
the residual vector r = y −Ax and the columns of A is small. Typically, the scalar δ is adjusted so that
the true x0 is feasible, at least with high probability, when the noise term z is stochastic; that is, δ obeys
‖A∗z‖∞ ≤ δ (with high probability). Another effective method, which we refer to as the LASSO [62]
(also known as basis pursuit denoising, or BPDN), assumes a different fidelity term and is the solution
to

minimize ‖x‖1
subject to ‖y −Ax‖2 ≤ ǫ,

(1.3)

where ǫ is a scalar, which again may be selected so that the true vector is feasible. Both of these estimators
are generally able to accurately estimate nearly sparse vectors and it is, therefore, of interest to develop
effective algorithms for each that can deal with problems involving thousands or even millions of variables
and observations.

There are of course many techniques, which are perhaps more complicated than (1.2) and (1.3), for
recovering signals or images from possibly undersampled noisy data. Suppose for instance that we have
noisy data y (1.1) about an n×n image x0; that is, [x0]ij is an n2-array of real numbers. Then to recover
the image, one might want to solve a problem of this kind:

minimize ‖Wx‖1 + λ‖x‖TV

subject to ‖y −Ax‖2 ≤ ǫ,
(1.4)

whereW is some (possibly nonorthogonal) transform such as an undecimated wavelet transform enforcing
sparsity of the image in this domain, and ‖ · ‖TV is the isotropic total-variation norm [59] defined as

‖x‖TV :=
∑

i,j

√

|x[i+ 1, j]− x[i, j]|2 + |x[i, j + 1]− x[i, j]|2.

The motivation for (1.4) is to look for a sparse object in a transformed domain while reducing artifacts due
to sparsity constraints alone, such as Gibbs oscillations, by means of the total-variation norm [12,15,59].
The proposal (1.4) appears computationally more involved than both (1.2) and (1.3), and our goal is to
develop effective algorithms for problems of this kind as well.

To continue our tour, another problem that has recently attracted a lot attention concerns the recovery
of a low-rank matrix X0 from undersampled data

y = A(X0) + z, (1.5)

where A : Rn1×n2 → R
m is a linear operator supplying information about X0. An important example

concerns the situation where only some of the entries of X0 are revealed, A(X0) = [X0]ij : (i, j) ∈ E ⊂
[n1] × [n2] (where [n] = {1, . . . , n} for n ∈ Z

+), and the goal is to predict the values of all the missing
entries. It has been shown [14,18,33] that an effective way of recovering the missing information from y
and the model (1.5) is via the convex program

minimize ‖X‖∗
subject to X ∈ C. (1.6)

2 There is a slight modification when the columns do not have the same norm, namely, ‖D−1A∗(y −Ax)‖∞ ≤ δ, where
D is diagonal and whose diagonal entries are the ℓ2 norms of the columns of A.

2

Here, ‖X‖∗ is the sum of the singular values of the matrix X, a quantity known as the nuclear norm
of X. (‖X‖∗ is also the dual of the standard operator norm ‖X‖, given by the largest singular value
of X). Above, C is a data fitting set, and might be {X : A(X) = y} in the noiseless case, or {X :
‖A∗(y − A(X))‖∞ ≤ δ} (Dantzig selector-type constraint) or {X : ‖y − A(X)‖2 ≤ ǫ} (LASSO-type
constraint) in the noisy setup. We are again interested in computational solutions to problems of this
type.

1.2 The literature

There is of course an immense literature for solving problems of the types described above. Consider the
LASSO, for example. Most of the works [3,28,30,36,55,65,67,69] are concerned with the unconstrained
problem

minimize 1
2‖Ax− b‖22 + λ‖x‖1, (1.7)

which differs from (1.3) in that the hard constraint ‖Ax − b‖2 ≤ ǫ is replaced with a quadratic penalty
1
2λ

−1‖Ax − b‖22. There are far fewer methods specially adapted to (1.3); let us briefly discuss some of
them. SPGL1 [7] is a solver specifically designed for (1.3), and evidence from [5] suggests that it is both
robust and efficient. The issue is that at the moment, it cannot handle important variations such as

minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ǫ,

where W is a general transform as in (1.4). The main reason is that SPGL1—as with almost all first-order
methods for that matter—relies on the fact that the proximity operator associated with the ℓ1 norm,

x(z; t) , argmin
x∈Rn

1
2 t

−1‖x− z‖22 + ‖x‖1, (1.8)

is efficiently computable via soft-thresholding. This is not the case, however, when ‖x‖1 is replaced
by a general term of the form ‖Wx‖1, except in the very special case when WW ∗ = I [23], which
cannot occur whenever W has more rows than columns—a situation of primary interest. NESTA [5] can
efficiently deal with an objective functional of the form ‖Wx‖1—that is, it works for any W and the
extra computational cost is just one application of W and W ∗ per iteration—but it requires repeated
projections onto the feasible set; see also [1] for a related approach, and [64] for a similar approach
specialized for minimizing total-variation. Hence, NESTA is efficient when AA∗ is a projector or, more
generally, when the eigenvalues of AA∗ are well clustered. Other types of algorithms such as LARS [26]
are based on homotopy methods, and compute the whole solution path; i.e., they find the solution to
(1.7) for all values of the regularization parameter λ and, in doing so, find the solution to the constrained
problem (1.3). These methods do not scale well with problem size, however, especially when the solution
is not that sparse.

The approach taken in this paper, described in §1.3, is based on duality and smoothing, and these con-
cepts have been widely studied in the literature. Dualization eliminates difficulties stemming from affine
transformations, an observation going back to Uzawa’s method [21]. More recently, [20, 22, 45] discuss
dual method approaches to signal processing problems. In [45], a non-negative version of (1.3) (which can
be extended to the regular version by splitting x into positive and negative parts) is solved using inner
and outer iterations. The outer iteration allows the inner problem to be smoothed, which is similar to
the continuation idea presented in §5.5. The outer iteration is proved to converge rapidly, but depends on
solving the inner iteration exactly. The work in [42] applies a similar outer iteration, which they recognize
as the proximal-point algorithm, applied to nuclear-norm minimization. The method of [20] applies a
primal-dual method to unconstrained problems such as (1.7), or simplified and unconstrained versions
of (1.4). Notably, they prove that when the objective function contains an appropriate strongly convex
term, then the primal variable xk converges with the bound ‖xk−x⋆‖22 ≤ O(1/k2). The approach of [22]
considers smoothing (1.3) in a similar manner to that discussed in §2.4, but does not use continuation to
diminish the effect of the smoothing. The dual problem is solved via the forward-backward method, and
this allows the authors to establish the convergence of the primal variable, although without a known
rate of convergence.

Turning to the Dantzig selector, solution algorithms are scarce. The standard way of solving (1.2) is
via linear programming techniques [16] since it is well known that it can be recast as a linear program [17].

3

Typical modern solvers rely on interior-point methods (IPM) which are somewhat problematic for large
scale problems, since they do not scale well with size. Another way of solving (1.2) is via the new
works [38, 58], which use homotopy methods inspired by LARS to compute the whole solution path of
the Dantzig selector. These methods, however, are also unable to cope with large problems.

In an effort to speed up IPM, the authors of [39] developed a customized IPM called l1ls for (1.7),
using a carefully selected preconditioner to solve the Newton step by the method of conjugate gradients.
They report that on an instance of the problem (1.7), their method is 20× faster than the commercial
MOSEK solver [48], 10× faster than PDCO [60], 78× faster than l1Magic [16], and 1.6× faster than
Homotopy [25]. These results indicate the customizations in l1ls make it effective compared to other
second-order methods. Yet [36] reports that their first-order method FPC is typically 10 to 20× faster
than l1ls, and sometimes even 1040× faster! Based on this and similar studies, it is reasonable to conclude
that in general, IPM and homotopy methods are not competitive for extremely large problems.

The accelerated first-order algorithm recently introduced in [44] can handle large Dantzig selector
problems, but with the same limitations as NESTA since it requires inverting AA∗. Another alternative
is adapting SPGL1 to this setting, but this comes with the caveat that it does not handle slight variations
as discussed above.

Finally, as far as the mixed norm problem (1.4) is concerned, we are not aware of efficient solution
algorithms. One can always recast this problem as a second-order cone program (SOCP) which one could
then solve via an interior-point method; but again, this is problematic for large-scale problems.

1.3 Our approach

In this paper, we develop a template for solving a variety of problems such as those encountered thus far.
The template proceeds as follows: first, determine an equivalent conic formulation; second, determine its
dual ; third, apply smoothing ; and fourth, solve using an optimal first-order method.

1.3.1 Conic formulation

In reality, our approach can be applied to general models expressed in the following canonical form:

minimize f(x)
subject to A(x) + b ∈ K. (1.9)

The optimization variable is a vector x ∈ R
n, and the objective function f is convex, possibly extended-

valued, and not necessarily smooth. The constraint is expressed in terms of a linear operator A : Rn →
R

m, a vector b ∈ R
m, and a closed, convex cone K ⊆ R

m. We shall call a model of the form (1.9) that is
equivalent to a given convex optimization model P a conic form for P.

The conic constraint A(x) + b ∈ K may seem specialized, but in fact any closed convex subset
of Rn may be represented in this fashion; and models involving complex variables, matrices, or other
vector spaces can be handled by defining appropriate isomorphisms. Of course, some constraints are
more readily transformed into conic form than others; included in this former group are linear equations,
linear inequalities, and convex inequalities involving norms of affine forms. Thus virtually every convex
compressed sensing model may be readily converted. Almost all models admit multiple conic forms, and
each results in a different final algorithm.

For example, the Dantzig selector (1.2) can be mapped to conic form as follows:

f(x)→ ‖x‖1, A(x)→ (A∗Ax, 0), b→ (−A∗y, δ), K → Ln
∞, (1.10)

where Ln
∞ is the epigraph of the ℓ∞ norm: Ln

∞ = {(y, t) ∈ R
n+1 : ‖y‖∞ ≤ t}.

1.3.2 Dualization

The conic form (1.9) does not immediately lend itself to efficient solution using first-order methods for two
reasons: first, because f may not be smooth; and second, because projection onto the set {x | A(x) + b ∈
K}, or even the determination of a single feasible point, can be expensive. We propose to resolve these

4

issues by solving either the dual problem, or a carefully chosen approximation of it. Recall that the dual
of our canonical form (1.9) is given by

maximize g(λ)
subject to λ ∈ K∗,

(1.11)

where g(λ) is the Lagrange dual function

g(λ) , inf
x
L(x, λ) = inf

x
f(x)− 〈λ,A(x) + b〉,

and K∗ is the dual cone defined via

K∗ = {λ ∈ R
m : 〈λ, x〉 ≥ 0 for all x ∈ K}.

The dual form has an immediate benefit that for the problems of interest, projections onto the dual
cone are usually tractable and computationally very efficient. For example, consider the projection of a
point onto the feasible set {x : ‖Ax − y‖2 ≤ ǫ} of the LASSO, an operation which may be expensive.
However, one can recast the constraint as A(x) + b ∈ K with

A(x)→ (Ax, 0), b→ (−y, ǫ) K → Lm
2 , (1.12)

where Lm
2 is the second order cone Lm

2 = {(y, t) ∈ R
m+1 : ‖y‖2 ≤ t}. This cone is self dual, i.e.,

(Lm
2)∗ = Lm

2 , and projection onto Lm
2 is trivial: indeed, it is given by

(y, t) 7→











(y, t), ‖y‖2 ≤ t,

c(y, ‖y‖2), −‖y‖2 ≤ t ≤ ‖y‖2,
(0, 0), t ≤ −‖y‖2,

c =
‖y‖2 + t

2‖y‖2
. (1.13)

And so we see that by eliminating the affine mapping, the projection computation has been greatly
simplified. Of course, not every cone projection admits as simple a solution as (1.13); but as we will
show, all of the cones of interest to us do indeed.

1.3.3 Smoothing

Unfortunately, because of the nature of the problems under study, the dual function is usually not
differentiable either, and direct solution via subgradient methods would converge too slowly. Our solution
is inspired by the smoothing technique due to Nesterov [53]. We shall see that if one modifies the primal
objective f(x) and instead solves

minimize fµ(x) , f(x) + µd(x)
subject to A(x) + b ∈ K, (1.14)

where d(x) is a strongly convex function to be defined later and µ a positive scalar, then the dual problem
takes the form

maximize gµ(λ)
subject to λ ∈ K∗,

(1.15)

where gµ is a smooth approximation of g. This approximate model can now be solved using first-order
methods. As a general rule, higher values of µ improve the performance of the underlying solver, but
at the expense of accuracy. Techniques such as continuation can be used to recover the accuracy lost,
however, so the precise trade-off is not so simple.

In many cases, the smoothed dual can be reduced to an unconstrained problem of the form

maximize −gsm(z)− h(z), (1.16)

with optimization variable z ∈ R
m, where gsm is convex and smooth and h convex, nonsmooth, and

possibly extended-valued. For instance, for the Dantzig selector (1.2), h(z) = δ‖z‖1. As we shall see,
this so-called composite form can also be solved efficiently using optimal first-order methods. In fact, the
reduction to composite form often simplifies some of the central computations in the algorithms.

5

1.3.4 First-order methods

Optimal first-order methods are proper descendants of the classic projected gradient algorithm. For the
smoothed dual problem (1.15), a prototypical projected gradient algorithm begins with a point λ0 ∈ K∗,
and generates updates for k = 0, 1, 2, ... as follows:

λk+1 ← argmin
λ∈K∗

‖λk + tk∇gµ(λk)− λ‖2, (1.17)

given step sizes {tk}. The method has also been extended to composite problems like (1.16) [54, 63, 66];
the corresponding iteration is

zk+1 ← argmin
y

gsm(zk) + 〈∇gsm(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z). (1.18)

Note the use of a general norm ‖·‖ and the inclusion of the nonsmooth term h. We call the minimization in
(1.18) a generalized projection, because it reduces to a standard projection (1.17) if the norm is Euclidean
and h is an indicator function. This generalized form allows us to construct efficient algorithms for a
wider variety of models.

For the problems under study, the step sizes {tk} above can be chosen so that ǫ-optimality (that is,
supλ∈K∗ gµ(λ) − gµ(λk) ≤ ǫ) can be achieved in O(1/ǫ) iterations [52]. In 1983, Nesterov reduced this
cost to O(1/√ǫ) using a slightly more complex iteration

λk+1 ← argmin
λ∈K∗

‖νk + tk∇gµ(νk)− λ‖2, νk+1 ← λk+1 + αk(λk+1 − λk), (1.19)

where ν0 = λ0 and the sequence {αk} is constructed according to a particular recurrence relation. Previ-
ous work by Nemirosvski and Yudin had established O(1/√ǫ) complexity as the best that can be achieved
for this class of problems [49], so Nesterov’s modification is indeed optimal. Many alternative first-order
methods have since been developed [2, 40, 51, 53, 54, 63], including methods that support generalized
projections. We examine these methods in more detail in §5.

We have not yet spoken about the complexity of computing gµ or gsm and their gradients. For now,
let us highlight the fact that ∇gµ(λ) = −A(x(λ))− b, where

x(λ) , argmin
x

Lµ(x, λ) = argmin
x

f(x) + µd(x)− 〈A(x) + b, λ〉, (1.20)

and d(x) is a selected proximity function. In the common case that d(x) = 1
2‖x − x0‖2, the structure

of (1.20) is identical to that of a generalized projection. Thus we see that the ability to efficiently
minimize the sum of a linear term, a proximity function, and a nonsmooth function of interest is the
fundamental computational primitive involved in our method. Equation (1.20) also reveals how to recover
an approximate primal solution as λ approaches its optimal value.

1.4 Contributions

The formulation of compressed sensing models in conic form is not widely known. Yet the convex opti-
mization modeling framework CVX [32] converts all models into conic form; and the compressed sensing
package ℓ1-Magic [16] converts problems into second-order cone programs (SOCPs). Both systems uti-
lize interior-point methods instead of first-order methods, however. As mentioned above, the smoothing
step is inspired by [53], and is similar in structure to traditional Lagrangian augmentation. As we also
noted, first-order methods have been a subject of considerable research.

Taken separately, then, none of the components in this approach is new. However their combination
and application to solve compressed sensing problems leads to effective algorithms that have not previ-
ously been considered. For instance, applying our methodology to the Dantzig selector gives a novel and
efficient algorithm (in fact, it gives several novel algorithms, depending on which conic form is used).
Numerical experiments presented later in the paper show that one can solve the Dantzig selector prob-
lem with a reasonable number of applications of A and its adjoint; the exact number depends upon the
desired level of accuracy. In the case of the LASSO, our approach leads to novel algorithms which are
competitive with state-of-the-art methods such as SPGL1.

6

Aside from good empirical performance, we believe that the primary merit of our framework lies in
its flexibility. To be sure, all the compressed sensing problems listed at the beginning of this paper, and
of course many others, can be solved via this approach. These include total-variation norm problems,
ℓ1-analysis problems involving objectives of the form ‖Wx‖1 where W is neither orthogonal nor diagonal,
and so on. In each case, our framework allows us to construct an effective algorithm, thus providing a
computational solution to almost every problem arising in sparse signal or low-rank matrix recovery
applications.

Furthermore, in the course of our investigation, we have developed a number of additional technical
contributions. For example, we will show that certain models, including the Dantzig selector, fit into a
class of problems that are known to exhibit an exact penalty property: the exact solution to the original
problem is recovered even when some smoothing is applied. We have also developed a novel continuation
scheme that allows us to employ more aggressive smoothing to improve solver performance while still
recovering the exact solution to the unsmoothed problem. The flexibility of our template also provides
opportunities to employ novel approaches for controlling the step size.

1.5 Software

This paper is accompanied with a software release [6], including a detailed user guide which gives many
additional implementation details not discussed in this paper. Since most compressed sensing problems
can be easily cast into standard conic form, our software provides a powerful and flexible computational
tool for solving a large range of problems researchers might be interested in experimenting with.

The software is not a single, monolithic solver; rather, it is a suite of programs and routines designed
to serve as building blocks for constructing complete algorithms. Roughly speaking, we can divide the
routines into three levels. On the first level is a suite of routines that implement a variety of known
first-order solvers, including the standard projected gradient algorithm and known optimal variants by
Nesterov and others. On the second level are wrappers designed to accept problems in conic standard
form (1.9) and apply the first-order solvers to the smoothed dual problem. Finally, the package includes
a variety of routines to directly solve the specific models described in this paper and to reproduce our
experiments.

We have worked to ensure that each of the solvers is as easy to use as possible, by providing sensible
defaults for line search, continuation, and other factors. At the same time, we have sought to give the user
flexibility to insert their own choices for these components. We also want to provide the user with the
opportunity to compare the performance of various first-order variants on their particular application.
We do have some general views about which algorithms perform best for compressed sensing applications,
however, and will share some of them in §6.

1.6 Organization of the paper

In §2, we continue the discussion of conic formulations, including a derivation of the dual conic formulation
and details about the smoothing operation. Section 3 instantiates this general framework to derive a new
algorithm for the Dantzig selector problem. In §4, we provide further selected instantiations of our
framework including the LASSO, total-variation problems, ℓ1-analysis problems, and common nuclear-
norm minimization problems. In §5, we review a variety of first-order methods and suggest improvements.
Section 6 presents numerical results illustrating both the empirical effectiveness and the flexibility of our
approach. Section 7 provides a short introduction to the software release accompanying this paper.
Finally, the appendix describes a unique approach we use to generate test models so that their exact
solution is known in advance.

2 Conic formulations

2.1 Alternate forms

In the introduction, we presented our standard conic form (1.9) and a specific instance for Dantzig
selector in (1.10). As we said then, conic forms are rarely unique; this is true even if one disregards

7

simple scalings of the cone constraint. For instance, we may express the Dantzig selector constraint as
an intersection of linear inequalities, −δ1 ≤ A∗(y −Ax) ≤ δ1, suggesting the following alternative:

f(x)→ ‖x‖1, A(x)→
[

−A∗A
A∗A

]

x, b→
[

δ1+A∗y
δ1−A∗y

]

, K → R
2n
+ . (2.1)

We will return to this alternative later in §3.5. In many instances, a conic form may involve the manip-
ulation of the objective function as well. For instance, if we first transform (1.2) to

minimize t
subject to ‖x‖1 ≤ t

‖A∗(y −Ax)‖∞ ≤ δ,

then yet another conic form results:

f(x, t)→ t, A(x, t)→ (x, t, A∗Ax, 0), b→ (0, 0,−A∗y, δ), K → Ln
1 × Ln

∞, (2.2)

where Ln
1 is the epigraph of the ℓ1 norm, Ln

1 = {(y, t) ∈ R
n+1 : ‖y‖1 ≤ t}.

Our experiments show that different conic formulations yield different levels of performance using
the same numerical algorithms. Some are simpler to implement than others as well. Therefore, it is
worthwhile to at least explore these alternatives to find the best choice for a given application.

2.2 The dual

To begin with, the conic Lagrangian associated with (1.9) is given by

L(x, λ) = f(x)− 〈λ,A(x) + b〉, (2.3)

where λ ∈ R
m is the Lagrange multiplier, constrained to lie in the dual cone K∗. The dual function

g : Rm → (R ∪ {−∞}) is, therefore,

g(λ) = inf
x
L(x, λ) = −f∗(A∗(λ))− 〈b, λ〉. (2.4)

Here, A∗ : Rm → R
n is the adjoint of the linear operator A and f∗ : Rn → (R ∪ {+∞}) is the convex

conjugate of f defined by
f∗(z) = sup

x
〈z, x〉 − f(x).

Thus the dual problem is given by

maximize −f∗(A∗(λ))− 〈b, λ〉
subject to λ ∈ K∗.

(2.5)

Given a feasible primal/dual pair (x, λ), the duality gap is the difference between their respective
objective values. The non-negativity of the duality gap is easily verified:

f(x)− g(λ) = f(x) + f∗(A∗(λ)) + 〈b, λ〉 ≥ 〈x,A∗(λ)〉+ 〈b, λ〉 = 〈A(x) + b, λ〉 ≥ 0. (2.6)

The first inequality follows from the definition of conjugate functions, while the second follows from the
definition of the dual cone. If both the primal and dual are strictly feasible—as is the case for all problems
we are interested in here—then the minimum duality gap is exactly zero, and there exists an optimal
pair (x⋆, λ⋆) that achieves f(x⋆) = g(λ⋆) = L(x⋆, λ⋆) [9] . It is important to note that the optimal points
are not necessarily unique; more about this in §2.4. But any optimal primal/dual pair will satisfy the
KKT optimality conditions [9]

A(x⋆) + b ∈ K, λ⋆ ∈ K∗, 〈A(x⋆) + b, λ⋆〉 = 0, A∗(λ⋆) ∈ ∂f(x⋆), (2.7)

where ∂f refers to the subdifferential3 of f .

3 The subdifferential [56] of a convex function f at the point x, denoted ∂f(x), is the collection of all subgradients d of
f at x; specifically, ∂f(x) = {d : f(z) ≥ f(x) + 〈d, z − x〉, ∀z}.

8

2.3 The differentiable case

The dual function is of course concave; and its derivative (when it exists) is given by

∇g(λ) = −A(x(λ))− b, x(λ) ∈ argmin
x

L(x, λ). (2.8)

It is possible that the minimizer x(λ) is not unique, so in order to be differentiable, all such minimizers
must yield the same value of −A(x(λ))− b [8].

If g is finite and differentiable on the entirety of K∗, then it becomes trivial to locate an initial dual
point (e.g., λ = 0); and for many genuinely useful cones K∗, it becomes trivial to project an arbitrary
point λ ∈ R

m onto this feasible set. If the argmin calculation in (2.8) is computationally practical, we may
entertain the construction of a projected gradient method for solving the dual problem (2.5) directly; i.e.,
without our proposed smoothing step. Once an optimal dual point λ⋆ is recovered, an optimal solution
to the original problem (1.9) is recovered by solving x⋆ ∈ argminx L(x, λ⋆) ∩ {x : Ax + b ∈ K}. If
argminx L(x, λ⋆) is unique, which happens when f is strictly convex, then this minimizer is necessarily
feasible and is the primal optimal solution.

Further suppose that f is strongly convex;4 that is, it satisfies for some constant mf > 0,

f((1− α)x+ αx′) ≤ (1− α)f(x) + αf(x′)−mfα(1− α)‖x− x′‖22/2 (2.9)

for all x, x′ ∈ dom(f) = {x : f(x) < +∞} and 0 ≤ α ≤ 1. Then assuming the problem is feasible, it
admits a unique optimal solution. The Lagrangian minimizers x(λ) are unique for all λ ∈ R

n; so g is
differentiable everywhere. Furthermore, [53] proves that the gradient of g is Lipschitz continuous, obeying

‖∇g(λ′)−∇g(λ)‖2 ≤ m−1
f ‖A‖2‖λ′ − λ‖2, (2.10)

where ‖A‖ = sup‖x‖2=1 ‖A(x)‖2 is the induced operator norm of A. So when f is strongly convex, then
provably convergent, accelerated gradient methods in the Nesterov style are possible.

2.4 Smoothing

Unfortunately, it is more likely that g is not differentiable (or even finite) on all of K∗. So we consider a
smoothing approach similar to that proposed in [53] to solve an approximation of our problem. Instead
of (1.9), we consider the perturbation (1.14) for some fixed smoothing parameter µ > 0. The function d
is strongly convex and obeys

d(x) ≥ d(x0) +
1
2‖x− x0‖2 (2.11)

for some fixed point x0 ∈ R
n. Such a function is usually called a proximity function.

The new objective fµ is strongly convex with mf = µ, so the full benefits described in §2.3 now apply.
The Lagrangian and dual functions become

Lµ(x, λ) = f(x) + µd(x)− 〈λ,A(x) + b〉 (2.12)

gµ(λ) , inf
x
Lµ(x, λ) = −(f + µd)∗(A∗(λ))− 〈b, λ〉. (2.13)

One can verify that for the affine objective case f(x) , 〈c0, x〉+d0, the dual and smoothed dual function
take the form

g(λ) = d0 − Iℓ∞(A∗(λ)− c0)− 〈b, λ〉,
gµ(λ) = d0 − µd∗(µ−1(A∗(λ)− c0))− 〈b, λ〉,

where Iℓ∞ is the indicator function of the ℓ∞ norm ball; that is,

Iℓ∞(y) ,

{

0, ‖y‖∞ ≤ 1,

+∞, ‖y‖∞ > 1.

4 We use the Euclidean norm, but any norm works as long as ‖A‖ in (2.10) is appropriately defined; see [53].

9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x) = |x|

dual smoothed f(x)

primal smoothed f(x)

Fig. 1: The original objective f(x) = |x| (blue), our modification (red), and the Moreau-Yosida regularization [37] (green)
used in [5, 53].

The new optimality conditions are

A(xµ) + b ∈ K, λµ ∈ K∗, 〈A(xµ) + b, λµ〉 = 0, A∗(λµ)− µ∇d(xµ) ∈ ∂f(xµ). (2.14)

Because the Lipschitz bound (2.10) holds, first-order methods may be employed to solve (1.14) with
provable performance. The iteration counts for these methods are proportional to the square root of the
Lipschitz constant, and therefore proportional to µ−1/2. There is a trade-off between the accuracy of the
approximation and the performance of the algorithms that must be explored.5

For each µ > 0, the smoothed model obtains a single minimizer xµ; and the trajectory traced by

xµ as µ varies converges to an optimal solution x⋆ , limµ→0+ xµ. Henceforth, when speaking about the
(possibly non-unique) optimal solution x⋆ to the original model, we will be referring to this uniquely de-
termined value. Later we will show that for some models, including the Dantzig selector, the approximate
model is exact : that is, xµ = x⋆ for sufficiently small but nonzero µ.

Roughly speaking, the smooth dual function gµ is what we would obtain if the Nesterov smoothing
method described in [53] were applied to the dual function g. It is worthwhile to explore how things
would differ if the Nesterov approach were applied directly to the primal objective f(x). Suppose that
f(x) = ‖x‖1 and d(x) = 1

2‖x‖22. The Nesterov approach yields a smooth approximation fN
µ whose

elements can be described by the formula

[

fN
µ (x)

]

i
= sup

|z|≤1

zxi − 1
2µz

2 =

{

1
2µ

−1x2
i , |xi| ≤ µ,

|xi| − 1
2µ, |x| ≥ µ,

i = 1, 2, . . . , n. (2.15)

Readers may recognize this as the Huber penalty function with half-width µ; a graphical comparison
with fµ is provided in Figure 1. Its smoothness may seem to be an advantage over our choice fµ(x) =
‖x‖1 + 1

2‖x‖22, but the difficulty of projecting onto the set {x | A(x) + b ∈ K} remains; so we still prefer
to solve the dual problem. Furthermore, the quadratic behavior of fN

µ around xi = 0 eliminates the
tendency towards solutions with many zero values. In contrast, fµ(x) maintains the sharp vertices from
the ℓ1 norm that are known to encourage sparse solutions.

2.5 Composite forms

In most of the cases under study, the dual variable can be partitioned as λ , (z, τ) ∈ R
m−m̄ × R

m̄ such
that the smoothed dual gµ(z, τ) is linear in τ ; that is,

gµ(λ) = −gsm(z)− 〈vµ, τ〉 (2.16)

5 In fact, even when the original objective is strongly convex, further adding a strongly convex term may be worthwhile
to improve performance.

10

for some smooth convex function gsm and a constant vector vµ ∈ R
m̄. An examination of the Lagrangian

Lµ (2.12) reveals a precise condition under which this occurs: when the linear operator A is of the form
A(x)→ (Ā(x),0m̄×1), as seen in the conic constraints for the Dantzig selector (1.10) and LASSO (1.12).
If we partition b = (b̄, bτ) accordingly, then evidently vµ = bτ .

Under such conditions, it is more natural to work with Ā, b̄, and bτ directly, and exploit some useful
simplifications. Specifically, let us define the function

h : Rm−m̄ → (R ∪ {+∞}), h(z) , inf{〈bτ , τ〉 | (z, τ) ∈ K∗}. (2.17)

Then the dual problem reduces to a nonsmooth unconstrained maximization

maximize ḡµ(z) , −gsm(z)− h(z).

The gradient of gsm is ∇gsm(z) = Ā(x(z)) + b̄, where x(z) is the minimizer of a reduced Lagrangian

L̄µ(x, z) = f(x) + µd(x)− 〈z, Ā(x) + b̄〉. (2.18)

2.6 Projections

A standard gradient projection step for the smoothed dual problem is

λk+1 ← argmin
λ∈K∗

‖λ− λk − tk∇gµ(λk)‖2. (2.19)

For the composite version of the same problem, the corresponding generalized projection is

zk+1 ← argmin
z

gsm(zk) + 〈∇gsm(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z). (2.20)

Integrating the definition of ∇gsm(z) into (2.20) and simplifying yields a two-sequence recursion:

xk ← argmin
x

f(x) + µd(x)− 〈Ā∗(zk), x〉

zk+1 ← argmin
z

h(z) + 1
2tk
‖z − zk‖2 + 〈Ā(xk) + b̄, z〉.

(2.21)

Note the similarity in computational structure of the two formulae. This similarity is even more evident
in the common scenario where d(x) = 1

2‖x− x0‖2 for some fixed x0 ∈ R
n.

Let Σ be the matrix composed of the first m− m̄ rows of the m×m identity matrix, so that Σλ ≡ z
for all λ = (z, τ). Then (2.20) can also be written in terms of K∗ and gµ:

zk+1 ← Σ · argmax
λ∈K∗

gµ(λk) + 〈∇gµ(λk), λ− λk〉 − 1
2tk
‖Σ(λ− λk)‖2, (2.22)

where λk , (zk, h(zk)). If m = 0 and the norm is Euclidean, then Σ = I and the standard projection
(2.19) is recovered. So (2.20) is indeed a true generalization, as claimed in §1.3.4.

The key feature of the composite approach, then, is the removal of the linear variables τ from the
proximity term. Given that they are linearly involved to begin with, this yields a more accurate approxi-
mation of the dual function, so we might expect a composite approach to yield improved performance. In
fact, the theoretical predictions of the number of iterations required to achieve a certain level of accuracy
are identical; and in our experience, any differences in practice seem minimal at best. The true advantage
to the composite approach is that generalized projections more readily admit analytic solutions and are
less expensive to compute.

3 A Novel Algorithm for the Dantzig selector

We now weave together the ideas of the last two sections to develop a novel algorithm for the Dantzig
selector problem (1.2).

11

3.1 The conic form

We use the standard conic formulation (1.9) with the mapping (1.10) as discussed in the introduction,
which results in the model

minimize ‖x‖1
subject to (A∗(y −Ax), δ) ∈ Ln

∞,
(3.1)

where Lm
∞ is the epigraph of the ℓ∞ norm. The dual variable λ, therefore, will lie in the dual cone

(Ln
∞)∗ = Ln

1 , the epigraph of the ℓ1 norm. Defining λ = (z, τ), the conic dual (2.5) is

maximize −Iℓ∞(−A∗Az)− 〈A∗y, z〉 − δτ
subject to (z, τ) ∈ Ln

1 ,
(3.2)

where f∗ = Iℓ∞ is the indicator function of the ℓ∞ norm ball as before. Clearly the optimal value of τ
must satisfy ‖z‖1 = τ ,6 so eliminating it yields

maximize −Iℓ∞(−A∗Az)− 〈A∗y, z〉 − δ‖z‖1. (3.3)

Neither (3.2) nor (3.3) has a smooth objective, so the smoothing approach discussed in §2.4 will indeed
be necessary.

3.2 Smooth approximation

We augment the objective with a strongly convex term

minimize ‖x‖1 + µd(x)

subject to (A∗(y −Ax), δ) ∈ K , Ln
∞.

(3.4)

The Lagrangian of this new model is

Lµ(x; z, τ) = ‖x‖1 + µd(x)− 〈z,A∗(y −Ax)〉 − δτ.

Letting x(z) be the unique minimizer of Lµ(x; z, τ), the dual function becomes

gµ(z, τ) = ‖x(z)‖1 + µd(x(z))− 〈z,A∗(y −Ax(z))〉 − τδ.

Eliminating τ per §2.5 yields a composite form ḡµ(z) = −gsm(z)− h(z) with

gsm(z) = −‖x(z)‖1 − µd(x(z)) + 〈z,A∗(y −Ax(z))〉, h(z) = δ‖z‖1.

The gradient of gsm is ∇gsm(z) = A∗(y −Ax(z)).
The precise form of x(z) and ∇gsm depend of course on our choice of proximity function d(x). For

our problem, the simple convex quadratic

d(x) = 1
2‖x− x0‖22,

for a fixed center point x0 ∈ R
n, works well, and guarantees that the gradient is Lipschitz continuous with

a constant at most µ−1‖A∗A‖2. With this choice, x(z) can be expressed in terms of the soft-thresholding
operation which is a common fixture in algorithms for sparse recovery. For scalars x and s ≥ 0, define

SoftThreshold(x, s) = sgn(x) ·max{|x| − s, 0} =











x+ s, x ≤ −s,
0, |x| ≤ s,

x− s, x ≥ s.

When the first input x is a vector, the soft-thresholding operation is to be applied componentwise. Armed
with this definition, the formula for x(z) becomes

x(z) = SoftThreshold(x0 − µ−1A∗Az, µ−1).

6 We assume δ > 0 here; if δ = 0, the form is slightly different.

12

If we substitute x(z) into the formula for gsm(z) and simplify carefully, we find that

gsm(z) = − 1
2µ

−1‖ SoftThreshold(µx0 −A∗Az, 1)‖22 + 〈A∗y, z〉+ c,

where c is a term that depends only on constants µ and x0. In other words, to within an additive constant,
gsm(z) is a smooth approximation of the nonsmooth term Iℓ∞(−A∗Az)+ 〈A∗y, z〉 from (3.2), and indeed
it converges to that function as µ→ 0.

For the dual update, the generalized projection is

zk+1 ← argmin
z

gsm(zk) + 〈∇gsm(zk), z − zk〉+ 1
2tk
‖z − zk‖22 + δ‖z‖1. (3.5)

A solution to this minimization can also be expressed in terms of the soft thresholding operation:

zk+1 ← SoftThreshold(zk − tkA
∗(y −Ax(zk)), tkδ).

3.3 Implementation

To solve the model presented in §3.2, we considered first-order projected gradient solvers. After some
experimentation, we concluded that the Auslender and Teboulle first-order variant [2,63] is a good choice
for this model. We discuss this and other variants in more detail in §5, so for now we will simply present
the basic algorithm in Listing 1 below. Note that the dual update used differs slightly from (3.5) above:
the gradient ∇gsm is evaluated at yk, not zk, and the step size in the generalized projection is multiplied
by θ−1

k . Each iteration requires two applications of both A and A∗, and is computationally inexpensive
when a fast matrix-vector multiply is available.

Listing 1 Algorithm for the smoothed Dantzig selector

Require: z0, x0 ∈ Rn, µ > 0, step sizes {tk}
1: θ0 ← 1, v0 ← z0
2: for k = 0, 1, 2, . . . do
3: yk ← (1− θk)vk + θkzk
4: xk ← SoftThreshold(x0 − µ−1A∗Ayk, µ

−1).
5: zk+1 ← SoftThreshold(zk − θ−1

k tkA
∗(y −Axk), θ

−1
k tkδ)

6: vk+1 ← (1− θk)vk + θkzk+1

7: θk+1 ← 2/(1 + (1 + 4/θ2k)
1/2)

8: end for

It is known that for a fixed step size tk , t ≤ µ/‖A∗A‖22, the above algorithm converges in the sense
that ḡµ(z

∗) − ḡµ(zk) = O(k−2). Performance can be improved through the use of a backtracking line
search for zk, as discussed in §5.3 (see also [3]). Further, fairly standard arguments in convex analysis
show that the sequence {xk} converges to the unique solution to (3.4).

3.4 Exact penalty

Theorem 3.1 in [10] can be adapted to show that as µ→ 0, the solution to (3.4) converges to a solution
to (1.2). But an interesting feature of the Dantzig selector model in particular is that if µ < µ0 for µ0

sufficiently small, the solutions to the Dantzig selector and to its perturbed variation (3.4) coincide; that
is, x⋆ = x⋆

µ. In fact, this phenomenon holds for any linear program (LP).

Theorem 1 (Exact penalty) Consider an arbitrary LP with objective 〈c, x〉 and having an optimal
solution (i.e., the optimal value is not −∞) and let Q be a positive semidefinite matrix. Then there is
a µ0 > 0 such that if 0 < µ ≤ µ0, any solution to the perturbed problem with objective 〈c, x〉 + 1

2µ〈x −
x0, Q(x− x0)〉 is a solution to LP. Among all the solutions to LP, the solutions to the perturbed problem
are those minimizing the quadratic penalty. In particular, in the (usual) case where the LP solution is
unique, the solution to the perturbed problem is unique and they coincide.

13

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

µ

E
rr

o
r

Fig. 2: Demonstration of the exact penalty property for the Dantzig selector. For µ ≤ µ0 ≈ 0.025, the solution to the
smoothed model coincides with the original model to solver precision.

This theorem due to Mangasarian and Meyer is not difficult to prove and first appeared in 1979 [46].
The special case of noiseless basis pursuit was recently analyzed in [68] using different techniques. More
general results, allowing a range of penalty functions, were discussed in [29].

As a consequence of the theorem, the Dantzig selector and noiseless basis pursuit, which are both
linear programs, have the exact penalty property. To see why it holds for the Dantzig selector, recast it
as the LP

minimize 〈1, u〉
subject to −u ≤ x ≤ u

−δ1 ≤ A∗(y −Ax) ≤ δ1,

with optimization variables (x, u) ∈ R
2n. Then the perturbation 1

2µ‖x−x0‖2 corresponds to a quadratic
perturbation with a diagonal Q � 0 obeying Qii = 1 for 1 ≤ i ≤ n and Qii = 0 for n+ 1 ≤ i ≤ 2n.

An illustration of this phenomenon is provided in Figure 2. For this example, a Dantzig selector model
was constructed for a data set built from a DCT measurement matrix of size 512 × 4096. The exact
solution x⋆ was constructed to have 60 dB of dynamic range and 129 nonzeros, using the techniques
of Appendix A. 7 The figure plots the smoothing error ‖x⋆ − xµ‖2/‖x⋆‖2 as a function of µ; below
approximately µ ≈ 0.025, the error drops rapidly to solver precision.

Unfortunately, compressed sensing models that are not equivalent to linear programs do not in general
have the exact penalty property. For instance, it is possible to construct a counter-example for LASSO
where the constraint is of the form ‖y −Ax‖ ≤ ǫ. However, the result still suggests that for small ǫ and
µ, the LASSO and its smoothed version are similar.

3.5 Alternative models

As previously mentioned, different conic formulations result in different algorithms. To illustrate, consider
the first alternative (2.1) proposed in §2.1, which represents the Dantzig selector constraint via linear
inequalities. The conic form is

minimize ‖x‖1
subject to

[

δ1+A∗(y −Ax)
δ1−A∗(y −Ax)

]

∈ R
2n
+ .

(3.6)

The dual variable λ , (λ1, λ2) must also lie in R
2n
+ . The Lagrangian of the smoothed model is

Lµ(x;λ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈λ1, δ1+A∗(y −Ax)〉 − 〈λ2, δ1−A∗(y −Ax)〉

7 For this example, it is possible to construct a dual certificate to prove that there is a unique primal solution x⋆.

14

and its unique minimizer is given by the soft-thresholding operation

x(λ) = SoftThreshold(x0 − µ−1A∗A(λ1 − λ2), µ
−1).

We cannot eliminate any variables by reducing to composite form, so we stay with the standard smoothed
dual function gµ(λ) = infx Lµ(x;λ), whose gradient is

∇gµ(λ) =
[

−δ1−A∗(y −Ax(λ))
−δ1+A∗(y −Ax(λ))

]

.

The dual update is a true projection

λk+1 = argmin
λ∈R

2n
+

−gµ(λk)− 〈∇gµ(λk), λ− λk〉+ 1
2 t

−1
k ‖λ− λk‖22

= argmin
λ∈R

2n
+

‖λ− λk − tk∇gµ(λk)‖2
(3.7)

whose solution is simply the non-negative portion of a standard gradient step:

λk+1 = Pos(λk + tk∇gµ(λk)), [Pos(z)]i ,

{

zi, zi > 0,

0, zi ≤ 0.

In order to better reveal the similarities between the two models, let us define z̄ , λ1 − λ2 and τ̄ ,

1∗(λ1 + λ2). Then we have ‖z̄‖1 ≤ τ̄ , and the Lagrangian and its minimizer become

Lµ(x;λ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z̄, A∗(y −Ax)〉 − δτ̄ ,

x(λ) = SoftThreshold(x0 − µ−1A∗Az̄, µ−1),

which are actually identical to the original norm-based model. The difference lies in the dual update. It
is possible to show that the dual update for the original model is equivalent to

zk+1 = Σ · argmin
λ∈R

2n
+

−gµ(λk)− 〈∇gµ(λk), λ− λk〉+ 1
2 t

−1
k ‖Σ(λ− λk)‖22 (3.8)

for Σ = [+I,−I]. In short, the dual function is linear in the directions of λ1 + λ2, so eliminating them
from the proximity term would yield true numerical equivalence to the original model.

4 Further Instantiations

Now that we have seen the mechanism for instantiating a particular instance of a compressed sensing
problem, let us show how the same approach can be applied to several other types of models. Instead of
performing the full, separate derivation for each case, we first provide a template for our standard form.
Then, for each specific model, we show the necessary modifications to the template to implement that
particular case.

4.1 A generic algorithm

A careful examination of our derivations for the Dantzig selector, as well as the developments in §2.6,
provide a clear path to generalizing Listing 1 above. We require implementations of the linear operators
Ā and its adjoint Ā∗, and values of the constants b̄, bτ ; recall that these are the partitioned versions of A
and b as described in §2.5. We also need to be able to perform the two-sequence recursion (2.21), modified
to include the step size multiplier θk and an adjustable centerpoint x0 in the proximity function.

Armed with these computational primitives, we present in Listing 2 a generic equivalent of the
algorithm employed for the Dantzig selector in Listing 1. It is important to note that this particular
variant of the optimal first-order methods may not be the best choice for every model; nevertheless each
variant uses the same computational primitives.

15

Listing 2 Generic algorithm for the conic standard form

Require: z0, x0 ∈ Rn, µ > 0, step sizes {tk}
1: θ0 ← 1, v0 ← z0
2: for k = 0, 1, 2, . . . do
3: yk ← (1− θk)vk + θkzk
4: xk ← argminx f(x) + µd(x− x0)− 〈Ā∗(yk), x〉

5: zk+1 ← argminz h(z) +
θk
2tk
‖z − zk‖

2 + 〈Ā(xk) + b̄, z〉

6: vk+1 ← (1− θk)vk + θkzk+1

7: θk+1 ← 2/(1 + (1 + 4/θ2k)
1/2)

8: end for

In the next several sections, we show how to construct first-order methods for a variety of models.
We will do so by replacing lines 4-5 of Listing 2 with appropriate substitutions and simplified expressions
for each.

4.2 The LASSO

The conic form for the smoothed LASSO is

minimize ‖x‖1 + 1
2µ‖x− x0‖22

subject to (y −Ax, ǫ) ∈ Ln
2 ,

(4.1)

where Ln
2 is the epigraph of the Euclidean norm. The Lagrangian is

Lµ(x; z, τ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z, y −Ax〉 − ǫτ.

The dual variable λ = (z, τ) is constrained to lie in the dual cone, which is also Ln
2 . Eliminating τ

(assuming ǫ > 0) yields the composite dual form

maximize infx ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z, y −Ax〉 − ǫ‖z‖2.

The primal projection with f(x) = ‖x‖1 is the same soft-thresholding operation used for the Dantzig
selector. The dual projection involving h(z) = ǫ‖z‖2, on the other hand, is

zk+1 = argmin
z

ǫ‖z‖2 + θk
2tk
‖z − zk‖22 + 〈x̃, z〉 = Shrink(zk − θ−1

k tkx̃, θ
−1
k tkǫ),

where x̃ , y −Axk and Shrink is an ℓ2-shrinkage operation

Shrink(z, t) , max{1− t/‖z‖2, 0} · z =

{

0, ‖z‖2 ≤ t,

(1− t/‖z‖2) · z, ‖z‖2 > t.

The resulting algorithm excerpt is given in Listing 3.

Listing 3 Algorithm excerpt for LASSO

4: xk ← SoftThreshold(x0 − µ−1A∗yk, µ
−1)

5: zk+1 ← Shrink(zk − θ−1
k tk(y −Axk), θ

−1
k tkǫ)

4.3 Nuclear-norm minimization

Extending this approach to the nuclear-norm minimization problem

minimize ‖X‖∗
subject to ‖y −A(X)‖2 ≤ ǫ

(4.2)

is straightforward. The composite smoothed dual form is

maximize infX ‖X‖∗ + µd(X)− 〈z, y −A(X)〉 − ǫ‖z‖2,

16

and the dual projection corresponds very directly to the LASSO. Choosing d(X) = 1
2‖X −X0‖2F leads

to a primal projection given by the soft-thresholding of singular values:

Xk = SoftThresholdSingVal(X0 − µ−1A∗(yk), µ
−1). (4.3)

The SoftThresholdSingVal operation obeys [10]

SoftThresholdSingVal(X, t) = U · SoftThreshold(Σ, t) · V ∗,

whereX = UΣV ∗ is any singular value decomposition of Z, and SoftThreshold(Σ) applies soft-thresholding
to the singular values (the diagonal elements of Σ). This results in the algorithm excerpt presented in
Listing 4.

Listing 4 Algorithm for nuclear-norm minimization (LASSO constraint)

4: Xk ← SoftThresholdSingVal(X0 − µ−1A∗(yk), µ
−1)

5: zk+1 ← Shrink(zk − θ−1
k tk(y −A(Xk)), θ

−1
k tkǫ)

Another constraint of interest is of Dantzig-selector type [13] so that one is interested in

minimize ‖X‖∗
subject to ‖A∗(A(X)− y)‖ ≤ δ.

(4.4)

The cone of interest is, therefore, K = {(X, t) : ‖X‖ ≤ t} and the dual cone is K∗ = {(X, t) : ‖X‖∗ ≤ t}.
The derivation proceeds as before, and the composite dual problem becomes

maximize infX ‖X‖∗ + 1
2µ‖X −X0‖2F − 〈Z,A∗(y −A(X))〉 − δ‖Z‖∗.

The gradient of the smooth portion has a Lipschitz continuous gradient with constant at most µ−1‖A∗A‖2,
and singular value thresholding is now used to perform the dual projection. The resulting excerpt is given
in Listing 5.

Listing 5 Algorithm for nuclear-norm minimization (Dantzig-selector constraint)

4: Xk ← SoftThresholdSingVal(X0 − µ−1A∗(A(Yk)), µ
−1)

5: Zk+1 ← SoftThresholdSingVal(Zk − θ−1
k tkA

∗(y −A(Xk)), θ
−1
k tkδ)

4.4 ℓ1-analysis

We are now interested in
minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ǫ,

(4.5)

where the matrix W is arbitrary. This problem is frequently discussed in signal processing and is some-
times referred to as the method of ℓ1-analysis. As explained in the introduction, this is a challenging
problem as stated, because a generalized projection for f(x) = ‖Wx‖1 does not have an analytical form.

Let us apply our techniques to an alternative conic formulation

minimize t
subject to ‖Wx‖1 ≤ t,

‖y −Ax‖2 ≤ ǫ,

where t is a new scalar variable. The dual variables are λ = (z(1), τ (1), z(2), τ (2)), where

‖z(1)‖∞ ≤ τ (1), ‖z(2)‖2 ≤ τ (2),

and the Lagrangian is given by

L(x, t; z(1), τ (1), z(2), τ (2)) = t− 〈z(1),Wx〉 − τ (1)t− 〈z(2), y −Ax〉 − ǫτ (2).

17

The Lagrangian is unbounded unless τ (1) = 1; and we can eliminate τ (2) in our standard fashion as well.
These simplifications yield a dual problem

maximize 〈y, z(2)〉 − ǫ‖z(2)‖2
subject to A∗z(2) −W ∗z(1) = 0,

‖z(1)‖∞ ≤ 1.

To apply smoothing to this problem, we use a standard proximity function d(x) = 1
2‖x−x0‖2. (Setting

τ (1) = 1 causes t to be eliminated from the Lagrangian, so it need not appear in our proximity term.)
The dual function becomes

gµ(z
(1), z(2)) = inf

x

1
2µ‖x− x0‖22 − 〈z(1),Wx〉 − 〈z(2), y −Ax〉 − ǫ‖z(2)‖

and the minimizer x(z) is simply

x(z) = x0 + µ−1(W ∗z(1) −A∗z(2)).

Now onto the dual projection

zk+1 = argmin
z: ‖z(2)‖∞≤1

ǫ‖z(2)‖2 + θk
2tk
‖z − zk‖2 + 〈x̃, z〉,

where x̃ = (Wx(z), y − Ax(z)). This will certainly converge if the step sizes tk are chosen properly.
However, if W and A have significantly different scaling, the performance of the algorithm may suffer.

Our idea is to apply different step sizes t
(i)
k to each dual variable

zk+1 = argmin
z: ‖z(2)‖∞≤1

ǫ‖z(2)‖2 + 〈x̃, z〉+ 1
2θk

2
∑

i=1

(t
(i)
k)−1‖z(i) − z

(i)
k ‖22

in a fashion that preserves the convergence properties of the method. The minimization problem over z
is separable, and the solution is given by

z
(1)
k = Trunc(y

(1)
k − θ−1

k t
(1)
k x̃(1), θ−1

k t
(1)
k) (4.6a)

z
(2)
k = Shrink(y

(2)
k − θ−1

k t
(2)
k x̃(2), θ−1

k t
(2)
k ǫ), (4.6b)

where the truncation operator is given element-wise by

Trunc(z, τ) = sgn(z) ·min{|z|, τ} =
{

z, |z| ≤ τ,

τ sgn(z), |z| ≥ τ.

In our current tests, we fix t
(2)
k = αt

(1)
k , where we choose α = ‖W‖2/‖A‖2, or some estimate thereof.

This is numerically equivalent to applying a single step size to a scaled version of the original problem,
so convergence guarantees remain. In future work, however, we intend to develop a practical method for
adapting each step size separately.

The algorithm excerpt is given in Listing 6.

Listing 6 Algorithm excerpt for ℓ1-analysis

4: xk ← x0 + µ−1(Wy
(1)
k −A∗y

(2)
k)

5:
z
(1)
k+1 ← Trunc(y

(1)
k − θ−1

k t
(1)
k Wxk, θ

−1
k t

(1)
k)

z
(2)
k+1 ← Shrink(y

(2)
k − θ−1

k t
(2)
k (y −Axk), θ

−1
k t

(2)
k ǫ)

18

4.5 Total-variation minimization

We now wish to solve
minimize ‖x‖TV

subject to ‖y −Ax‖2 ≤ ǫ
(4.7)

for some image array x ∈ R
n2

where ‖x‖TV is the total-variation introduced in §1.1. We can actually
cast this as a complex ℓ1-analysis problem

minimize ‖Dx‖1
subject to ‖y −Ax‖2 ≤ ǫ

where D : Rn2 → C
(n−1)2 is a matrix representing the linear operation that places horizontal and vertical

differences into the real and imaginary elements of the output, respectively:

[Dx]ij , (xi+1,j − xi,j) +
√
−1 · (xi,j+1 − xi,j), 1 ≤ i < n, 1 ≤ j < n.

Writing it in this way allows us to adapt our ℓ1-analysis derivations directly. The smoothed dual function
becomes

gµ(z
(1), z(2)) = inf

x

1
2µ‖x− x0‖22 − 〈z(1), Dx〉 − 〈z(2), y −Ax〉 − ǫ‖z(2)‖2,

where z(2) ∈ R
m is identical to the previous problem, and z(1) ∈ C

(n−1)2 satisfies ‖z(1)‖∞ ≤ 1. Supporting
a complex z(1) requires two modifications. First, we must be careful to use the real-valued inner product

〈z(1), Dx〉 , ℜ((z(1))HDx) = (ℜ(DHz(1)))Tx.

Second, the projection requires a complex version of the truncation operation:

[CTrunc(z, τ)]k = min{1, τ/|zk|} · zk =

{

zk, |zk| ≤ τ,

τzk/|zk|, |zk| ≥ τ.

The algorithm excerpt is given in Listing 7.

Listing 7 Algorithm excerpt for TV minimization

4: xk ← x0 + µ−1(ℜ(D∗y
(1)
k)−A∗y

(2)
k)

5:
z
(1)
k+1 ← CTrunc(y

(1)
k − θ−1

k t
(1)
k Dxk, θ

−1
k t

(1)
k)

z
(2)
k+1 ← Shrink(y

(2)
k − θ−1

k t
(2)
k (y −Axk), θ

−1
k t

(2)
k ǫ)

4.6 Combining ℓ1 analysis and total-variation minimization

We could multiply our examples indefinitely, and we close this section by explaining how one could solve
the problem (1.4), namely that of finding the minimum of the weighted combination ‖Wx‖1 + λ‖x‖TV

subject to quadratic constraints. This problem can be recast as

minimize t+ λs
subject to ‖Wx‖1 ≤ t

‖Dx‖1 ≤ s
‖Ax− y‖2 ≤ ǫ

(4.8)

and the strategy is exactly the same as before. The only difference with §4.4 and §4.5 is that the dual
variable now belongs to a direct product of three cones instead of two. Otherwise, the strategy is the
same, and the path is so clear that we prefer leaving the details to the reader, who may also want to
consult the user guide which accompanies the software release [6].

19

5 Implementing first-order methods

So far we have demonstrated how to express compressed sensing problems in a specific conic form that
can be solved using optimal first-order methods. In this section, we discuss a number of practical matters
that arise in the implementation of optimal first-order methods. This work applies to a wider class of
models than those presented in this paper; therefore, we will set aside our conic formulations and present
the first-order algorithms in their more native form.

5.1 Introduction

The problems of interest in this paper can be expressed in an unconstrained composite form

minimize φ(z) , g(z) + h(z), (5.1)

where g, h : Rn → (R ∪+∞) are convex functions with g smooth and h nonsmooth. (To be precise, the
dual functions in our models are concave, so we consider their convex negatives here.) Convex constraints
are readily supported by including their corresponding indicator functions into h.

First-order methods solve (5.1) with repeated calls to a generalized projection, such as

zk+1 ← argmin
z

g(zk) + 〈∇g(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z), (5.2)

where ‖ · ‖ is a chosen norm and tk is the step size control. Proofs of global convergence depend upon
the right-hand approximation satisfying an upper bound property

g(zk+1) ≤ g(zk) + 〈∇g(zk), zk+1 − zk〉+ 1
2tk
‖zk+1 − zk‖2. (5.3)

This bound is certain to hold for sufficiently small tk; but to ensure global convergence, tk must be
bounded away from zero. This is typically accomplished by assuming that the gradient of g satisfies a
generalized Lipschitz criterion,

‖∇g(x)−∇g(y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ domφ, (5.4)

where ‖·‖∗ is the dual norm; that is, ‖w‖∗ = sup{〈z, w〉 | ‖z‖ ≤ 1}. Then the bound (5.3) is guaranteed to
hold for any tk ≤ L−1. Under these conditions, convergence to ǫ accuracy—that is, φ(zk)−infz φ(z) ≤ ǫ—
is obtained in O(L/ǫ) iterations for a simple algorithm based on (5.2) known variously as the forward-
backward algorithm or proximal gradient descent, which dates to at least [31]. The bound on the number
of iterations improves to O(

√

L/ǫ) for the so-called optimal or accelerated methods [50,51,54,63]. These
optimal methods vary the calculation (5.2) slightly, but the structure and complexity remain the same.
The forward-backward algorithm has been extensively studied, and in our finite dimensional setting, it is
known that the variable zk converges [4,24]; in contrast, there is no general result proving the convergence
of zk for the optimal algorithms.

5.2 The variants

Optimal first-order methods have been a subject of much study in the last decade by many different
authors. In 2008, Tseng presented a nearly unified treatment of the most commonly cited methods, and
provided simplified proofs of global convergence and complexity in a paper [63] that inspired our modular
template framework.

We constructed implementations of five of the optimal first-order variants as well as a standard
projected gradient algorithm. To simplify discussion, we have given each variant a 2-3 character label.
Listing 8 depicts N07, a variation of the method described by Nesterov in [52,54].

20

Listing 8 Nesterov’s 2007 algorithm (N07).

Require: z0 ∈ domφ, Lipschitz estimate L
1: z̄0 ← z0, θ0 ← 1
2: for k = 0, 1, 2, . . . do
3: yk ← (1− θk)zk + θk z̄k
4: z̄k+1 ← argminz〈θ

2
k

∑k
i=0 θ

−1
i ∇g(yi), z〉+

1
2
θ2kL‖z − z0‖2 + h(z)

5: zk+1 ← argminz〈∇g(yk), z〉+
1
2
L‖z − yk‖

2 + h(z)

6: θk+1 ← 2/(1 + (1 + 4/θ2k)
1/2)

7: end for

The other variants can be described described simply by replacing lines 4-5 as follows.

– TS: Tseng’s single-projection simplification of N07 [63].

4: z̄k+1 ← argminz〈θ2k
∑k

i=0 θ
−1
i ∇g(yi), z〉+ 1

2θ
2
kL‖z − z0‖2 + h(z)

5: zk+1 ← (1− θk)zk + θkz̄k+1

– LLM: Lan, Lu, and Monteiro’s modification of N07 [40].

4: z̄k+1 ← argminz〈∇g(yk), z〉+ 1
2θkL‖z − z̄k‖2 + h(z)

5: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

– AT: Auslender and Teboulle’s method from [2].

4: z̄k+1 ← argminz〈∇g(yk), z〉+ 1
2θkL‖z − z̄k‖2 + h(z)

5: zk+1 ← (1− θk)zk + θkz̄k+1

– N83: Nesterov’s 1983 method [50,53]; see also FISTA [3].

4: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

5: Compute z̄k+1 to satisfy zk+1 = (1− θk)zk + θkz̄k+1.

– GRA: The classical projected gradient generalization.

4: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

5: z̄k+1 ← zk+1

Following Tseng’s lead, we have rearranged steps and renamed variables, compared to their original
sources, so that the similarities are more apparent. This does mean that simpler expressions of some of
these algorithms are possible, specifically for TS, AT, N83, and GRA. Note in particular that GRA does
not use the parameter θk.

Given their similar structure, it should not be surprising that these algorithms, except GRA, achieve
nearly identical theoretical iteration performance. Indeed, it can be shown that if z⋆ is an optimal point
for (5.1), then for any of the optimal variants,

φ(zk+1)− φ(z⋆) ≤ 1
2Lθ

2
k‖z0 − z⋆‖2 ≤ 2Lk−2‖z0 − z⋆‖2. (5.5)

Thus the number of iterations required to reach ǫ optimality is at most ⌈
√

2L/ǫ‖z0−z⋆‖2⌉ (again, except
GRA). Tighter bounds can be constructed in some cases but the differences remain small.

Despite their obvious similarity, the algorithms do have some key differences worth noting. First of
all, the sequence of points yk generated by the N83 method may sometimes lie outside of domφ. This is
not an issue for our applications, but it might for those where g(z) may not be differentiable everywhere.
Secondly, N07 and LLM require two projections per iteration, while the others require only one. Two-
projection methods would be preferred only if the added cost results in a comparable reduction in the
number of iterations required. Theory does not support this trade-off, but the results in practice may
differ; see §6.1 for a single comparison.

5.3 Step size adaptation

All of the algorithms involve the global Lipschitz constant L. Not only is this constant often difficult
or impractical to obtain, the step sizes it produces are often too conservative, since the global Lipschitz
bound (5.4) may not be tight in the neighborhood of the solution trajectory. Reducing L artificially can
improve performance, but reducing it too much can cause the algorithms to diverge. Our experiments
suggest that the transition between convergence and divergence is very sharp.

21

A common solution to such issues is backtracking: replace the global constant L with a per-iteration
estimate Lk that is increased as local behavior demands it. Examining the convergence proofs of Tseng
reveals that the following condition is sufficient to preserve convergence (see [63], Propositions 1, 2, and
3):

g(zk+1) ≤ g(yk) + 〈∇g(yk), zk+1 − yk〉+ 1
2Lk‖zk+1 − yk‖2. (5.6)

If we double the value of Lk every time a violation of (5.6) occurs, for instance, then Lk will satisfy Lk ≥ L
after no more than ⌈log2(L/L0)⌉ backtracks, after which the condition must hold for all subsequent
iterations. Thus strict backtracking preserves global convergence. A simple improvement to this approach
is to update Lk with max{2Lk, L̂}, where L̂ is the smallest value of Lk that would satisfy (5.6). To
determine an initial estimate L0, we can select any two points z0, z1 and use the formula

L0 = ‖∇g(z0)−∇g(z1)‖∗/‖z0 − z1‖.

Unfortunately, our experiments reveal that (5.6) suffers from severe cancellation errors when g(zk+1) ≈
g(yk), often preventing the algorithms from achieving high levels of accuracy. More traditional Armijo-
style line search tests also suffer from this issue. We propose an alternative test that maintains fidelity
at much higher levels of accuracy:

|〈yk − zk+1,∇g(zk+1)−∇g(yk)〉| ≤ 1
2Lk‖zk+1 − yk‖22. (5.7)

It is not difficult to show that (5.7) implies (5.6), so provable convergence is maintained. It is a more
conservative test, however, producing smaller step sizes. So for best performance we prefer a hybrid
approach: for instance, use (5.6) when g(yk) − g(zk+1) ≥ γg(zk+1) for some small γ > 0, and use (5.7)
otherwise to avoid the cancellation error issues.

A closer study suggests a further improvement. Because the error bound (5.5) is proportional to Lkθ
2
k,

simple backtracking will cause it to rise unnecessarily. This anomaly can be rectified by modifying θk as
well as Lk during a backtracking step. Such an approach was adopted by Nesterov for N07 in [54]; and
with care it can be adapted to any of the variants. Convergence is preserved if

Lk+1θ
2
k+1/(1− θk+1) ≥ Lkθ

2
k (5.8)

(c.f. [63], Proposition 1), which implies that the θk update in Line 6 of Listing 8 should be

θk+1 ← 2/(1 + (1 + 4Lk+1/θ
2
kLk)

1/2). (5.9)

With this update the monotonicity of the error bound (5.5) is restored. For N07 and TS, the update for
z̄k+1 must also be modified as follows:

z̄k+1 ← argmin
z
〈θ2kLk

∑k
i=0(Liθi)

−1∇g(yi), z〉+ 1
2θ

2
kLk‖z − z0‖2 + h(z). (5.10)

Finally, to improve performance we may consider decreasing the local Lipschitz estimate Lk when
conditions permit. We have chosen a simple approach: attempt a slight decrease of Lk at each iteration;
that is, Lk = αLk−1 for some fixed α ∈ (0, 1]. Of course, doing so will guarantee that occasional backtracks
occur. With judicious choice of α, we can balance step size growth for limited amounts of backtracking,
minimizing the total number of function evaluations or projections. We have found that α = 0.9 provides
good performance in many applications.

5.4 Linear operator structure

Let us briefly reconsider the special structure of our compressed sensing models. In these problems, it is
possible to express the smooth portion of our composite function in the form

g(z) = ḡ(A∗(z)) + 〈b, z〉,

where ḡ remains smooth, A is a linear operator, and b is a constant vector (see §2.5; we have dropped
some overbars here for convenience). Computing a value of g requires a single application of A∗, and
computing its gradient also requires an application of A. In many of our models, the functions ḡ and h

22

are quite simple to compute, so the linear operators account for the bulk of the computational costs. It
is to our benefit, then, to utilize them as efficiently as possible.

For the prototypical algorithms of Section 5.2, each iteration requires the computation of the value
and gradient of g at the single point yk, so all variants require a single application each of A and A∗. The
situation changes when backtracking is used, however. Specifically, the backtracking test (5.6) requires
the computation of g at a cost of one application of A∗; and the alternative test (5.7) requires the gradient
as well, at a cost of one application of A. Fortunately, with a careful rearrangement of computations we
can eliminate both of these additional costs for single-projection methods TS, AT, N83, and GRA, and
one of them for the two-projection methods N07 and LLM.

Listing 9 AT variant with improved backtracking.

Require: z0 ∈ domφ, L̂ > 0, α ∈ (0, 1], β ∈ (0, 1)

1: z̄0 ← z0, zA0, z̄A0 ← Ā
∗(z0), θ−1 = +∞, L−1 = L̂

2: for k = 0, 1, 2, . . . do
3: Lk ← αLk−1

4: loop
5: θk ← 2/(1 + (1 + 4Lk/θ

2
k−1Lk−1)

1/2) (θ0 , 1)

6: yk ← (1− θk)zk + θk z̄k, yA,k ← (1− θk)zA,k + θk z̄A,k

7: ḡk ← ∇ḡ(yA,k), gk ← Aḡk + b

8: z̄k+1 ← argminz〈gk, z〉+ h(z) + θk
2tk
‖z − yk‖

2, z̄A,k+1 ← A
∗(zk+1)

9: zk+1 ← (1− θk)zk + θk z̄k+1, zA,k+1 ← (1− θk)zA,k + θk z̄A,k

10: L̂← 2
∣

∣〈yA,k − zA,k+1,∇ḡ(zA,k+1)− ḡk〉
∣

∣ /‖zk+1 − yk‖
2
2

11: if Lk ≥ L̂ then break endif
12: Lk ← max{Lk/β, L̂}
13: end loop
14: end for

Listing 9 depicts this more efficient use of linear operators, along with the step size adaptation
approach, using the AT variant. The savings come from two different additions. First, we maintain
additional sequences zA,k and z̄A,k to allow us to compute yA,k = A∗(yk) without a call to A∗. Secondly,
we take advantage of the fact that

〈yk − zk+1,∇g(zk+1)−∇g(yk)〉 = 〈yA,k − zA,k+1,∇ḡ(zA,k+1)−∇ḡ(yA,k)〉,

which allows us to avoid having to compute the full gradient of g; instead we need to compute only the
significantly less expensive gradient of ḡ.

5.5 Accelerated continuation

Several recent algorithms, such as FPC and NESTA [5, 36], have empirically found that continuation
schemes greatly improve performance. The idea behind continuation is that we solve the problem of
interest by solving a sequence of similar but easier problems, using the results of each subproblem to
initialize or warm start the next one. Listing 10 below depicts a standard continuation loop for solving
the generic conic problem in (1.14) with a proximity function d(x) = 1

2‖x−x0‖22. We have used a capital
X and loop count j to distinguish these iterates from the inner loop iterates xk generated by a first-order
method.

Listing 10 Standard continuation

Require: Y0, µ0 > 0, β < 1
1: for j = 0, 1, 2, . . . do
2: Xj+1 ← argminA(x)+b∈K f(x) +

µj

2
‖x− Yj‖

2
2

3: Yj+1 ← Xj+1 or Yj+1 ← Yj

4: µj+1 ← βµj

5: end for

23

Note that Listing 10 allows for the updating of both the smoothing parameter µj and the proximity
center Yj at each iteration. In many implementations, Yj ≡ X0 and only µj is decreased, but updating
Yj as well will almost always be beneficial. When Yj is updated in this manner, the algorithm is known
as the proximal point method, which has been studied since at least [57]. Indeed, one of the accelerated
variants [2] that is used in our solvers uses the proximal point framework to analyze gradient-mapping
type updates. It turns out we can do much better by applying the same acceleration ideas already
mentioned.

Let us suggestively write

h(Y) = min
x∈C

f(x) +
µ

2
‖x− Y ‖22, (5.11)

where µ > 0 is fixed and C is a closed convex set. This is an infimal convolution, and h is known as the
Moreau-Yosida regularization of f [37]. Define

XY = argmin
x∈C

f(x) +
µ

2
‖x− Y ‖22. (5.12)

The map Y 7→ XY is a proximity operator [47].
We now state a very useful theorem.

Theorem 2 The function h (5.11) is continuously differentiable with gradient

∇h(Y) = µ(Y −XY). (5.13)

The gradient is Lipschitz continuous with constant L = µ. Furthermore, minimizing h is equivalent to
minimizing f(x) subject to x ∈ C.

The proof is not difficult and can be found in Proposition I.2.2.4 and §XV.4.1 in [37]; see also exercises
2.13 and 2.14 in [8], where h is referred to as the envelope function of f . The Lipschitz constant is µ
since XY is a proximity operator P , and I− P is non-expansive for any proximity operator.

The proximal point method can be analyzed in this framework. Minimizing h using gradient descent,
with step size t = 1/L = 1/µ, gives

Yj+1 = Yj − t∇h(Yj) = Yj −
1

µ
µ(Yj −XYj

) = XYj
,

which is exactly the proximal point algorithm. But since h has a Lipschitz gradient, we can use the
accelerated first-order methods to achieve a convergence rate of O(j−2), versus O(j−1) for standard
continuation. In Listing 11, we offer such an approach using a fixed step size t = 1/L and the accelerated
algorithm from Algorithm 2 in [63]. This accelerated version of the proximal point algorithm has been
analyzed in [35] where it was shown to be stable with respect to inexact solves.

Listing 11 Accelerated continuation

Require: Y0, µ0 > 0
1: X0 ← Y0

2: for j = 0, 1, 2, . . . do
3: Xj+1 ← argminA(x)+b∈K f(x) +

µj

2
‖x− Yj‖

2
2

4: Yj+1 ← Xj+1 + j
j+3

(Xj+1 −Xj)

5: (optional) increase or decrease µj

6: end for

Figure 3 provides an example of the potential improvement offered by accelerated continuation. In
this case, we have constructed a LASSO model with a 80 × 200 i.i.d. Gaussian measurement matrix.
The horizontal axis gives the number of continuation steps taken, and the vertical axis gives the error
‖Xj − x⋆‖2/‖x⋆‖2 between each continuation iterate and an optimal solution to the unsmoothed model;
empirically, the optimal solution appears to be unique. Both simple and accelerated continuation have
been employed, using a fixed smoothing parameter µj ≡ µ0.

8 A clear advantage is demonstrated for
accelerated continuation in this case.

8 If µ is fixed, this is not continuation per se, but we still use the term since it refers to an outer iteration.

24

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

outer iteration

e
rr

o
r

Regular continuation (fixed µ)

Accelerated continuation (fixed µ)

Fig. 3: A comparison of simple continuation and accelerated continuation applied to a small-scale LASSO model. The
horizontal axis gives the number of continuation steps taken; the vertical axis gives the error between the continuation
solution and the original, unsmoothed model. The error is normalized to 1 at iteration 1.

For models that exhibit the exact penalty property, updating the proximity center Yj at each iteration
yields an interesting result. The exact penalty property depends not on the size of µ but rather on the
size of µ‖x⋆

j − Yj‖, where x⋆
j is projection of Yj on the optimal set (e.g., if x⋆ is unique, then x⋆

j ≡ x⋆).
Therefore, for any positive µ, the exact penalty property will be obtained if Yj is sufficiently close to the
optimal set. This has some obvious and very useful consequences.

The use of accelerated continuation does require some care, however, particularly in the dual conic
framework. The issue is that we solve the dual problem, but continuation is with the primal variable.
When Y is updated in a complicated fashion, as in Listing 11, or if µ changes, we no longer have a good
estimate for a starting dual variable λj , so the subproblem will perhaps take many inner iterations. In
contrast, if Y is updated in a simple manner and µ is fixed, as in Listing 10, then the old value of the
dual variable is a good initial guess for the new iteration, and this warm start results in fewer inner
iterations. For this reason, it is sometimes advantageous to use Listing 10.

Figure 4 shows an example where accelerated continuation does not offer a clear benefit. The model
solved is the Dantzig selector, with a 64× 256 partial DCT measurement matrix, and the exact solution
(see Appendix A) has 50 nonzeros and a dynamic range of 77 dB which makes the test quite challenging
for the minimum ℓ1 solution is not the sparsest. The algorithm is tested without continuation, using µ =
{µ0/10, µ0, 10µ0} for µ0 = 10−2, and also with both types of continuation, using µ = 50µ0. The horizontal
axis gives the total number of inner iterations, and the vertical axis gives the error ‖xk − x⋆‖2/‖x⋆‖2
between the current iterate and the solution to the (unsmoothed) model. When no continuation is
employed, the tradeoff between solution accuracy (small µ) and the number of iterations to converge
(large µ) is evident. Continuation helps drastically, and high levels of accuracy can be obtained quickly.
In this example, both forms of continuation perform similarly.

In our experience, accelerated continuation usually matches or outperforms regular continuation, but
the matter requires further study. In particular, performance is affected by the stopping criteria of the
inner iteration, and we plan to investigate this in future work. The experiments in Figure 4 decreased
the tolerance by a factor of two every iteration, with the exception of the final iteration which used a
stricter tolerance.

5.6 Strong convexity

Suppose that our composite function φ is strongly convex; that is,

φ(z) ≥ φ(z0) +
1
2mφ‖z − z0‖22 ∀z ∈ domφ

25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

e
rr

o
r

no continuation, µ/10

no continuation, µ
no continuation, 10 µ
regular continuation

accelerated continuation

Fig. 4: Comparing fixed smoothing and continuation strategies for a Dantzig selector model. The horizontal axis gives the
number of inner iterations of each first-order method. For the two continuation strategies, the circles depict the completion
of each continuation step.

for some fixed mφ > 0. It is well known that a standard gradient method will achieve linear convergence
in such a case. Unfortunately, without modification, none of the so-called optimal methods will do so.
Thus in the presence of strong convexity, standard gradient methods can actually perform better than
their so-called optimal counterparts.

If the strong convexity parameter mφ ≤ Lφ is known or can be bounded below, the N83 algorithm
can be modified to recover linear convergence [53,54], and will recover its superior performance compared
to standard gradient methods. The challenge, of course, is that this parameter rarely is known. In [54],
Nesterov provides two approaches for dealing with the case of unknown mφ, one of which is readily
adapted to all of the first-order variants here. That approach is a so-called restart method: the algorithm
is restarted after a certain number of iterations, using the current iterate as the starting point for the
restart; or equivalently, the acceleration parameter θk is reset to θ0 = 1. In theory, the optimal number
of iterations between restarts depends on mφ/Lφ, but linear convergence can be recovered even for
sub-optimal choices of this iteration count [34].

To illustrate the impact of strong convexity on performance, we constructed a strongly quadratic
unconstrained function with mφ = 0.07 and Lφ = 59.1, and minimized it using the gradient method
(GRA), the AT first-order method with and without restart, and the N83 method tuned to the exact
values of (mφ, Lφ). Backtracking was employed in all cases; we have verified experimentally that doing
so consistently improves performance and does not compromise the exploitation of strong convexity. As
can be seen in Figure 5, while AT without restart initially performs much better than GRA, the linear
convergence obtained by GRA will eventually overtake it. The N83 method is clearly superior to either
of these, achieving linear convergence with a much steeper slope. When restart is employed, AT recovers
linear convergence, and achieves near parity with N83 when restarted every 100 iterations (the optimal
value predicted by [34] is every 112 iterations).

The benefits of exploiting strong convexity seem clearly established. In fact, while proofs of linear
convergence assume global strong convexity, our experiments in §6 show that applying these methods to
models with local strong convexity can improve performance as well, sometimes significantly. Unfortu-
nately, the restart method requires manual tuning on a case-by-case basis to achieve the best performance.
This is certainly acceptable in many applications, but further research is needed to develop approaches
that are more automatic.

26

0 500 1000 1500 2000 2500 3000

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

e
rr

o
r

GRA
AT, no restart
AT, restart 10
AT, restart 50
AT, restart 100
N83, using m

Fig. 5: First-order methods applied to a strongly convex problem: GRA, AT without restart, AT with restart, and N83
tuned with knowledge of the strong convexity parameter. The y-axis is ‖xk − x⋆‖2/‖x⋆‖2.

6 Numerical experiments

The templates we have introduced offer a flexible framework for solving many interesting but previously
intractable problems; for example, to our knowledge, there are no first-order algorithms that can deal
with non-trivially constrained problems with complicated objectives like f(x) = ‖Wx‖1 + ‖x‖TV for an
over-complete dictionary W with fewer columns than rows. This section shows the templates in use to
solve such real-world problems. It also describes some of the details behind the numerical experiments
in previous sections.

6.1 Dantzig selector: comparing first-order variants

Other than Tseng’s paper [63], there has been little focus on comparing the various accelerated methods.
Tseng’s paper itself presents few simulations that differentiate the algorithms. Since our software uses
interchangeable solvers with otherwise identical setups, it is easy to compare the algorithms head-to-head
applied to the same model.

For this comparison, we constructed a smoothed Dantzig selector model similar to the one employed
in §3.4 above. The model used a partial DCT measurement matrix of size 512 × 2048, a signal with
128 nonzero values, and an additive noise level of 30 dB SNR. The smoothing parameter was chosen to
be µ = 0.25, and we then employed the techniques of Appendix A to perturb the model and obtain a
known exact solution. This reference solution had 341 nonzeros, a minimum magnitude of 0.002 and a
maximum amplitude 8.9. The smoothed model was then solved using the 6 first-order variants discussed
here, using both a fixed step size of t = 1/L = µ/‖A‖2 and our proposed backtracking strategy, as well
as a variety of restart intervals.

The results of our tests are summarized by two plots in Figure 6. The cost of the linear operator
dominates, so the horizontal axes give the number of calls to either A or A∗ taken by the algorithm. The
vertical axes give the relative error ‖xk − x⋆

µ‖/‖x⋆
µ‖. Because this is a sparse recovery problem, we are

also interested in determining when the algorithms find the correct support; that is, when they correctly
identify the locations of the 341 nonzero entries. Therefore, the lines in each plot are thicker where the
computed support is correct, and thinner when it is not.

The left-hand plot compares all variants using both fixed step sizes and backtracking line search, but
with no restart. Not surprisingly, the standard gradient method performs significantly worse than all of

27

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

calls to A and A∗

‖
x
k
−

x
⋆ µ
‖
/
‖
x
⋆ µ
‖

All variants, fixed and backtracking steps, no restart

AT

LLM

TS

N07

N83

GRA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

calls to A and A∗

‖x
k
−

x
⋆ µ
‖/
‖x

⋆ µ
‖

AT method, various restart strategies

fixed step

no restart

restart=100

restart=200

restart=400

Fig. 6: Comparing first order methods applied to a smoothed Dantzig selector model. Left: comparing all variants using
a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing various restart strategies using
the AT method.

the optimal first-order methods. In the fixed step case, AT performs the best by a small margin; but
the result is moot, as backtracking shows a significant performance advantage. For example, using the
AT variant with a fixed step size requires more than 3000 calls to A or A∗ to reach an error of 10−4;
with backtracking, it takes fewer than 2000. With backtracking, the algorithms exhibit very similar
performance, with AT and TS exhibiting far less oscillation than the others. All of the methods except
for GRA correctly identify the support (a difficult task due to the high dynamic range) within 1000
linear operations.

The right-hand plot shows the performance of AT if we employ the restart method described in §5.6
for several choices of the restart interval. We observe significant improvements in performance, revealing
evidence of local strong convexity. A restart interval of 200 iterations yields the best results; in that case,
a relative error of 10−4 is obtained after approximately 1000 linear operations, and the correct support
after only a few hundred operations. The other variants (except GRA, which is unaffected by restart)
show similar performance improvements when restart is applied, although the two-projection methods
(N07 and LLM) take about 50% longer than the one-projection methods.

Of course, care should be taken when applying these results to other contexts. For instance, the cost
of the projections here is negligible; when they are more costly (see, for instance, §6.4), two-projection
methods (N07 and LLM) will be expected to fare worse. But even among Dantzig selector models, we
found significant variations in performance, depending upon sparsity, noise level, and smoothing. For
some models, the two-projection methods perform well; and in others, such as when we have local strong
convexity, gradient descent performs well (when compared to the other algorithms without restart).
Overall, it seems there is no best algorithm, but we choose the AT algorithm as our default since in our
experience it is consistently one of the best and only requires one projection per iteration.

6.2 LASSO: Comparison with SPGL1

As mentioned in the introduction, there are numerous algorithms for solving the LASSO. Yet the algo-
rithm produced by our dual conic approach is novel; and despite its apparent simplicity, it is competitive
with the state of the art. To show this, we compared the AT first-order variant with SPGL1 [7], chosen
because recent and extensive tests in [5] suggest that it is one of the best available methods.

The nature of the SPGL1 algorithm, which solves a sequence of related problems in a root-finding-
scheme, is such that it is fastest when the noise parameter ǫ is large, and slowest when ǫ = 0. To
compare performance in both regimes, we constructed two tests. The first is an “academic” test with
an s-sparse signal and no noise; however, we choose s large enough so that the LASSO solution does
not coincide with the sparse solution, since empirically this is more challenging for solvers. Specifically,
the measurement matrix A is a 213 × 214 partial DCT, while the optimal value x⋆ was constructed to

28

0 100 200 300 400 500 600 700 800 900
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of calls to A and A∗

re
la

ti
v
e
 e

rr
o
r

AT w/o continuation

AT w/ accel. continuation

SPGL1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of calls to A and A∗

re
la

ti
v
e
 e

rr
o
r

AT w/o continuation

AT w/ continuation

SPGL1

Fig. 7: Comparisons of the dual solver with SPGL1. The plot on the left involves a noiseless basis pursuit model, while
the plot on the right represents a noisy image model.

have s = 212 nonzeros. The second test uses Haar wavelet coefficients from the “cameraman” test image
(Figure 8 (a)) which decay roughly according to a power law, and adds noise with a signal-to-noise ratio
of 30 dB. The measurement matrix is also a partial DCT, this time of size 0.3 · 216 × 216.

Figure 7 shows the results from both tests, each plot depicting relative error ‖xk − x⋆‖/‖x⋆‖ versus
the number of linear operations. We see that both methods achieve several digits of accuracy in just a
few hundred applications of A and its adjoint. SPGL1 outperforms a regular AT solver in the left-hand
“academic” test; however, AT with accelerated continuation solves the problem significantly faster than
SPGL1. The noiseless case exploits our method’s strength since the exact penalty property holds.

For the wavelet test, SPGL1 outperforms our method, even when we use continuation. Although AT
with continuation achieves high levels of accuracy in fewer than 1000 operations, other tests confirmed
that SPGL1 is often a little better than our method, especially for large ǫ. But the dual conic approach
is competitive in many cases, and can be applied to a wider class of problems9.

6.3 Wavelet analysis with total-variation

The benefit of our approach is highlighted by the fact that we can solve complicated composite objective
functions. Using the solver templates, it is easy to solve the ℓ1-analysis and TV problem from §4.6. We
consider here a denoising problem with full observations; i.e., A = I. Figure 8 (a) shows the original
image x0, to which noise is added to give an image y = x0 + z with a signal-to-noise ratio of 20 dB (see
subplot (b)). In the figure, error is measured in peak-signal-to-noise ratio (PSNR), which for an n1 × n2

image x with pixel values between in [0, 1] is defined as

PSNR(x) = 20 log10

(√
n1n2

‖x− x0‖F

)

where x0 is the noiseless image.

To denoise, we work with a 9/7 bi-orthogonal wavelet transform W (similar to that in JPEG-2000)
with periodic boundary conditions (the periodicity is not ideal to achieve the lowest distortion). A simple
denoising approach is to hard-threshold the wavelet coefficients Wx and then invert with W−1. Figure
8 (c) shows the result, where the hard-threshold parameter was determined experimentally to give the
best PSNR. We refer to this as “oracle thresholding” since we used the knowledge of x0 to determine
the threshold parameter. As is common with wavelet methods [61], edges in the figure induce artifacts.

9 SPGL1 is also flexible in the choice of norm, but notably, it cannot solve the analysis problem due to difficulties in the
primal projection.

29

(a) Original (b) Noisy version (25.6 dB PSNR)

(c) Wavelet thresholded (28.3 dB PSNR) (d) Wavelet ℓ1-analysis (29.0 dB PSNR)

(e) TV minimization (30.9 dB PSNR) (f) Wavelet analysis + TV minimization (31.0 dB PSNR)
Fig. 8: Denoising an n = 2562 image.

Figures 8 (d), (e) and (f) are produced using the solvers in this paper, solving

minimize α‖Wx‖1 + β‖x‖TV + µ
2 ‖x− y‖2F

subject to ‖Ax− y‖2 ≤ ǫ
(6.1)

Figure 8 (d) employs wavelet analysis only (α = 1, β = 0), (e) just TV (α = 0, β = 1), and (f) both
(α = 1, β = 5). For the best performance, the matrix A was re-scaled so that all the dual variables are
of the same order; see [6] for further discussion of scaling.

The Frobenius term in (6.1) is of course for smoothing purposes, and it is possible to minimize its
effect by choosing µ small or using the continuation techniques discussed. But for denoising, its presence
makes little difference; in fact, it may give more visually pleasing results to use a relatively large µ. So

30

to determine µ, we started with an estimate like

µ = max(α‖Wy‖1, β‖y‖TV)/c

with c ≃ 500 and then adjusted to give reasonable results. We ultimately employed µ = 1 for (d), µ = 50
for (e), and µ = 160 for (f).

The wavelet analysis run took 26 iterations, and was complete in about 5 seconds. As shown in
image (d), it produced boundary effects that are noticeable to the eye, and similar to those produced by
thresholded image (c). The TV model (e) and TV with wavelets model (f) took 37 iterations (3 seconds)
and 30 iterations (8 seconds), respectively. Both produced better reconstructions, both by PSNR and by
visual inspection. The additional wavelet analysis term in plot (f) offers only minimal improvement over
TV alone, but this may be due to our simple choice of wavelet transform. For example, undecimated
wavelets are common in denoising and may give better results, but our point here is simplicity and to
point out the flexibility of the framework.

6.4 Matrix completion: expensive projections

We consider the nuclear-norm minimization problem (4.2) of a matrix X ∈ R
n1×n2 in the conic dual

smoothing approach. For matrix completion, the linear operator A is the subsampling operator revealing
entries in some subset E ⊂ [n1] × [n2]. With equality constraints (ǫ = 0) and X0 = 0, gradient ascent
on the dual is equivalent to the SVT algorithm of [10], a reference which also considered non-equality
constraints, e.g., of the form (4.2).

In addition to our own interest in this problem, one of the reasons we chose it for this article is that it
differs from the others in one key respect: its computational cost is dominated by one of the projections,
not by the linear operators. After all, the linear operator in this case is no more than a set of memory
accesses, while the primal projection requires the computation of at least the largest singular values of
a large matrix. As a result, the considerations we bring to the design of an efficient solver are unique in
comparison to the other examples presented.

There are a number of strategies we can employ to reduce the cost of this computation. The key is to
exploit the fact that a nuclear-norm matrix completion model is primarily of interest when its optimal
value X⋆ is expected to have low rank [14]. Recall from §4.3 that the update of Xk takes the form

Xk = SoftThresholdSingVal
(

X0 − µ−1A∗(λ), µ−1
)

.

Our numerical experiments show that if µ is sufficiently small, the ranks rk = rank(Xk) will remain
within the neighborhood of r⋆ = rank(X⋆). In fact, with µ sufficiently small and X0 = 0, the rank grows
monotonically.

There are a variety of ways we can exploit the low-rank structure of the iterates Xk. By storing
Xk = UkΣkVk in factored form, we can reduce the storage costs from O(n1n2) to O(rk(n1 + n2)).
The quantity A(Xk), used in the computation of the gradient of the dual function, can be computed
efficiently from this factored form as well. Finally, using a Lanczos method such as PROPACK [41], the
cost of computing the necessary singular values will be roughly proportional to rk. By combining these
techniques, the overall result is that the cost of singular value thresholding is roughly linear in the rank
of its result. These techniques are discussed in more detail in [6].

Smaller values of µ, therefore, reduce the ranks of the iterates Xk, thereby reducing the computational
cost of each iteration. This leads to a unique tradeoff, however: as we already know, smaller values of µ
increase the number of iterations required for convergence. In practice, we have found that it is indeed
best to choose a small value of µ, and not to employ continuation.

For our numerical example, we constructed a rank-10 matrix of size n1 = n2 = 1000, and randomly
selected 10% of the entries for measurement—about 5 times the number of degrees of freedom in the
original matrix. We solved this problem using three variations of GRA and five variations of AT, varying
the step size choices and the restart parameter. The smoothing parameter was chosen to be µ = 10−4, for
which all of the methods yield a monotonic increase in the rank of the primal variable. The pure gradient
method took about 1.8 minutes to reach 10−4 relative error, while the AT method without restart took
twice the time; the error is in the Frobenius norm, comparing against the true low-rank matrix, which
is the solution to the unperturbed problem. This test, and all subsequent tests, were performed on a
computer with a 1.6 GHz quad-core Intel i7 processor, using Matlab version 7.10.

31

0 200 400 600 800 1000 1200
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

calls to SoftThresholdSingVal

e
rr

o
r

GRA, backtracking
AT, backtracking
AT, restart every 10
AT, restart every 50
AT, restart every 100

Fig. 9: Noiseless matrix completion using various first-order methods. The error plotted is the sub-optimality of the dual
objective, g(λ⋆)− g(λk).

The results of our experiments are summarized in Figure 9. The horizontal axis now gives the number
of SoftThresholdSingVal operations, a more accurate measure of the cost in this case; the cost of a
SoftThresholdSingVal call is not fixed, but we observe that the rank of the iterates quickly reaches 10
and most SoftThresholdSingVal calls have roughly the same cost. The salient feature of this figure is
that while AT initially outperforms GRA, the linear convergence exhibited by GRA allows it to overtake
AT at moderate levels of precision. Employing a restart method with AT improves its performance
significantly; and for a restart intervals of 50 iterations, its performance approaches that of GRA, but it
does not overtake it.

What accounts for this performance reversal? First, we observe that AT requires two projections per
iteration while GRA requires only one. This difference is inconsequential in our other examples, but
not for this one; and it is due to our use of the backtracking line search. Switching to a fixed step size
eliminated the extra projection, but the overall performance suffered significantly. We hope to identify a
new line search approach that avoids the added cost revealed here.

Second, the similarities of Figures 5 and 9 suggest the presence of strong convexity. Using an estimate
of the decay rate for gradient descent with step size t = 1/Lf , and comparing with known decay rate
estimates [52] gives an estimate of mf = 0.0024. For this value of mf (and with Lf = 1), the optimal
restart number Kopt from [34] is about 80, which is consistent with the plot. It is easy to verify, however,
that the smoothed dual function is not strongly convex.

The results suggest, then, that local strong convexity is present. The authors in [34] argue that for
compressed sensing problems whose measurement matrices satisfy the restricted isometry property, the
primal objective is locally strongly convex when the primal variable is sufficiently sparse. The same
reasoning may apply to the matrix completion problem; the operator A∗A is nearly isometric (up to a
scaling) when restricted to the set of low-rank matrices. The effect may be amplified by the fact that
we have taken pains to ensure that the iterates remain low-rank. Overall, this effect is not yet well
understood, but will also be explored in later work.

We note that if the underlying matrix is not low-rank, then the local strong convexity effect is
not present, and gradient descent does not outperform the AT method. In this case, our experiments
also suggest that the restart method has little effect. Likewise, when inequality constraints are added we
observe that the unusually good performance of gradient descent vanishes. For both the non-low-rank and
noisy cases, then, it may be beneficial to employ an optimal first-order method and to use continuation.

Figure 10 demonstrates these claims on a noisy matrix completion problem. We constructed a 50×45
matrix of rank 20, sampled 67% of the entries, and added white noise to yield a 30 dB SNR. By using this
small problem size, we are able to use CVX [32] to compute a reference solution; this took 5.4 minutes.
The figure depicts three different approaches to solving the problem: GRA and AT each with µ = 5 ·10−4

32

0 100 200 300 400 500 600 700

10
−4

10
−3

10
−2

10
−1

10
0

calls to SoftThresholdSingVal

e
rr

o
r

GRA, backtracking

AT, backtracking

AT, continuation

Fig. 10: Noisy matrix completion on a non-low-rank matrix, using various first-order methods. The ◦ labels on the
continuation line series indicate the iterations at which continuation occurred. The error is ‖Xk −X⋆‖F /‖X⋆‖F .

and no continuation; and AT with µ = 10−2 and accelerated continuation. The restart approach no longer
has a beneficial effect, so it is not shown. Each solver was run for 500 iterations, taking between 2.5 and
4 seconds, and the plot depicts relative error versus the number of singular value decompositions. As
we can see, the advantage of GRA has been lost, and continuation provides significant improvement: to
achieve a relative error of 10−2, the continuation method required only 180 partial SVDs.

6.5 ℓ1-analysis

We present a brief example of solving the ℓ1-analysis problem (4.5), which is used in sparse recovery when
the primal variable x is not sparse itself but rather sparse or compressible in some other domain. The
domain may be well-known, such as frequency space (W is a DFT) or a wavelet basis (W is a wavelet
transform), and for these cases W is invertible and even orthogonal and the problem may be solved using
a method like SPGL1. However, these bases are often chosen out of convenience and not because they
best represent the signal. More appropriate choices may be overcomplete dictionaries W ∈ R

p×n with
p≫ n, such as the undecimated wavelet transform, or the multilevel Gabor dictionary. The experiment
below uses the Gabor dictionary with p = 28n.

To solve the LASSO problem using a dictionary W , the two common approaches are analysis:

minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ǫ

(6.2)

and synthesis:
minimize ‖α‖1
subject to ‖y −AW ∗α‖2 ≤ ǫ,

(6.3)

with decision variable α. Similarly, the Dantzig selector approach would have the same objectives but
constraints of the form ‖A∗(y−Ax)‖∞ ≤ δ (analysis) and ‖A∗(y−AW ∗α)‖∞ ≤ δ (synthesis). When W
is not orthogonal, the two approaches are generally different in non-trivial ways, and furthermore, the
solutions to synthesis may be overly sensitive to the data [27].

The differences between analysis and synthesis are not very well understood at the moment for two
reasons. The first is that the analysis problem has not been studied theoretically. An exception is the very
recent paper [11] which provides the first results for ℓ1-analysis. The second is that there are no existing
efficient first-order algorithms to solve the analysis problem, with the exception of the recent NESTA [5]
and C-SALSA [1] algorithms, which both work on the LASSO version, and only when AA∗ = I.

33

0 0.5 1 1.5 2 2.5
−220

−200

−180

−160

−140

−120

−100

−80

−60

Frequency (GHz)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

Original signal

Recovered signal

0 0.5 1 1.5 2 2.5
−220

−200

−180

−160

−140

−120

−100

−80

−60

Frequency (GHz)

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

Original signal

Recovered signal

Fig. 11: Recovery of a small pulse 60 dB below a large pulse. The first plot employs a Dantzig selector, the bottom employs
LASSO.

With the dual conic approach, it is now possible to solve the smoothed analysis problem, and by
using continuation techniques, the effect of the smoothing is negligible. To illustrate, we constructed a
realistic test of the recovery of two radio-frequency radar pulses that overlap in time, as depicted in
Figure 11. The first pulse is large, while the second pulse has 60 dB smaller amplitude. Both have carrier
frequencies and phases that are chosen uniformly at random, and noise is added so that the small pulse
has a signal-to-noise ratio of 0.1 dB.

The signal is recovered at Nyquist rate resolution for 2.5 GHz bandwidth, and the time period is a
little over 1600 ns, so that n = 8,192. The sensing matrix A is modeled as a block-diagonal matrix with
±1 entries on the blocks, representing a system that randomly mixes and integrates the input signal,
taking 8 measurements every 100 ns, which is 12.5× below the Nyquist rate. Thus A is a 648 × 8,192

34

Dantzig selector LASSO
Reweighting step # cont. iter. time error # cont. iter. time error
0 7 821 89.2 s 2.7 · 10−3 6 569 54.8 s 2.2 · 10−3

1 8 1021 114.6 s 2.1 · 10−3 7 683 67.8 s 1.8 · 10−3

Table 1: Details on the simulation used in Figure 11. For both the Dantzig selector and LASSO versions, the algorithm
was run with continuation and reweighting. The “cont.” column is the number of continuation steps, the “iter.” column is
the number of iterations (over all the continuation steps), the “time” column is in seconds, and the “error” column is the
relative ℓ2 error. Each row is one solve of the Dantzig selector or the LASSO.

matrix and W is a 228,864× 8,192 matrix. We applied both the Dantzig selector and LASSO models to
this problem.

To solve the problems, we employed the AT variant with accelerated continuation. At each iteration,
the stopping tolerance is decreased by a factor of 1.5, and the continuation loop is ended when it no
longer produces significantly different answers, which is usually between 2 and 8 iterations. The value of
µ is set to

µ = 0.1
‖WxLS‖2
1
2‖xLS‖2

, (6.4)

where xLS is the least-squares solution to Ax = y, which is easy to calculate since m≪ n (and indepen-
dent of p).

To enhance the results, we employed an outer reweighting loop [19], in which we replace the ‖Wx‖1
term with ‖RWx‖1 for some diagonal weight matrix R. Each reweighting involves a full solve of either
the Dantzig selector or the LASSO. This loop is run until convergence, which is typically about 2 to 5
iterations. The results are plotted in the frequency domain in Figure 11. The large pulse is the dominant
spike at about 1.1 GHz, and it is easily recovered to very high precision (the relative ℓ2 error is less
than 5 · 10−3). The small pulse is at about 2.2 GHz, and because it has an SNR of 0.1 dB and the
measurements are undersampled by a factor of 12, it is not possible to recover it exactly, but we can still
detect its presence and accurately estimate its carrier frequency.

Table 1 reports the computational results of the test, first solving either the Dantzig selector or the
LASSO, and then taking a single reweighting step and re-solving. Each call of the algorithm takes about
100 iterations, and the Dantzig selector or the LASSO is solved in about 1 minute, which is impressive
since, due to the extremely large size of W , this problem is intractable using an interior-point method.

7 Software: TFOCS

The work described in this paper has been incorporated into a software package, Templates for First-
Order Conic Solvers (TFOCS, pronounced tee-fox), which will be made publicly available at http:

//tfocs.stanford.edu. As its name implies, this package is a set of templates, or building blocks, that
can be used to construct efficient, customized solvers for a variety of models. The package is implemented
in the Matlab programming language, and works with Matlab version 7.3 and higher; the core routines
do not require any external packages or Matlab toolboxes. The package also includes documented scripts
to reproduce each of the numerical examples presented in this paper.

To illustrate the usage of the software, let us show how to construct a simple solver for the smoothed
Dantzig selector model described in §3. We will begin by assuming that we are given the problem data
A, b, delta, and a fixed smoothing parameter mu. The basic solver templates require two functions to
complete their work. The first function computes the value and gradient of gsm, the smooth component
of the composite dual:

function [val, grad, x] = g_dantzig(A, y, x0, mu, z)

x = SoftThreshold(x0 - (1/mu) * A’ * (A * z), 1/mu);

grad = A’ * (y - A * x);

val = z’ * grad - norm(x, 1) - 0.5 * mu * norm(x - x0) .^ 2;

The second function computes the generalized projection associated with the nonsmooth component of
the dual, which is in this case h(z) = δ‖z‖1.

h = prox_scale(tfocs_prox(@(z)norm(z,1), @SoftThreshold), delta);

35

http://tfocs.stanford.edu
http://tfocs.stanford.edu

The tfocs prox function combines h and the proximity operator of h in a fashion that the software
understands; prox scale adjusts h from ‖z‖1 to δ‖z‖1 and also updates the proximity operator. The
functions h and g depend on the soft-thresholding operator:

function y = SoftThreshold(x, t)

y = sign(x) .* max(abs(x) - t, 0);

Armed with these functions, the following code solves the smoothed Dantzig selector, using the Auslen-
der/Teboulle first-order variant and the default choices for line search and stopping criteria.

function x = Dantzig_smoothed(A, y, delta, mu)

[m,n] = size(A);

x0 = zeros(n,1); z0 = zeros(n,1);

g_sm = @(z) g_dantzig(A, y, x0, mu, z);

affine = [];

z = tfocs_AT(g_sm_op, affine, h, z0);

x = SoftThreshold(x0 - (1/mu) * A’ * (A * z), 1/mu);

The second-to-last line of code calls the AT solver.
This simple solver is likely to be unnecessarily inefficient if A exhibits any sort of fast operator

structure, but this can be remedied rather simply. Note that the solver itself needs to have no knowledge
of A or y above; its interaction with these quantities comes only through calls to g_dantzig. Therefore, we
are free to rewrite g_dantzig in a more numerically efficient manner: for instance, if A is derived from a
Fourier transforms, we may substitute fast Fourier transform operations for matrix-vector multiplications.
This simple change will reduce the cost of each iteration from O(mn) to O(n log n), and the storage
requirements from O(n2) to O(n). For large-scale problems these savings can be quite significant.

A further improvement in performance is possible through careful management of the linear operator
calculations as described in §5.4. The TFOCS solver templates can perform this management automat-
ically. To take advantage of it, we replace g_dantzig with two functions: one which implements the
underlying linear operator, and one which implements the remainder of the smooth function. The details
of how to accomplish this are best left to the user guide [6].

Of course, as part of the complete package, we have supplied a solver for the Dantzig selector that
exploits each of these efficiencies, and others. Similar solvers have been created for the LASSO, TV,
and other models discussed here. But the flexibility of the lower-level templates will allow these same
efficiencies to be achieved for many models that we have not discussed here. In fact, evidently the
templates are not restricted to our specific conic form (1.9) or its dual, and we hope the software finds
application outside of the compressed sensing domain as well.

With the software release is a detailed user guide [6] that covers the usage, and documents the most
popular problem formulations and provide some examples. We refer the reader to the user guide for
further software details.

8 Conclusion

We have developed a convenient framework for constructing first-order methods, which is flexible and
handles a variety of convex cone problems, including problems that did not have efficient algorithms
before. On the implementation side, we have introduced ideas which lead to novel, stable, and efficient
algorithms. When comparing our implementation on specific problems such as the LASSO, which have
been intensively studied, our techniques appear surprisingly competitive with the state of the art.

The templates from this paper are flexible in a manner that has not yet been seen in sparse recovery
software. Not only are the solvers interchangeable and hence easy to benchmark one algorithm against
another, but they work with a wide variety of formulations which we hope will greatly enable other
researches. It is also our goal that the software will be easy to use for non-experts, and to this end our
future research will be to improve the usability of the software and to provide sensible default parameters.
One major topic to pursue is choosing the smoothing parameter µ. Further efforts will also be made to
improve the line search to take advantage of strong convexity, to better manage expensive projections,
and to use scaled norms so that dual variables are all on the same scale (this is an issue only for objectives
with several additive terms, as in the TV with analysis problem in §4.6 and §6.3).

36

A subsequent paper will cover these issues, as well as further investigating local strong convexity and
how to take advantage of this in an optimal manner, and improving the accelerated continuation scheme
by taking into account the inexact solves. The software and user guide [6] will be kept up-to-date and
supported.

A Creating a Synthetic Test Problem

It is desirable to use test problems that have a precisely known solution. In some cases, such as compressed sensing problems
in the absence of noise, the solution may be known, but in general this is not true. A common practice is to solve problems
with an interior-point method (IPM) solver, since IPM software is mature and accurate. However, IPMs do not scale
well with the problem size, and cannot take advantage of fast algorithms to compute matrix-vector products. Another
disadvantage is that the output of an IPM is in the interior of the feasible set, which in most cases means that it is not
sparse.

Below, we outline procedures that show how to generate problems with known exact solutions (to machine precision) for
several common problems. The numerical experiments earlier in this paper used this method to generate the test problems.
This is inspired by [54], but we use a variation that gives much more control over the properties of the problem and the
solution. Another idea from the very recent work [43] suggests a method that does not require any perturbation of the
measurement matrix but requires solving feasibility problem using the POCS method.

Basis pursuit. Consider the basis pursuit problem and its dual

minimize ‖x‖1
subject to Ax = y,

maximize 〈y, λ〉
subject to ‖A∗λ‖∞ ≤ 1.

At the optimal primal and dual solutions x⋆ and λ⋆, the KKT conditions hold:

Ax⋆ = y ‖A∗λ⋆‖∞ ≤ 1 (A∗λ⋆)T = sign(x⋆
T),

where T = supp(x⋆).
To generate the exact solution, the first step is to choose A and y. For example, after choosing A, y may be chosen as

y = Ax̃ for some x̃ that has interesting properties (e.g., x̃ is s-sparse or is the wavelet coefficient sequence of an image).
Then any primal dual solver is run to high accuracy to generate x⋆ and λ⋆. These solutions are usually accurate, but not
quite accurate to machine precision.

The idea is that x⋆ and λ⋆ are exact solutions to a slightly perturbed problem. Define T = supp(x̂); in sparse recovery
problems, or for any linear programming problem, we have |T | ≤ m where m is the length of the data vector y. The matrix
A is modified slightly by defining Ã← AD where D is a diagonal matrix. D is calculated to ensure that ‖(DA∗λ⋆)Tc‖∞ < 1
and (DA∗λ⋆)T = sign(x⋆). If the original primal dual solver was run to high accuracy, D is very close to the identity. In
practice, we observe that the diagonal entries of D are usually within .01 of 1.

The primal variable x⋆ is cleaned by solving ÃT x⋆
T = y; this is unique, assuming AT has full column rank. If the original

problem was solved to high accuracy (in which case D will have all positive entries), then the cleaning-up procedure does
not affect the sign of x⋆. The vectors x⋆ and λ⋆ are now optimal solutions to the basis pursuit problem using Ã and y.

The LASSO. A similar procedure is carried out for the LASSO and its dual given by

minimize ‖x‖1
subject to ‖Ax− y‖2 ≤ ǫ,

maximize 〈y, λ〉 − ǫ‖λ‖2
subject to ‖A∗λ‖∞ ≤ 1.

Let z be the variable such that y = Ax+ z, then strong duality holds at (x⋆, λ⋆) if

〈Ax⋆, λ⋆〉 − ‖x⋆‖1 + 〈z, λ⋆〉 − ǫ‖λ⋆‖2 = 0.

The operator Ã ← AD is chosen as before, so 〈Ãx⋆, λ⋆〉 − ‖x⋆‖1 = 0. Thus z needs to satisfy 〈z, λ⋆〉 = ǫ‖λ⋆‖2, i.e.,
z = ǫλ⋆/‖λ⋆‖2. This means that x⋆ and λ⋆ are optimal solutions to the LASSO with data Ã and ỹ = Ãx⋆ + z.

Other problems. For basis pursuit and the LASSO, it is possible to obtain exact solutions to the smoothed problem (with
d(x) = 1

2
‖x−x0‖22). For the Dantzig selector, an exact solution for the smoothed problem can also be obtained in a similar

fashion. To find an exact solution to the unsmoothed problem, we take advantage of the exact penalty property from §3.4
and simply find the smoothed solution for a sequence of problems to get a good estimate of x0 and then solve for a very
small value of µ.

Acknowledgements This work has been partially supported by ONR grants N00014-09-1-0469 and N00014-08-1-0749,
by a DARPA grant FA8650-08-C-7853, and by the 2006 Waterman Award from NSF. We would like to thank E. van den
Berg for a careful reading of the manuscript, as well as M. Friedlander and two anonymous referees for many suggestions.
SRB would like to thank P. Stobbe for his Hadamard Transform and Gabor dictionary code.

37

References

1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained op-
timization formulation of imaging inverse problems. IEEE Transactions on Image Processing 19(11) (2010). DOI
10.1109/TIP.2010.2076294

2. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM Journal
on Optimization 16(3), 697–725 (2006)

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences 2(1), 183–202 (2009)

4. Beck, A., Teboulle, M.: Convex Optimization in Signal Processing and Communications, chap. Gradient-Based Algo-
rithms with Applications in Signal Recovery Problems. Cambridge University Press (2010)

5. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J.
Imaging Sci. 4(1), 1–39 (2011)

6. Becker, S., Candès, E.J., Grant, M.: Templates for first-order conic solvers user guide. Tech. rep. (2010). Preprint
available at http://tfocs.stanford.edu

7. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scien-
tific Computing 31(2), 890 (2009). DOI 10.1137/080714488. URL http://link.aip.org/link/SJOCE3/v31/i2/p890/

s1&Agg=doi

8. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific (2003)
9. Boyd, D., vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

10. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM Journal on
Optimization 20, 1956–1982 (2010)

11. Candès, E.J., Eldar, Y.C., Needell, D.: Compressed sensing with coherent and redundant dictionaries. Tech. rep.
(2010). Preprint available at http://arxiv.org/abs/1005.2613

12. Candès, E.J., Guo, F.: New multiscale transforms, minimum total-variation synthesis: applications to edge-preserving
image reconstruction. Signal Processing 82(11), 1519 – 1543 (2002)

13. Candès, E.J., Plan, Y.: Tight oracle bounds for low-rank matrix recovery from a minimal number of random measure-
ments. CoRR abs/1001.0339 (2010)

14. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics
9(6), 717–772 (2009)

15. Candès, E.J., Romberg, J.K.: Practical signal recovery from random projections. In: SPIE Conference on Computational
Imaging, pp. 76–86 (2005)

16. Candès, E.J., Romberg, J.K.: ℓ1-magic. Tech. rep., Caltech (2007). URL http://www.acm.caltech.edu/l1magic/

17. Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics
35(6), 2313–2351 (2007)

18. Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions Information
Theory 56(5), 2053–2080 (2010)

19. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis
and Applications 14(5–6), 877–905 (2008)

20. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J.
Math. Imaging Vision 40(1), 120–145 (2010)

21. Ciarlet, P.G.: Introduction to numerical linear algebra and optimisation. Cambridge University Press (1989)
22. Combettes, P.L., Dũng, D., Vũ, B.C.: Dualization of signal recovery problems. Set-Valued and Variational Analysis

18, 373–404 (2010)
23. Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery.

IEEE J. Sel. Topics Signal Processing 1(4), 564–574 (2007)
24. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul.

4(4), 1168–1200 (2005)
25. Donoho, D.L., Tsaig, Y.: Fast solution of ℓ1 minimization problems when the solution may be sparse. IEEE Trans.

Inform. Theory 54(11), 4789–4812 (2008)
26. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals of Statistics 32(2), 407–499 (2004)
27. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Problems 23, 947–968 (2007)
28. Figueiredo, M.A.T., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed

sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007)
29. Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM Journal on Optimization 18(4), 1326–

1350 (2007). DOI 10.1137/060675320. URL http://link.aip.org/link/?SJE/18/1326/1

30. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent.
Journal of Statistical Software 33(1) (2010)

31. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int.
J. Systems Science 12(8), 989–1000 (1981)

32. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx

(2010)
33. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. CoRR abs/0910.1879 (2009)
34. Gu, M., Lim, L.H., Wu, C.J.: PARNES: A rapidly convergent algorithm for accurate recovery of sparse and approxi-

mately sparse signals. Tech. rep. (2009). Preprint available at http://arxiv.org/abs/0911.0492
35. Güler, O.: New proximal point algorithms for convex minimization. SIAM Journal on Optimization 2(4), 649–664

(1992). DOI 10.1137/0802032. URL http://link.aip.org/link/?SJE/2/649/1

36. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for ℓ1-minimization: Methodology and convergence. SIAM
Journal on Optimization 19(3), 1107–1130 (2008)

37. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, vol. I and II. Springer-Verlag
(1993)

38

http://tfocs.stanford.edu
http://link.aip.org/link/SJOCE3/v31/i2/p890/s1&Agg=doi
http://link.aip.org/link/SJOCE3/v31/i2/p890/s1&Agg=doi
http://arxiv.org/abs/1005.2613
http://www.acm.caltech.edu/l1magic/
http://link.aip.org/link/?SJE/18/1326/1
http://cvxr.com/cvx
http://arxiv.org/abs/0911.0492
http://link.aip.org/link/?SJE/2/649/1

38. James, G., Radchenko, P., Lv, J.: DASSO: Connections Between the Dantzig Selector and Lasso. Journal of the Royal
Statistical Society, Series B 71, 127–142 (2009)

39. Koh, K., Kim, S.J., Boyd, S.P.: Solver for l1-regularized least squares problems. Tech. rep., Stanford University (2007).
http://www.stanford.edu/\simboyd/l1_ls/

40. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with o(1/ǫ) iteration-complexity for cone program-
ming. Mathematical Programming (2009). DOI 10.1007/s10107-008-0261-6. URL http://www.springerlink.com/

index/10.1007/s10107-008-0261-6

41. Larsen, R.M.: PROPACK: Software for large and sparse SVD calculations. http://soi.stanford.edu/~rmunk/

PROPACK/ (2004)
42. Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization.

Mathematical Programming (2011)
43. Lorenz, D.: Constructing test instances for basis pursuit denoising. Tech. Rep. 1103.2897, arXiv (2011)
44. Lu, Z.: Primal-dual first-order methods for a class of cone programming. submitted to INFORMS Journal on Computing

(2009). Preprint available at http://www.math.sfu.ca/~zhaosong/ResearchPapers/pdfirst_DS_2ndrev.pdf
45. Malgouyres, F., Zeng, T.: A predual proximal point algorithm solving a non negative basis pursuit denoising model.

Int. J. Comp. Vision 83(3), 294–311 (2009)
46. Mangasarian, O.L., Meyer, R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17, 745–752

(1979)
47. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)
48. Mosek ApS: The MOSEK Optimization Tools Version 2.5 (2002). http://www.mosek.com
49. Nemirovski, A., Yudin, D.: Problem complexity and method efficiency in optimization. Wiley-Interscience Series in

Discrete Mathematics. John Wiley & Sons Ltd. (1983)
50. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady

AN USSR (translated as Soviet Math. Docl.) 269(543–547) (1983)
51. Nesterov, Y.: On an approach to the construction of optimal methods of minimization of smooth convex functions.

Ekonomika i Mateaticheskie Metody 24, 509–517 (1988). (Russian)
52. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, Applied Optimization, vol. 87. Kluwer,

Boston (2004)
53. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Programming, Series A 103, 127–152

(2005)
54. Nesterov, Y.: Gradient methods for minimizing composite objective function. Tech. Rep. CORE 2007/76, Université

Catholique de Louvain, Louvain-la-Neuve, Belgium (2007)
55. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising.

Comm. in Math. Sciences 8(1), 93–111 (2010)
56. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)
57. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization

14, 877–898 (1976)
58. Romberg, J.K.: The Dantzig selector and generalized thresholding. In: Proc. IEEE Conf. Info. Sci. and Sys. Princeton,

New Jersey (2008)
59. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation noise removal algorithm. Physica D 60, 259–268 (1992)
60. Saunders, M., Kim, B.: PDCO: Primal-dual interior method for convex objectives. Tech. rep., Stanford University

(2002). Available from http://www.stanford.edu/group/SOL/software/pdco.html

61. Starck, J.L., Ngyuen, M.K., Murtagh, F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal
Processing 83, 2279–2283 (2003)

62. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58(1),
267–288 (1996)

63. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization (2008). Available at http:

//www.math.washington.edu/~tseng/papers.html, last accessed Sept 2009
64. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image

processing. SIAM Journal on Scientific Computing 31, 2047–2080 (2009)
65. Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace

optimization and continuation. SIAM Journal on Scientific Computing 32(4), 1832–1857 (2010)
66. Wright, S.J.: Solving ℓ1-regularized regression problems. In: International Conference Combinatorics and Optimization,

Waterloo (2007)
67. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Transactions

on Signal Processing 57(7), 2479–2493 (2009)
68. Yin, W.: Analysis and generalizations of the linearized Bregman method. Submitted to SIAM Journal Imaging Sciences

(2009)
69. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ1 minimization with applications to

compressed sensing. SIAM Journal on Imaging Sciences 1(1), 143–168 (2008)

39

http://www.stanford.edu/$\sim $boyd/l1_ls/
http://www.springerlink.com/index/10.1007/s10107-008-0261-6
http://www.springerlink.com/index/10.1007/s10107-008-0261-6
http://soi.stanford.edu/~rmunk/PROPACK/
http://soi.stanford.edu/~rmunk/PROPACK/
http://www.math.sfu.ca/~zhaosong/ResearchPapers/pdfirst_DS_2ndrev.pdf
http://www.mosek.com
http://www.stanford.edu/group/SOL/software/pdco.html
http://www.math.washington.edu/~tseng/papers.html
http://www.math.washington.edu/~tseng/papers.html

	Introduction
	Conic formulations
	A Novel Algorithm for the Dantzig selector
	Further Instantiations
	Implementing first-order methods
	Numerical experiments
	Software: TFOCS
	Conclusion
	Appendix: Creating a Synthetic Test Problem

