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1 Introduction1

Broadly speaking, any economic variable is indexed by time. When we read let yt be the observation at

time t, we are implicitly assuming that y is observed at a given frequency, i.e. every t periods. The choice

of the frequency is often given by economic arguments. But most of the time it is somewhat subjective.

For example, when studying financial returns should we sample daily, weekly or hourly?

The choice of the frequency clearly influences the estimation results. Given the same economic or

econometric model, estimation results are different for each frequency. However, it is clear that the

estimated models for different frequencies should be related. For instance, a model for quarterly data

should be related to a model for annual data, as the latter is a temporal aggregation of the former along

the year. Therefore, not only are the annual data a function of the quarterly data, but the annual model

is also a function of the quarterly model. Moreover, the quarterly estimated model is richer, information-

wise, as the number of observations used for estimation is four times larger than for the annual model.

The way in which these two models interact is the subject of this survey. In a univariate and mul-

tivariate times series context, i.e. ARIMA, GARCH, vector ARMA and multivariate GARCH models,

we explain how to infer the temporally aggregated model (at the low frequency) from the disaggregate

one (at the high frequency). Temporal aggregation has been studied in econometric literature for the

last 35 years, and general conditions have been obtained in terms of order conditions (i.e. polynomial lag

length), parameter estimation, asymptotic behaviour, etc. A selected literature consists of Amemiya and

Wu (1972), Tiao (1972), Brewer (1973), Wei (1978, 1990), Weiss (1984), Stram and Wei (1986), Lütkepohl

(1987), Nijman and Palm (1990), Drost and Nijman (1993), Marcellino (1999), Breitung and Swanson

(2002) and Hafner (2004). Yet, to our knowledge, a complete up-to-date survey of the methodology is

currently unavailable.

In a nutshell, deriving the low frequency model from the high frequency model involves two stages.

1The authors would like to thank Luc Bauwens, Pierluigi Daddi, Christian M. Hafner, Marc Hallin, Theo

Nijman, Giacomo Sbrana, Luc Van Meensel, Bas Werker, the ECORE seminar and the Stockholm ENTER 2006

Jamboree participants for helpful comments and suggestions. The views expressed are those of the authors and

do not necessarily reflect those of the Bank of Italy. The scientific responsibility is assumed by the authors. Final

version forthcoming in: Journal of Economic Surveys (doi: 10.1111/j.1467-6419.2007.00538.x). The definitive

version is available at www.blackwell-synergy.com
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First, time series models are specified in terms of lag polynomials of a given order. The technique of

temporal aggregation allows us to infer the orders of the low frequency model (i.e. annual) from those

of the high frequency model (i.e. quarterly). For instance, we can answer questions such as: If the high

frequency model is an ARMA(1, 1), is the low frequency model an ARMA(1, 1) as well? If not, which one

is it? Second, once the orders are inferred, we recover the parameters of the low frequency model from

the high frequency ones, rather than estimating them. Therefore, the parameters of the low frequency

model incorporate all the information content of the high frequency data.

In general, the way variables aggregate may take different forms. Two aggregation schemes are often

found in economics: stock and flow. Stock, also called systematic sampling, refers to aggregation in which

the aggregated variable is the result of sampling every k periods from the high frequency variable. For

instance, annual observations may be obtained by sampling every four periods of quarterly observations.

Flow, also called temporal aggregation, refers to aggregation in which the aggregated variable is the sum,

every k period, of the high frequency variable. Hence the annual observations are the sum of the quarterly

observations every four periods. Rates and indexes, such as interest rate, unemployment rate or CPI, are

stock variables while GDP, public deficit or financial returns are examples of flow variables.

The analysis of temporal aggregation starts with the seminal article of Amemiya and Wu (1972). They

show that, if the original variable is generated by an AR model of order p, the aggregate variable follows

an AR model of order p with MA residuals structure. Tiao (1972) and Amemiya and Wu (1972) study

the issue of information loss due to aggregation. They compare - theoretically and with simulations -

predictors based on low and high frequency data. They conclude that the optimal predictor built from

the high frequency data performs remarkably well with respect to the optimal predictor built from the low

frequency sample.2 Brewer (1973) presents a generalization of the results obtained by Amemiya and Wu

for ARMA models with exogenous variables (ARMAX models). Wei (1978) derives the model structure

for temporally aggregated data when the high frequency model includes seasonal polynomials. He shows

that if the frequency of aggregation is the same as the seasonal frequency (for instance, intra-annual

seasonality and annual aggregation), the aggregate model reduces to a model without seasonality. The

first author to investigate temporal aggregation for non-stationary models, specifically IMA(d, q) models,

2This theoretical result, although correct, is arguable at an empirical level. For instance, Silvestrini et al.

(2008) show, in an empirical application, that the forecasting capabilities of the temporally aggregated model

outperform the ones of the model estimated at the higher frequency. See also Abraham (1982).
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is Tiao (1972). Weiss (1984) discusses flow and stock aggregation schemes for ARIMA models. Stram

and Wei (1986) focus on the relationship between the autocovariance function of the original disaggregate

series and its aggregate counterpart. They also find that, in some special cases, the autoregressive order

of ARIMA models can be reduced after temporal aggregation. Drost and Nijman (1993) derive the order

conditions for temporally aggregated univariate GARCH models. They show that when the variable is

flow, the parameters of the aggregated model depend on the disaggregate fourth moment, while in the

stock case there is dependence only up to the second moment. Thus, in this context, flow and stock

aggregation schemes produce different outcomes.

All the contributions so far quoted deal with univariate models. In a general multivariate framework,

Lütkepohl (1987) contains a deep analysis of temporal (and contemporaneous) aggregation for VARMA

models. It also examines the impact of temporal aggregation on the efficiency of the forecasts. For

instance, if the interest is predicting annual inflation, issues such as “Is it better to predict monthly

and to aggregate the predictions or rather to predict using annual data?” are addressed. Marcellino

(1999) focuses on temporal aggregation of VARMA models and on the effects of temporal aggregation on

several time series properties (such as causality, exogeneity, cointegration, unit roots, seasonal unit roots,

impulse response functions, trend-cycles decompositions, etc.). Temporal aggregation of multivariate

models is complicated by spurious instantaneous causality that may be induced by time aggregation.

This phenomenon has also been analysed by Breitung and Swanson (2002) and by Hafner (2004).

Two issues are intrinsically related to temporal aggregation. First, a vast literature analyses the

problem of unobserved or missing endogenous variables. Harvey (1981) proposes a clear definition of

missing observation: a stock variable sampled less and less frequently with respect to its original model

specification. We may then be interested in computing the orders and the parameters of the disaggregate

(monthly) model starting from the aggregate (annual) one, estimated from data. The whole subject is

made more complex by parameter identification issues, see Palm and Nijman (1984). In other words, the

same low frequency model may disaggregate to several high frequency models, which are observationally

equivalent at the low frequency.

Second, temporal aggregation is not the only kind of aggregation. Many other economic phenomena

may be analysed from a cross-section perspective. This scheme of aggregation, through individuals rather

than through time, is called contemporaneous or cross-section aggregation. If these individual series are

known to follow a stationary ARMA process, it is possible to investigate whether the aggregate observed
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series follows an ARMA process as well. We refer the reader to Granger and Morris (1976), Lütkepohl

(1984, 1987), Granger (1987, 1990), among others, for a thorough discussion. Contemporaneous aggrega-

tion of GARCH models has been analysed by Nijman and Sentana (1996). Meddahi and Renault (2004)

study temporal aggregation of square-root stochastic autoregressive volatility models. Zaffaroni (2007)

focuses on aggregation of exponential stochastic volatility models and non-linear moving average models.

To conclude, a comment is due on what we do not cover in this survey. Temporal aggregation is

a vast field and almost any subject in time series analysis may be investigated within this framework.

Non-linearities, long memory, random aggregation, time continuous aggregation, spatial aggregation or

factor models are issues that, although fascinating, are not discussed.3

The outline of the rest of the paper is as follows: Section 2 introduces the notation, the aggregation

schemes and the intuitive foundations of the technique. Section 3 presents temporal aggregation for

ARIMA types of models, including an empirical application based on macroeconomic data. Section 4

surveys temporal aggregation of GARCH models, focusing on the GARCH(1, 1) and on an empirical

application based on financial data. Section 5 deals with temporal aggregation of VARMA models

and with spurious causality. Section 6 derives results for temporal aggregation of multivariate GARCH

(MGARCH) models and presents an empirical application on financial data. Section 7 summarizes and

concludes.

Throughout the survey we favour intuition to technicalities, which can be found in the appropriate

references. For instance, the second half of Section 2 is wordy but essential for the understanding of the

rest of the survey. Yet, the topic is intrinsically technical - this is a methodological survey - and hence

the formulae are unavoidable. The structure of all the sections is very similar. After a brief introduction,

we present the main result - such that the reader uniquely interested in applications can skip the rest of

the section - that we derive, with more or less detail, afterwards. Last, throughout the survey we focus

on the flow aggregation scheme. Results for the stock case can be found in summary Tables 4, 5 and 6

and in the Appendix of Silvestrini and Veredas (2005).

3Random aggregation techniques are presented by Jorda and Marcellino (2004). Nonlinearities issues are partly

discussed in Granger and Lee (1993) and Proietti (2006). Links with time continuous models may be found in

Nelson (1990) and Drost and Werker (1996). An analysis of the consequences of aggregation on long memory

processes is in Granger (1980a) and in Tsai and Chan (2005). Spatial aggregation has been studied by Giacomini

and Granger (2004) and factor models by Forni et al. (2000).
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2 Notation and Aggregation Schemes

Let yt be a random variable observed at high frequency t. Sample information for the low frequency or

aggregate random variable is assumed to be available only every kth period (k, 2k, 3k, . . .), where k, an

integer value larger that one, is the aggregation frequency. In general, we define the aggregate variable

as

y∗t =

A
∑

j=0

wjyt−j = W (L)yt (1)

This is a linear combination of current and past values of yt, where W (L) =
∑A

j=0 wjL
j is a polynomial

of order A in the lag operator L that determines the aggregation scheme. The weights wj are exactly

known. Equation (1) embeds two important aggregation schemes: i) Flow : A = k − 1 and wj = 1, for

j = 0, . . . , A. Or W (L) = 1 + L + . . . + Lk−1, i.e. aggregation of yt carried out over k periods. For

instance, if yt is monthly and k = 3, we get quarterly sums of the monthly observations. ii) Stock : A = 0

and w0 = 1. One every k observations is kept, the rest being skipped, i.e. y∗t = ykt. For instance, if the

observed time unit t is monthly and k = 3, yt is only observed every third period.

Other important cases are also covered by (1): i) average, wj = 1
k , for j = 0, . . . , k − 1, and ii)

weighted average, wj =
χj

k , for j = 0, . . . , k − 1, where χj are the weights that sum to one. Note that

flow, averaging and weighted averaging aggregation schemes are rolling sums. In other words, (1) is

computed at every time t, which means a sequence of sums that overlap over k − 1 periods. However,

the aggregate series does not overlap. To indicate the aggregate series we introduce another time scale,

T , that runs in kt periods. So that t = . . . , 0, 1, 2, . . ., while T = . . . , 0, k, 2k, . . ., as is illustrated in

Figure 1 for k = 12. Thus, we sub-index the aggregated series by T using the notation y∗T = y∗kt. Flow

and stock are the schemes most often found in economics. In the following pages we focus on the flow

case, although references to the stock case will be made whenever it enhances the comprehension of the

technique. Detailed results for the stock aggregation can be found in the Appendix of Silvestrini and

Veredas (2005).

[FIGURE 1 ABOUT HERE]

All the results shown in the next sections rely on the same procedure, which we outline intuitively

later in this section. Assume that the disaggregate series, yt, follows the model

φ(L)yt = θ(L)εt (2)
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where t = . . . , 0, 1, 2, . . ., φ(L) and θ(L) are lag polynomials. Likewise, the temporally aggregated series,

y∗T , follows the model

β(B)y∗T = η(B)ε∗T (3)

where T = . . . , 0, k, 2k, . . ., β(B) and η(B) are aggregate lag polynomials and the operator B is in T time

units, running in kt periods. If the aggregate data y∗T are a function of the disaggregate data yt - given

by (1) - we can think that the econometric model for y∗T - given by (3) - is also a function of the model

for yt - given by (2). The expected value of yt is a linear combination of past observations and past error

terms. The number of lagged observations is given by the orders of the AR and MA polynomials that are

determined, in turn, by the autocovariance structure of yt. Once these orders are chosen, we can estimate

the parameters as (φ̂, θ̂) = (φ̂(y), θ̂(y)). The expected value of y∗T is also a function of its own past.

However, it differs with respect to yt as y∗T = W (L)yt. Therefore the AR and MA aggregate polynomial

orders are, through y∗T , a function of the autocovariance structure of yt. And the estimated parameters

as well: (β̂, η̂) = (β̂(y), η̂(y)). Furthermore, the estimated parameters, (φ̂, θ̂), should be such that they

incorporate all the maximum information at the minimum cost. Hence (β̂, η̂) = (β̂(φ̂, θ̂), η̂(φ̂, θ̂)): the

parameters of the aggregate model are a function of the parameters of the disaggregate model.

Three conclusions can already be extracted. First, we not only aggregate data, we also aggregate the

model. In other words, the aggregate model is not estimated but inferred from the disaggregate model.

Here, inferred has a twofold meaning: it refers i) to the lag structures of the AR and MA polynomials and

ii) to the corresponding parameters. Second, (φ, θ) are estimated with all the disaggregate observations.

Thus, β̂(φ̂, θ̂) and η̂(φ̂, θ̂) contain all the information of the high frequency sample. This gives a more

accurate estimate of the parameters, in terms of consistency and efficiency, than if they were estimated

from y∗T , which has k times fewer observations. Third, the use of this technique in practical applications

implies that as soon as new disaggregate observations are available the aggregate parameters can be

updated. This is a very useful tool for situations where decisions are taken, say, annually, but information

is available, for instance, monthly. It is not necessary to wait until the end of the year to re-estimate the

model. Along the year the annual model may be updated as soon as monthly observations are released,

and the updated model can be used for monitoring and forecasting.4

The two models are linked via a polynomial, which we denote by T (L). This polynomial, function

of the roots of φ(L) and the aggregation scheme (1), drives us from one model to the other and is

4See Silvestrini et al. (2008) for an application to the French public deficit.
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the cornerstone of the method. In general, the AR and MA polynomials of the disaggregate model

expressed in terms of their roots are multiplied by T (L), i.e. T (L)φ(L)yt = T (L)θ(L)εt. The resulting

AR polynomial, T (L)φ(L), has powers of L only divisible by k. We also redefine Lk = B. In this way yt

is transformed into y∗T . Furthermore, the order of the AR polynomial remains the same under temporal

aggregation. Since T (L) is a function of the inverted roots of φ(L), the roots of β(B) are the inverted

roots of φ(L) powered by k.

The moving average part of the model is calculated multiplying the disaggregate MA polynomial

by the T (L) operator, i.e. T (L)θ(L)εt. The product T (L)θ(L) includes some AR components, the

aggregation scheme (both in T (L)) and the MA part. We therefore end up with two MA aggregate

polynomials: T (L)θ(L)εt and η(B)ε∗T . Using deterministic rules, we infer the order of the aggregate MA

polynomial, η(B), from the order of T (L)θ(L). Last, we compute the parameters in η(B) equating the

autocovariance structures of both MA polynomials, T (L)φ(L)εt and η(B)ε∗T . The result is a non-linear

system of equations that can be easily solved.

When yt is not stationary, there is seasonality or exogenous variables, the conditional variance of the

error term has GARCH effects, or for any multivariate extension, the technique becomes slightly more

difficult. Nevertheless, the mechanism remains the same: there is always a polynomial function that links

the two models. The aggregate AR polynomial is inferred straightforwardly and the MA structure is

computed equating the autocovariance structures of the disaggregate and aggregate models.

3 ARIMA Class

In this section we present temporal aggregation for models belonging to the ARIMA class. Section 3.1

deals with pure AR models, 3.2 with ARMA models, 3.3 with ARIMA models, 3.4 with ARIMAX and

3.5 with seasonal ARIMA models. The whole section ends with an empirical application. The main

references are Amemiya and Wu (1972), Brewer (1973), Wei (1978), Weiss (1984) and Stram and Wei

(1986).
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3.1 AR Models

The AR(p) model for yt is defined as

φ(L)yt = εt (4)

where φ(L) = 1 − φ1L − . . . − φpL
p is an autoregressive polynomial of order p and εt is a white noise

error term with zero mean and constant variance σ2
ε . Let δj , j = 1, . . . , p, be the distinct inverted

roots of φ(L) polynomial, each assumed to lie inside the unit circle. We express φ(L) in terms of δj as

φ(L) =
∏p

j=1 (1 − δjL). The following result shows how to derive the appropriate specification for the

temporally aggregated variable y∗T .

Result 1 The temporal aggregation of yt as specified in model (4), denoted y∗T , is represented by an

ARMA(p, r) where

r =

⌊

(p+ 1)(k − 1)

k

⌋

and bbc indicates the integer part of a real number b.

To derive this result we follow the intuitive guidelines outlined in Section 2. The link between the

models for yt and y∗T is given by the polynomial T (L). For the AR(p) process, it takes the form5

T (L) =

[

1 − Lk

1 − L

] p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

(5)

which has two parts. The first involves the ratio of two polynomials which equals
∑k−1

j=0 L
j , i.e. the

temporal aggregation scheme. The denominator of the product contains the inverted roots of the AR

polynomial and its numerator contains the same roots, but powered by the aggregation frequency. Mul-

tiplying both sides of (4) by T (L) we get

p
∏

j=1

[

1 − δk
jL

k
]

y∗t = T (L)εt (6)

where y∗t is the temporally aggregated variable with temporal index t operating on the disaggregate time

unit T . The powers of the product T (L)φ(L) are only divisible by the aggregation frequency. In other

words, the only non-zero coefficients in T (L)φ(L) are those of powers of L divisible by k and the AR

5The general form of this polynomial will be given when we introduce seasonality. To begin, we start with the

easiest form, adding terms as we augment the model.
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order is unchanged by temporal aggregation:6

β(B)y∗T =

p
∏

j=1

[

1 − δk
jL

k
]

y∗T (7)

We now focus on the right-hand side (RHS) of (6) which represents a moving average structure

T (L)εt =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

](

k−1
∑

i=0

Li

)

εt =

p
∏

j=0

(

k−1
∑

i=0

δi
jL

i

)

ε∗t

with δ0 = 0. This is a linear combination of aggregated error terms. More precisely, T (L)εt is a moving

average of order (p+ 1)(k − 1). It is expressed in terms of t rather than T , however. To switch the time

frequency and to get the appropriate order of η(B), we divide the order of T (L)θ(L) by k. That is, the

order of η(B) corresponds to bk−1(p + 1)(k − 1)c in aggregate time units T . Amemiya and Wu (1972)

prove that the MA polynomial for the aggregate series y∗T is invertible, i.e. the MA roots lie outside the

unit circle.

Finally, we infer the parameters of the temporally aggregated model. For the AR part it is trivial, as

shown in (7). To compute the r parameters in η(B), plus the variance σ2
ε∗ , we equate the autocovariance

structures of η(B) and
∏p

j=0

(

∑k−1
i=0 δ

i
jL

i
)

ε∗t . Since they are MA polynomials, only the variance and the

first r autocovariances at time T are different from zero. As the number of unknowns is also r + 1, the

problem consists in solving a non-linear system of equations with as many unknowns as equations.

3.2 ARMA Models

Next, we augment (4) assuming that yt follows an autoregressive moving average (ARMA) model

φ(L)yt = θ(L)εt (8)

where φ(L) = 1 − φ1L− . . .− φpL
p and θ(L) = 1 + θ1L+ . . .+ θqL

q are the autoregressive and moving

average polynomials, of length p and q, respectively. These polynomials are assumed to have their roots

outside the unit circle and to have no common roots.

Until now we have introduced the polynomial T (L) as the cornerstone of the method. However, we

have not justified it. Why does it take the form it does and not another one? Why do the aggregate AR

6We impose that temporally aggregated ARIMA type models display no hidden periodicity of order k. This

means that in (6) the AR and MA polynomials share no roots such that no root cancellation occurs and no AR

order reduction is observed. We refer to Stram and Wei (1986) for further discussion.
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parameters appear so easily while the MA are more time consuming to calculate? Brewer (1973) provides

a nice interpretation of T (L) that we summarize later in the section.

To obtain the temporally aggregated model each side of (8) has to be multiplied by T (L). The

polynomial T (L) must be such that the powers of the lag operator L appearing in the product T (L)φ(L)

are all divisible by k. This requirement is expressed by Brewer (1973) in matrix form as


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(9)

where the matrices are of order (p + h + 1) × (p + 1), (p + 1) × 1 and (c + 1)k × 1, respectively, and

they stand for T (L), φ(L) and β(L). The only dimension that we know is that of φ(L), (p+ 1)× 1. The

dimensions of T (L) and β(L) depend on h and c respectively, which are unknown. However, we may

recover them through several order restrictions that are implicit in (9). The product T (L)φ(L) has the

dimension (p+ h+ 1)× 1. A first restriction that helps us to recover h and c is that the number of rows

on both sides of (9) are identical:

p+ h+ 1 = (c+ 1)k ⇒ p+ h+ 1 = ck + k (10)

In addition, there are t1, t2, . . . , th unknown coefficients in the T (L) polynomial to match with (c+1)(k−1)

equality conditions that have been imposed (on the RHS matrix there are exactly (c + 1)(k − 1) equal

coefficients). Therefore, a second restriction is

h = (c+ 1)(k − 1) ⇒ h = ck + k − c− 1 (11)

Substituting (10) in (11) we get h = p+ h+ 1− c− 1 ⇒ c = p. That is, the order of the AR polynomial

is unchanged under temporal aggregation (p = c). Regarding the MA aggregate polynomial, T (L)θ(L),
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its order is h+ q. Recall that h = (p+ 1)(k − 1). Hence h+ q = (p+ 1)(k − 1) + q. The autocovariance

of order kr is

E[T (L)θ(L)εtT (L)θ(L)εt−kr]

which is different from zero for r ≤ bk−1 ((p+ 1)(k − 1) + q)c. Thus, the maximum aggregate MA order

is r = bk−1 ((p+ 1)(k − 1) + q)c. This derivation brings the following result.

Result 2 The temporal aggregation of yt as specified in model (8), denoted y∗T , is represented by an

ARMA(p, r) where

r =

⌊

(p+ 1)(k − 1) + q

k

⌋

Indeed, multiplying both sides of (8) by T (L),

p
∏

j=1

[

1 − δk
jL

k
]

y∗t = T (L)





q
∑

j=0

θjL
j



 εt

with θ0 = 1. The AR part of the model is treated exactly in the same way as in the pure autoregressive

case. And the MA part is of order (p + 1)(k − 1) + q in time t or of order bk−1 ((p+ 1)(k − 1) + q)c in

time T .

3.3 ARIMA Models

If we make the further assumption that yt follows an integrated ARMA (ARIMA), equation (8) becomes

φ(L)(1 − L)dyt = θ(L)εt (12)

where d is a real integer denoting the order of integration. Temporal aggregation for ARIMA models is

very similar to temporal aggregation for ARMA models. We only have to augment T (L) to account for

unit roots:

T̄ (L) =

[

1 − Lk

1 − L

]d+1 p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

. (13)

Note the difference with respect to (5). The first component is now powered by d + 1 instead of 1.

Multiplying the disaggregate model by T̄ (L), the high frequency unit roots vanish and only (1 − Lk)d is

left, i.e. a polynomial operating on T with d unit roots. The following result stems from Weiss (1984).
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Result 3 The temporal aggregation of yt as specified in model (12), denoted y∗T , is represented by an

ARIMA(p, d, r) where

r =

⌊

p(k − 1) + (d+ 1)(k − 1) + q

k

⌋

Multiplying each side of (12) by the augmented T̄ (L) operator (13) yields

p
∏

j=1

[

1 − δk
jL

k
](

1 − Lk
)d
y∗t =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d




q
∑

j=0

θjL
j









k−1
∑

j=0

Lj



 εt.

The left-hand side (LHS) is an ARI(p, d) operating in time T . Manipulating further the sums on the

RHS we end with
p
∏

j=1

[

1 − δk
jL

k
]

(1 − Lk)dy∗t =





p(k−1)+(d+1)(k−1)+q
∑

l=0

ξlL
l



 εt

where ξl is a function of δj (j = 1, . . . , p) and θj (j = 1, . . . , q). The order of the RHS polynomial is

r = k−1bp(k − 1) + (d+ 1)(k − 1) + qc in time T .

Last, note that the roots of the AR polynomial in the temporally aggregated model are the kth powers

of the AR roots in the disaggregate model. As explained by Tiao (1972), for large values of the sampling

interval k the AR aggregate coefficients decrease in size, that is, the AR terms disappear and the MA

part starts to be dominated by the unit roots, leading to an IMA(d, d) model. See Rossana and Seater

(1995) for an empirical investigation on the effects of an increase in the aggregation frequency.

3.4 ARIMAX Models

In econometric models it is very often the case that an economic variable is not only explained by itself but

also by explanatory variables, assumed to be exogenous. In this section we study temporal aggregation

when these explanatory variables are present. The main reference is Brewer (1973). For the sake of

simplicity, we work with only one non-seasonal exogenous variable. Extensions to more than one variable

are straightforward.

Two important clarifications are in order. First, earlier we made the distinction between different

types of aggregation schemes, stock and flow being the most common in economics. When the model

includes explanatory variables, it may happen that its aggregation scheme differs from the aggregation

scheme of yt. Four possibilities are at hand, but in order to introduce some variety we assume that
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y is flow, as usual, while x is stock.7 Second, the new twist in complexity comes from the fact that

the explanatory variable, although exogenous, has its own ARIMA model. This means that when we

aggregate the model for y, the orders of the aggregated model are a function of the orders of the model

for x. This also implies that we get not only one equation that defines the order of the aggregate MA

polynomial (as we have done until now), but also one for the aggregate component of x.

The ARIMAX(p, d, q)(m) model for yt is defined as

φ(L)(1 − L)dyt = θ(L)εt + C(L)(1 − L)d̃xt (14)

where xt is a stock exogenous variable and C(L) its associated polynomial of length m. This exogenous

variable follows an ARIMA(v, d̃, w),

D(L)(1 − L)d̃xt = F (L)ut (15)

where D(L) and F (L) are polynomials of length v and w, respectively, d̃ is the integration order and

ut has mean zero, variance σ2
u and is independent by εt. All the polynomials are assumed to have their

roots outside the unit circle and to have no common roots.

The problem consists in performing temporal aggregation of the ARIMAX model (14) with a stock

exogenous variable obeying (15). The following result gives the order conditions and the number of

past lags of x in the temporally aggregated model. The derivation is slightly different from the previous

ones because of the presence of x. Indeed, due to the time aggregation mechanism some of the x in

the aggregated specification are observations at lags not divisible by the aggregation frequency. In other

words, the aggregated model for y∗T includes lags of x between T and T−k. This problem is circumvented

expressing x terms as a function of their own aggregated past and their error terms using their own model

in (15). Furthermore, this implies that in the temporally aggregated model at time t we have two error

terms, εt and ut. The MA order of the aggregated model is the greater of the two.

Result 4 Given the ARIMAX(p, d, q)(m) model in (14) and the stock exogenous variable following (15),

the temporally aggregated series of yt, denoted y∗T , is represented by an ARIMAX(p,d,r)(a) where r is the

greater of

⌊

k−1[(p+ d+ 1)(k − 1) + q]
⌋

and
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+
⌊

k−1[(v + d̃)(k − 1) + w]
⌋

7This is the case that we study in detail, but Table 5 shows the order conditions for all possible combinations.
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with

a =
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+ v + d̃.

3.5 Seasonal ARIMA Models

When aggregating seasonal cycles we may distinguish three cases: when the aggregation frequency is

smaller than the cycle (for example, we aggregate from monthly to quarterly and seasonality is annual),

when it is the same (for example, we aggregate from monthly to annual) and when it is larger (for

example, we aggregate from monthly to biannual). In the first case, the aggregated model still has some

seasonal components. In the last two cases seasonality vanishes. In the third case, in particular, all the

seasonal components become a regular AR(1) and a seasonal unit root becomes a regular unit root.

The ARIMA(p, d, q) × (P,D,Q)s for yt is defined as

φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = θ(L)Θ(Ls)εt (16)

where Φ(Ls) = 1− . . .−ΦPL
Ps and Θ(Ls) = 1− . . .−ΘQL

Qs are polynomials in the seasonal lag operator

of length Ps andQs, s is the seasonal frequency andD the number of unit roots in seasonality. In addition,

let τs
1 , . . . , τ

s
P be the inverted roots of Φ(Ls) such that Φ(Ls) =

P
∏

i=1

[1 − (τiL)s]. The polynomials are

assumed to have their roots outside the unit circle and to have no common roots.

To account for seasonality, we introduce a new operator

A(L) =

[

1 − Lks∗

1 − Ls

]D P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

]

(17)

Like T̄ (L) it consists of two parts. The first accounts for the seasonal unit roots, while the second

includes the inverted roots of the seasonal autoregressive polynomial. However, A(L) does not include

the aggregation scheme, while T̄ (L) does. Another difference with T̄ (L) is given by s∗. It is the seasonal

frequency of the temporally aggregated process, which may take anomalous values without economic

meaning. Indeed, s∗ depends on the original seasonal frequency, s, and on k. For instance, if the

disaggregate process is monthly with annual frequency (s = 12) and we aggregate every 3 periods (i.e.

quarters), s∗ = 4, which has a very clear economic meaning. However, if we aggregate every five periods,

s∗ equals 60 or 5 years, that is, the temporally aggregated process takes five years to end a cycle in the

same month as the original process. The reason for this seasonal behaviour is that k = 5 is not a multiple
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of s = 12. It means that within a year (i.e. 12 months) there is not an exact number of aggregate

periods, but it takes 5 years to have a 5-month period that ends in a month which is a multiple of 12.

Two interesting cases are when k equals 12 and 24. For k = 12, the aggregation frequency equals the

high frequency seasonal frequency, k = s. In this case seasonality vanishes. For k = 24, seasonality also

vanishes. This drives us to some important conclusions. First, if k < s, there is still some seasonality in

the temporally aggregated process. Second, if k is a multiple of s, the seasonal cycle remains constant.

Last, if k is equal or larger than s, seasonality vanishes.

Result 5 The temporal aggregation of yt as specified in model (16), denoted y∗T , is represented by an

ARIMA(p, d, r) × (P,D,R)s∗ where

r =

⌊

(p+ 1)(k − 1) + d(k − 1) + q

k

⌋

and R =

⌊

(P +D)s∗k + (Q− P −D)s

k

⌋

Multiplying both sides of (16) by T̄ (L)A(L),

T̄ (L)A(L)φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = T̄ (L)A(L)θ(L)Θ(Ls)εt.

After some algebra the LHS becomes

p
∏

j=1

[1 − δk
jL

k]

P
∏

i=1

[1 − (τiL)ks∗

](1 − Lk)d(1 − Lks∗

)Dy∗t

i.e. an ARI(p, d)×(P,D)s∗ . The RHS equals S̄(L)A(L)θ(L)Θ(Ls)ε∗t , where

S̄(L) =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d

(18)

and the order of the polynomial in εt satisfies the equalities

rk = d(k − 1) + p(k − 1) + (k − 1) + q and Rk = (P +D)s∗k + (Q− P −D)s.

Thus y∗T follows an ARIMA(p, d, r) × (P,D,R)s∗ . Note that whenever P = D = Q = 0 (no seasonality)

R equals zero. These derivations are slightly different from those that may be found in Weiss (1984),

since he does not compute the maximum order R.

3.6 Empirical Application to Belgian Federal Deficit

In this section we present an empirical application of the techniques surveyed so far using Belgian public

deficit data. We use the net balance to be financed - federal deficit in short. This is the definition given
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by the Belgian Federal Public Service Finance. The federal deficit series is used by the federal Treasury

in order to monitor debt management. It is limited to (federal government) Treasury operations. As

a consequence, it does not take into account the operations of other federal institutions, social security

institutions, regions and communities or local authorities. Data range from January 1981 until December

2001, in real terms.8 The data set used contains 252 monthly observations. Our source is the National

Bank of Belgium.

Figure 2 shows the Belgian cash deficit series, in real terms, at different frequencies. The top left

panel displays the series at monthly frequency, the top right-hand panel at quarterly frequency, while the

bottom panel presents the annual series. The monthly and quarterly series have a clear seasonal pattern

due to the intra-annual instalments corresponding to tax collection and payments. For instance, advance

payments by companies are received in April, July, October and December. As a result, during these

months the federal deficit is generally positive. As these instalments are intra-annual, the annual series

does not reflect any seasonal pattern. On the basis of the explanations given in Section 3.5, the annual

seasonality vanishes because s = k = 12. In this regard, note that it is not clear whether the monthly

series, and even the quarterly series, have a unit root in levels or not, but it is evident that the annual

series has a unit root. As we shall see, the monthly series has a seasonal unit root. This nicely dovetails

with the theory: if k = s = 12, the seasonal unit root at the monthly frequency becomes a regular unit

root at the annual frequency.

[FIGURE 2 ABOUT HERE]

We now perform several estimation exercises. We start estimating a monthly model,9 then we ag-

gregate it quarterly and annually.10 To make a comparison we directly estimate the same quarterly and

annual models from the quarterly and annual data sets. The monthly series can be represented by an

8The original cash deficit time series, in nominal terms, has been deflated dividing by the monthly Belgian

CPI, base year 1996.
9We use the package TRAMO to fit the best model. TRAMO (Time Series Regression with ARIMA Noise,

Missing Observations, and Outliers) performs estimation, forecasting, and interpolation of regression models with

missing observations and ARIMA errors, in the presence of several types of outliers. TRAMO estimates a battery

of models, including the outliers analysis, and selects the best model using the Bayes Information Criterion.
10The MATLAB codes for temporal aggregation of several ARIMA models with k = 12 are available on the

homepage of David Veredas at http://www.ecares.org/.
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ARIMA(0, 0, 1) × (0, 1, 1)12 model with intercept

(1 − L12)yt = µ̂+ (1 + θ̂L)(1 + Θ̂L12)εt (19)

First, we aggregate the monthly model to quarterly frequency using T (L) =
∑2

i=0 L
j ,

(

1 − L12
)

2
∑

j=0

yt−j = 3µ̂+
(

1 + θ̂L
)(

1 + Θ̂L12
)

2
∑

j=0

εt−j

Letting B = L3 operate in time T , this quarterly aggregated model is an ARIMA(0, 0, 1) × (0, 1, 1)4,

(

1− B4
)

y∗T = M + (1 + η1B)
(

1 +E1B
4
)

ε∗T

where the aggregate parameters E1 and σ2
ε∗ are determined solving the system:

(1 + η2
1 +E2

1 + η2
1E

2
1 )σ2

ε∗ = (1 + 2(1 + θ̂)2 + θ̂2 + Θ̂2 + 2Θ̂2(1 + θ̂)2 + θ̂2Θ̂2)σ̂2
ε

(1 +E2
1)η1σ

2
ε∗ = θ̂(1 + Θ̂2)σ̂2

ε

η1E1σ
2
ε∗ = θ̂Θ̂σ̂2

ε

(1 + η2
1)E1σ

2
ε∗ = Θ̂(1 + 2(1 + θ̂)2 + θ̂2)σ̂2

ε

Note that everything on the RHS here is known, as it has already been estimated. The system has four

equations with three unknowns and can be easily solved.11

[TABLE 1 ABOUT HERE]

Second, we perform temporal aggregation into annual frequency. To do this, we multiply both sides

of (19) by T (L) =
∑11

i=0 L
j .

(

1 − L12
)

11
∑

j=0

yt−j = 12µ̂+ (1 + θ̂L)
(

1 + Θ̂L12
)

11
∑

j=0

εt−j

If we let B = L12 operate in time T = 1, 2, . . ., the aggregate model is an ARIMA(0, 1, 2),

(1 −B) y∗T = M +
(

1 + η1B + η2B
2
)

ε∗T

11Note that the third equation is nested in the fourth, and is therefore redundant. It yields a system of three

equations with three unknowns that are exactly identified.
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Note that in the annual model the seasonal unit root becomes a regular unit root. The aggregate

parameters η1, η2 and σ2
ε∗ are obtained by solving the system

(

1 + η2
1 + η2

2

)

σ2
ε∗ =

(

12 + 12θ̂2 + 12Θ̂2 + 12θ̂2Θ̂2 + 2θ̂(11 + Θ̂ + 11Θ̂2)
)

σ̂2
ε

(η1 + η1η2)σ
2
ε∗ =

(

(

θ̂ + Θ̂
)

+ 11
(

1 + θ̂
)2

Θ̂ + θ̂Θ̂
(

θ̂ + Θ̂
)

)

σ̂2
ε

η2σ
2
ε∗ = θ̂Θ̂σ̂2

ε

We also estimate the quarterly and annual models directly from the aggregate observations (quarterly

and annual data sets). All the results are shown in Table 1. Some conclusions may be drawn. We divide

them into within, meaning the analysis of the monthly and temporally aggregated models, and between,

meaning the differences between the models in the upper and bottom panels of Table 1.

Within conclusions: first, the intercepts perfectly reflect the spirit of the aggregation technique. The

quarterly and annual constants are exactly 3 and 12 times the monthly constant. Second, the annual

model does not possess seasonal MA components and it becomes an MA(2). Moreover, even if we aggre-

gate 12 periods, the temporally aggregated parameters are still large, meaning that there is significant

autocorrelation in the annual series. Last, the inferred residual variance increases over time. This makes

sense, since cash deficit is a flow variable and hence the more we aggregate, the larger the deficit becomes

(as is reflected in Figure 2, where the monthly deficit roughly ranges from −0.04 to 0.04, while the annual

deficit ranges from −0.20 to 0).

Between conclusions: First, the intercepts are very similar, meaning that there is a coherence and

the aggregated models behave properly. Second, by contrast, the MA parameters differ, especially for

the annual frequency. A possible cause is that the number of annual observations is 21, compared with

the 252 of the aggregated model, suggesting merely that asymptotic properties apply. Moreover, recall

that the transfer function from the monthly model to the quarterly and annual aggregated models is

deterministic. This is a fundamental feature. It means that all the efficiency (due to 252 observations, 12

times more than 21) of the monthly estimates is transferred to the annual ones, with no loss whatsoever.

Regarding the residual variance, direct estimation and temporal aggregation produce comparable results.

20



4 ARMA-GARCH Models

In this section we review the main results on temporal aggregation of univariate ARMA-GARCH models,

which have been widely used to explain conditional heteroskedasticity of financial time series. As the main

subject of the section is the time-varying variance, we rely on a simple ARMA model, although extensions

to ARIMA models with seasonality and/or exogenous variables are possible. The main reference is Drost

and Nijman (1993).

The ARMA(p, q)-GARCH(P,Q) model for yt is defined as

φ(L)yt = θ(L)εt, εt = ξt
√

ht, ξt ∼ D(0, 1)

b(L)ht = ψ + a(L)ε2t (20)

where εt is a sequence of stationary errors with zero mean, variance ht and finite fourth moments.12

Furthermore, φ(L) = 1−∑p
i=1 φiL

i, θ(L) =
∑q

i=0 θiL
i, a(L) =

∑Q
i=1 aiL

i and b(L) = 1−∑P
i=1 biL

i. The

polynomials b(L) and b(L)−a(L) are assumed to have roots outside the unit circle and to be invertible.13

Drost and Nijman (1993) introduce three definitions of GARCH models (strong, semi-strong and weak)

and show that only the weak one is closed under temporal aggregation. In a nutshell, strong GARCH

means that errors, standardized by the conditional standard deviation, are i.i.d. with zero mean and unit

variance. Semi-strong GARCH requires that errors are built as a martingale difference sequence, i.e. with

conditional mean equal to zero and variance equal to the GARCH model. Weak GARCH is characterized

by defining ht as the best linear predictor of ε2t in terms of a constant, lagged values of ε2t and lagged

values of εt. Consequently, differences between expected and realized first and second moments of the

error term are uncorrelated.14

Drost and Nijman (1993) show that only weak GARCH models are closed under temporal aggregation.

If, for instance, daily returns follow a weak GARCH process, then weekly and monthly returns will

12D(0, 1) represents a generic distribution with zero mean and unit variance.
13A necessary and sufficient condition for the second-order stationarity of the GARCH(P,Q) model is ΣP

i=1bi +

ΣQ
i=1ai < 1. This condition, due to Bollerslev (1986), is binding for all the GARCH models presented in the

paper. Moreover, as reported by Li et al. (2002), ψ > 0, bi ≥ 0, ai ≥ 0 (∀i) are sufficient conditions to guarantee

that ht > 0. Less restrictive conditions are given by Drost and Nijman (1993, p. 911). Concerning the ARMA

part, we assume that the roots of φ(L) and θ(L) polynomials lie outside the unit circle and that no common roots

are present.
14This third definition will become clearer shortly.
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follow a weak GARCH as well, with corresponding parameter adjustments. Expressed differently, when

aggregating from yt to y∗T , the distribution function may change or ε∗T may not be a martingale difference

sequence anymore (semi-strong GARCH definition). But differences between realized and expected first

two moments remain uncorrelated (weak GARCH definition). This idea is precisely defined as follows.

Definition 1 The variable εt follows a symmetric weak GARCH model if εt is uncorrelated and if ψ,

a(L) and b(L) can be chosen such that

P [εt|εt−1, εt−2, . . .] = 0 and P [ε2t |1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .] = ht,

where P [xt|1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .] represents the best linear predictor in terms of 1, εt−1, εt−2,

. . ., ε2t−1, ε
2
t−2, . . .. That is,

E
(

xt − P [xt|1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .]

)

εr
t−i = 0 for i ≥ 1 and r = 0, 1, 2.

Therefore, a weak GARCH model is defined as ht being the projection on a constant term, on lagged

ε2t and lagged εt variables.15 Moreover, the expected difference between the realized and the projected

value is required to be orthogonal, up to the second moment, to the realized value. The following result

shows the orders of the aggregated model.

Result 6 The temporal aggregation of yt as specified in (20), denoted y∗T , is represented by an ARMA(p, r)

with weak GARCH(R,R) errors where

r =

⌊

(p+ 1)(k − 1) + q

k

⌋

and R = r̃ +
1

2
r(r + 1)

with r̃ = max(P,Q).

The derivation of the general case, not shown here, is structured in two steps. The first step consists in

inferring the aggregate conditional mean (i.e. the ARMA part of the model) from the high frequency one.

The second step deals with the conditional variance. The GARCH model is defined on the variance of

the residuals and hence the treatment is slightly different from the conditional mean. The starting point

is rewriting the GARCH model as an ARMA model. Then, following the logic of the previous sections,

15Hafner (2004) shows that defining ht as the projection on a constant, lagged terms of ε2t and lagged terms of

εt is not a necessary condition to ensure closeness of the model under temporal aggregation.
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an operator is applied to the transformed model. However, this operator differs from all the others as

the GARCH model is not on y∗T but on ε∗2T . Moreover, the square of εt is to be aggregated, instead of

εt itself. In the flow case, this creates cross-products and the fourth moment structure turns out to be

relevant to determining the properties of the temporally aggregated model.

As an example, consider a GARCH(1, 1) model, the most used volatility model. For the sake of

exposition we focus on an aggregation frequency k = 2. We can write the temporally aggregated GARCH

model in ARMA form at time t as

(εt + εt−1)
2 = 2(1 + a+ b)ψ + (a+ b)2(εt−2 + εt−3)

2 + wt

where wt = ιt +(1+a)ιt−1+(a−b(a+b))ιt−2−b(a+b)ιt−3+2εtεt−1−2(a+b)2εt−2εt−3 and ιt = ε2t −ht.

Since E(wtwt−2j) = 0, ∀j > 1, the aggregated model is a GARCH(1, 1)

h∗T = ψ∗ + b∗h∗T−1 + a∗(ε∗T−1)
2

where ψ∗ = (1 + a+ b)ψ, a∗ = (a+ b)2 − b∗ and b∗ is the solution of

b∗

1 + (b∗)2
=
E(wtwt−2)

E((wt)2)
=

g(a, b, κy)(a+ b)2 − l(a, b)

g(a, b, κy)(1 + (a+ b)4) − 2l(a, b)

where

g(a, b, κy) = 2(1− b)2 + 4
(1 − a− b)2(1 − b2 − 2ab)

(κy − 1)(1 − (a+ b)2)
+ 4

(1− 2(a+ b) + (a+ b)2)(a− ab(a+ b))

1 − (a+ b)2

l(a, b) = (a− ab(a+ b))
1 − (a+ b)4

1 − (a+ b)2

κy = κξ
1 − (a+ b)2

1 − (a+ b)2 − (κξ − 1)a2

and κξ is the unconditional kurtosis of the rescaled innovation, i.e. ξt = εt/
√
ht. Last, the aggregated

unconditional kurtosis is

κy∗ = 3 +
κy − 3

2
+ 6(κy − 1)

1− 2(a+ b) + (a+ b)2(a− ab(a+ b))

4(1 − a− b)2(1 − b2 − 2ab)

Similar expressions for any k may be found in Drost and Nijman (1993, p. 916).
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4.1 Empirical Application to MSCI Index

We apply temporal aggregation results for a GARCH(1, 1) model to the daily MSCI - Morgan Stanley

Corporate Index - of Indonesia from April 1, 2001 to April 30, 2006. The data set consists of 1303

observations. The top panel of Figure 3 plots the series of returns at different aggregation frequencies:

daily, weekly, biweekly, monthly. At the daily frequency, at least two outliers are clearly visible and a

remarkable volatility clustering is smoothed out as the aggregation frequency increases.

[FIGURE 3 ABOUT HERE]

We estimate at daily frequency a GARCH(1, 1) model with Student-t errors with ν degrees of freedom.

The corresponding unconditional kurtosis of the rescaled innovations is 3ν−6
ν−4 for ν > 4.

[TABLE 2 ABOUT HERE]

Estimation results are provided in Table 2. The stationarity condition (â + b̂ < 1), essential for

aggregation, is satisfied. With these estimated parameters we derive the GARCH(1, 1) parameters in

the case of flow aggregation. The aggregation frequency ranges from 2 to 50. The bottom panels of

Figure 3 display the aggregated parameters, ψ∗, a∗, b∗ and κ∗y, at different aggregation frequencies.

The intercept, ψ∗, increases monotonically with k. The shock parameter, a∗, decreases very quickly for

small aggregation frequencies and then decays at a slower rate, approaching zero when k = 50. This is

expected, since, as derived by Drost and Nijman (1993, p. 916), a∗ = (a + b)k − b∗. The persistence

parameter, b∗, decreases sharply to zero. This explains why the volatility clustering tends to disappear

as the aggregation frequency increases. However, the light increase for small values of k is noticeable.

Finally, κy∗ starts out at around 9 and slowly decays towards 6. Note that with an aggregation frequency

of k = 50, κy∗ is clearly above 6.4. Therefore, the rate of convergence towards Gaussianity is rather slow.

5 Causality and VARMA Models

Multivariate models commonly feature properties under temporal aggregation not observed when dealing

with univariate models. Marcellino (1999), for instance, analyses the effects of temporal aggregation on
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exogeneity, causality, cointegration, unit roots, seasonal unit roots, impulse response functions and trend-

cycles decompositions. He finds that cointegration and unit roots are invariant to temporal aggregation,

whereas exogeneity, causality, seasonal unit roots, impulse response functions and trend-cycles decompo-

sitions are not. In fact, a rich literature focuses on the effects of temporal aggregation on causality. Once

observations are temporally aggregated, the observed causal structure may be different from the original

one. Quoting Weiss (1984, p. 280), “Some care needs to be taken in causality testing, as causality is

defined for the true processes and not for the equation on the (temporally) aggregated or sampled data”.

Earlier studies on this topic are Quenouille (1957), Sims (1971), Tiao and Wei (1976) and Geweke (1978).

Wei (1982) shows that temporal aggregation may convert a one-way causality into bidirectional causality.

Christiano and Eichenbaum (1987) consider the temporal aggregation bias leading to spurious Granger

causality. This issue is empirically investigated in the context of causal relationships between growth rate

of money and aggregate output.

Granger (1969) formally introduces the concept of spurious instantaneous causality, meaning instan-

taneous causality between variables observed at the low frequency without any causality at the high

frequency. See also Pierce and Haugh (1977) and Granger (1980b). Granger (1988) studies in detail

some possible explanations for this phenomenon, one being temporal aggregation. Indeed, spurious in-

stantaneous causality may be found whenever the interval at which data are collected is lower than the

frequency at which data are supposed to be generated, the so-called natural frequency. Therefore, spu-

rious instantaneous causality and temporal aggregation are tightly linked. Renault et al. (1998) discuss

spurious instantaneous causality distinguishing between the true component of the observed causality in

a continuous time model and the spurious component, produced by model discretization. More recently,

Breitung and Swanson (2002) examine the impact of temporal aggregation on instantaneous causality

within the context of VAR models.

To explain how instantaneous causality between temporally aggregated time series may arise even if

there is no causality between disaggregated time series we need two related concepts: Granger causality

and instantaneous causality. Both notions are based on optimal linear forecasts, although several alter-

native definitions have been proposed. The seminal paper by Granger (1969) addresses the question of

whether an economic variable can help forecast another economic variable, giving rise to the general con-

cept of Granger causality. This article has stimulated an independent body of applied literature through

the years. One of the earliest examples is Sims (1972), which provides some operational novelties in the
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analysis of the causal ordering for money and income. Technical definitions of Granger causality and

instantaneous causality may be found in the already cited Granger (1969), Pierce and Haugh (1977) and

Granger (1980b), among many others. More formal work on causality for linear processes is conducted

by Florens and Mouchart (1985). Lütkepohl (2005) derives useful characterizations of Granger causal-

ity and instantaneous causality in the context of VAR models. We refer to all these contributions and

the references therein for deeper insights and formal expressions. Hereafter we provide some intuition,

avoiding technical details.

When contemporaneous values of yt are useful for forecasting contemporaneous values of xt, we say

that yt instantaneously causes xt. Pierce and Haugh (1977) suggest to analyse the cross-correlations

between the innovations of the series to detect instantaneous causality. Instantaneous cross-correlation is

indeed crucial for instantaneous causality. In particular, it may be proved that a necessary condition for

linear processes is that their correlation is not null, i.e. ρ(yt, xt) 6= 0. Spurious instantaneous causality

between xt and yt occurs when the variables do not possess any Granger causal relationship at the natural

frequency, but for the aggregated variables we find that ρ(xt, yt) 6= 0. Consider, for instance, the following

example - taken from Bramati (2005):16

xt = a1xt−1 + a2yt−1 + εx
t

yt = a4yt−1 + εy
t

It is assumed that yt Granger causes xt with one lag period (indeed a2 6= 0). Furthermore, by hypothesis

there is no instantaneous causality between the variables at the specified frequency, i.e. ρ(yt, xt) = 0. We

sample the two variables every two periods (k = 2), obtaining

x2t = a2
1xt−2 + (a1 + a4)a2yt−2 + a1ε

x
t−1 + a2ε

y
t−1 + εx

t

y2t = a2
4yt−2 + a4ε

y
t−1 + εy

t

Here we observe that y2t Granger causes x2t with one aggregate lag period (indeed (a1 + a4)a2 6= 0).

Moreover, note that εy
t−1 term is present in both equations. Therefore, it turns out that ρ(y2t, x2t) 6=

0. Hence, a misleading instantaneous causality has been induced by the aggregation procedure. This

example confirms that, as pointed out by Marcellino (1999), causality is not a time series property

invariant to temporal aggregation. However, there are conditions that can be imposed to rule out

spurious instantaneous causality. Breitung and Swanson (2002) give sufficient conditions to ensure that,

16A similar example may be found in Gulasekaran and Abeysinghe (2002).

26



as the temporal aggregation frequency goes to infinity, there is no instantaneous causality among the

aggregated variables (proposition 3, p. 655).

We now turn to the effects of temporal aggregation on model structure. We assume that yt is an

n-variate time series. Each yt is a column vector whose components are denoted yt,1, . . . , yt,n. The

n-variate VARMA(p, q) model for yt may be expressed in compact form as

G(L)yt = M(L)εεεt, (21)

where G(L) = In − G1L − . . .− GpL
p and M(L) = In + M1L+ . . .+ MqL

q are n× n matrices of lag

polynomials, (Gi)
p
i=1 and (Mi)

q
i=1 are n × n parameter matrices, εεεt is a white noise error vector with

zero mean and non-singular positive-definite variance matrix ΣΣΣε, i.e. εεεt ∼WN(0,ΣΣΣε).

A comprehensive analysis of temporal (and contemporaneous) aggregation in a general multivariate

framework is in Lütkepohl (1987), which brings into focus the impact of temporal and contemporane-

ous aggregations on the efficiency of the forecasts. Temporally aggregation of VARMA models is also

discussed, based on the commonly named macro processes. Marcellino (1999) derives the generation

mechanism of a temporally aggregated process, assuming that the disaggregated one is an integrated

VARMA (VARIMA) model. Most concepts and findings reviewed in this section are based upon this last

contribution.

The starting point is model (21) for the disaggregate variable yt. The aim is to provide a complete

characterization (in terms of orders and parameters) of the corresponding temporally aggregated model

for y∗

T . The link between the models for y∗

t and y∗

T is, once again, given by the polynomial matrix T̃(L).

The mechanism is similar to that already outlined in the univariate case. We pre-multiply (21) by T̃(L)

T̃(L)G(L)y∗

t = T̃(L)M(L)εεε∗t (22)

We let Ḡ(L) = T̃(L)G(L) and N(L) = T̃(L)M(L). Hence Ḡ(L)y∗

t = N(L)εεε∗t . The degree of T̃(L) is

p(k − 1) and therefore T̃(L)G(L) has degree pk − p + p = pk, i.e. k times the original autoregressive

lag length. In addition, the coefficients in T̃(L)G(L) that are not a multiple of Lk must be null as a

consequence of the temporal aggregation scheme. We define the vectors of matrices Gv and T̃v as

Gv =

[

G1
n×n

, G2, . . . , Gp , 0, . . . 0

]

, T̃v =

[

T̃1
n×n

, T̃2, . . . , T̃pk−p

]
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of size n× npk and n× np(k − 1), respectively. Furthermore, let the matrix Gm be

Gm =



















−In G1 . . . Gp

0 −In . . . Gp−1

...
...

...
...

0 0 . . . 0

0 0 . . . 0

Gp 0 . . . 0

...
...

...
...

0 0 . . . Gp



















of size np(k − 1) × npk. In a similar way, Gv
−k and Gm

−k are a n× np(k − 1) and np(k − 1) × np(k − 1)

matrices obtained by deleting the kth columns of Gv and Gm. The following result provides the orders

of the VARMA(p, q) model for yt.

Result 7 If
∣

∣Gm
−k

∣

∣ 6= 0, the temporal aggregation of yt as specified in (21), denoted y∗

T , is represented

by a VARMA(p, r) model

Ḡ(B)y∗

T = M̄(B)εεε∗T (23)

where Ḡ(B) and M̄(B) are the AR and MA polynomial matrices of order p and r, with

r = p− s for sk < p− q + 1 ≤ (s+ 1)k, s = 0, 1, . . . , p

r = p for p = q

r = p+ 1 + s for sk < q − 1 − p < (s+ 1)k, s = 0, 1, . . .

The aggregate white noise error vector is εεε∗T ∼ WN (0,ΣΣΣε∗).17 The coefficients of the aggregate

AR polynomial matrix Ḡ(B) = In − Ḡ1B − . . . − ḠpB
p are the kth columns of the matrix product

Gv
−k(Gm

−k)−1Gm −Gv .

The coefficients of the aggregate MA polynomial matrix M̄(B) = In + M̄1B + . . . + M̄rB
r and the

aggregate variance matrix ΣΣΣε∗ can be recovered as a solution of the non-linear system

r
∑

i=0

M̄iΣΣΣ
∗

εM̄
′

i =

pk−p+q
∑

i=0

NiΣΣΣεN
′

i

M̄jΣΣΣε∗ +

r−j
∑

i=1

M̄i+jΣΣΣε∗M̄′

i = NjkΣΣΣε +

pk−p+q−jk
∑

i=1

Ni+jkΣΣΣεN
′

i (j = 1, . . . , r)

(24)

17Upper bounds for the orders of the autoregressive and moving average polynomial matrices may be also found

in the monograph by Lütkepohl (1987), but they refer to a VARMA model (for the temporally aggregated variable)

in final equations form, i.e. a VARMA in which the AR polynomial matrix is expressed as Ḡ(B) = ḡ(B)In, where

ḡ(B) = 1 − ḡ1B − . . . − ḡpB
p is a scalar operator and ḡp 6= 0. Additional explanations are given in Sections 6.1

and 6.5 of the same book.
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whenever the invertibility condition
∣

∣M̄(z)
∣

∣ 6= 0, z ≤ 1, is satisfied and M̄(0) = In. The analogy with the

univariate case is clear. Indeed, this is an extension of a simpler method proposed by Marcellino (1996)

to determine the coefficients of temporally aggregated ARIMA models. In the univariate case results

coincide with those reported by Brewer (1973) and Weiss (1984).

The matrix coefficient of Li in T̃(L)G(L) on the LHS of (22) corresponds to the ith matrix column

of T̃vGm − Gv . Since the matrix coefficients of Ḡ(B) in (23) are those multiple of Lk in T̃vGm − Gv,

those not associated with a multiple of Lk are restrained to be zero (as already explained, this is a direct

consequence of temporal aggregation). For that reason, the matrix coefficients in T̃(L) must be chosen

in such a way as to satisfy the system of equations

T̃vGm
−k −Gv

−k = 0

If
∣

∣Gm
−k

∣

∣ 6= 0, this system has a unique solution: T̃v = Gv
−k(Gm

−k)−1. Therefore, the coefficients in the

AR polynomial matrix Ḡ(B) are the kth columns of the matrix product Gv
−k(Gm

−k)−1Gm−Gv, as stated

in the result. This is an equivalent result to the univariate case.

Concerning the MA polynomial matrix M̄(B) in (23), the non-linear system in (24) is built equating

the autocovariance structures of M̄(B)εεε∗T and of T̃(L)M(L)εεε∗t . As is well known, two models with the

same autocovariance function are the same model. Indeed, these two differently parameterized models

are the result of the same temporal aggregation scheme applied to (21). Imposing the equivalence of the

autocovariance functions, we are able to recover the unknown coefficients of the MA polynomial matrix

and the unknown variance matrix ΣΣΣε∗ .

6 Multivariate GARCH Models

The multivariate GARCH literature is extensive, including, among others, Bollerslev et al. (1988), Engle

et al. (1990), Engle and Kroner (1995), Kroner and Ng (1998), Hafner and Herwartz (1998), van der Weide

(2002), Tse and Tsui (2002), Engle (2002) and Kawakatsu (2006). Estimation issues are discussed by

Gouriéroux (1997), Jeantheau (1998), van der Weide (2002) and Comte and Lieberman (2003). Causality

in volatility is studied by Comte and Lieberman (2000). Fourth moment properties are investigated by

Hafner (2003). Bauwens et al. (2006) provide a review of the whole MGARCH literature, including model

specifications and inference methods. Gouriéroux (1997), Campbell et al. (1997), Franses and van Dijk
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(2000) and Lütkepohl (2005) are books that include multivariate GARCH models. Contributions dealing

with temporal aggregation of MGARCH models are by far less numerous. The performance of quasi

maximum likelihood and non-linear least squares estimation methods applied to temporally aggregated

GARCH models is tested by Hafner and Rombouts (2003).

Most of the theoretical results are, however, derived by Hafner (2004). This paper, which consti-

tutes our main reference, addresses several interesting questions: closeness of weak multivariate GARCH

models, multivariate volatility forecasting, multivariate realized volatility, estimation issues and spurious

instantaneous causality in temporally aggregated MGARCH models. Necessary conditions for spurious

instantaneous causality (in volatility) are given, one being zero conditional covariance between two series.

Financial time series, however, tend to be correlated at high frequencies. For that reason, instantaneous

causality (in volatility) is often observed also at the high frequency, not only at the low frequency. And it

is not spuriously created by temporal aggregation. Empirically, therefore, spurious instantaneous causal-

ity for MGARCH models is a much less relevant feature compared with spurious instantaneous causality

for VARMA.

In what follows we focus on the weak version of MGARCH models. As shown by Hafner (2004),

the class of weak MGARCH models is the only one to be closed under temporal aggregation. Strong

or semi-strong MGARCH models are not closed. This result constitutes an analogue to the univariate

case. Moreover, we refer to MGARCH models in vector specification form (VEC), following the original

definition given by Bollerslev et al. (1988). This is the most general linear specification. It nests the

diagonal VEC (DVEC) model of Bollerslev et al. (1988), the BEKK model of Engle and Kroner (1995)

and the factor GARCH (F-GARCH) model of Engle et al. (1990). However, it does not nest the constant

conditional correlation (CCC) model of Bollerslev (1990) and the dynamic conditional correlation (DCC)

model of Engle (2002) and Tse and Tsui (2002).18 Without loss of generality, we consider temporal

aggregation of a weak MGARCH(1, 1). As pointed out by Bauwens et al. (2006), orders higher than

(1, 1) are rarely encountered in empirical applications.

Let Ht be a positive-definite symmetric matrix of dimension n × n. The N -variate multivariate

GARCH(1, 1) model for εt may be specified in VEC form as

ht
N×1

= ψψψ
N×1

+Aηηηt−1
N×1

+Bht−1
N×1

(25)

18These are both non-linear specifications of MGARCH models.
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where ht = vech(Ht), ηηηt = vech(εεεtεεε
′

t), ψψψ = vech(ΩΩΩ) and A, B, ΩΩΩ are N ×N parameter matrices, with

N = n(n+ 1)/2. If ht is assumed to represent the best linear predictor of ηηηt in terms of a constant and

lagged values of ηηηt, then εεεt follows a weak MGARCH(1, 1). The MGARCH(1, 1) may be expressed as a

VARMA(1, 1) for ηηηt

ηηηt = ψψψ+Qηηηt−1 −B ιιιt−1 + ιιιt (26)

where ιιιt = ηηηt − ht, Q = A + B. All the eigenvalues of the matrix Q have modulus smaller than one. If

εεεt follows a weak MGARCH(1, 1) and possesses the fourth moments finite, then ιιιt is a weak vector white

noise with positive-definite variance matrix ΣΣΣι = E[ιιιtιιι
′

t] < ∞, E[ιιιtιιι
′

s] = 0 (∀t 6= s). Consequently, (26)

is a weak VARMA(1, 1) representation for ηηηt. From (26) we obtain a VMA(∞) representation for ηηηt

ηηηt = σσσ +

∞
∑

l=0

B̃lιιιt−l

where
∑

∞

l=0 B̃lιιιt−l = (IN −Q)−1 (IN −B) ιιιt is an infinite MA polynomial matrix (of order N) and

σσσ = (IN −Q)
−1
ψψψ is a constant term. Note that σσσ coincides with the vectorized unconditional covariance

matrix of εεεt, i.e. vech(ΣΣΣε), which exists and is finite if and only if all the eigenvalues of the matrix

Q have modulus smaller than one. The VMA(∞) representation is useful since it allows us to recover,

in a straightforward way, the autocovariance structure of ηηηt. The first two unconditional moments are:

E[ηηηt] = σσσ and ΣΣΣη = E[ηηηtηηη
′

t] =
∑

∞

l=0 B̃lΣΣΣιB̃
′

l. Note that ΣΣΣη is a matrix of fourth moments of εεεt. The

autocovariance matrix is

ΓΓΓη(τ) = E((ηηηt −σσσ)(ηηηt−τ −σσσ)′) =

∞
∑

l=0

B̃τ+lΣΣΣιB̃
′

l

Let us now focus on the temporal aggregation mechanism. We consider, without loss of generality,

k = 2. The usual notation indicates the partial sums εεε∗t = εεεt + εεεt−1, bearing in mind that each element

of the sum is a vector of dimension n× 1. As in the univariate case, temporal aggregation of MGARCH

models is influenced by the fourth moment structure. The aggregated model, indeed, is not expressed

in terms of εεεt, but in terms of ηηηt = vech(εεεtεεε
′

t).
19 Consider the vector ηηη∗t = vech(εεε∗tεεε

∗
′

t ) of dimension

N(N + 1)/2 × 1. It is compounded by the sum of the squares and cross-products of the aggregated

19This is similar to the univariate case, where εt and not ε2t is aggregated.
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process εεε∗t

ηηη∗t = vech





















(ε∗t,1)
2 ε∗t,1ε

∗

t,2 . . . ε∗t,1ε
∗

t,N

... (ε∗t,2)
2 . . .

...

...
...

. . .
...

ε∗t,Nε
∗

t,1 . . . . . . (ε∗t,N)2





















(27)

Each of the starred vectors corresponds to a partial sum of vectors as a result of temporal aggregation.

We can further develop (27)

ηηη∗t =























































ε2t,1 + ε2t−1,1 + (2εt,1εt−1,1)

...

εt,Nεt,1 + εt−1,Nεt−1,1 + (εt,Nεt−1,1 + εt−1,Nεt,1)

ε2t,2 + ε2t−1,2 + (2εt,2εt−1,2)

...

εt,Nεt,2 + εt−1,Nεt−1,2 + (εt,Nεt−1,2 + εt−1,Nεt,2)

ε2t,3 + ε2t−1,3 + (2εt,3εt−1,3)

...

ε2t,N + ε2t−1,N + (2εt,Nεt−1,N)























































We observe that ηηη∗t is the sum of contemporaneous squared terms and non-contemporaneous cross-

products (the ones in parentheses). Consequently

ηηη∗t = vech(εεεtεεε
′

t) + vech(εεεt−1εεε
′

t−1) + v∗

t = ηηηt + ηηηt−1 + v∗

t (28)

where v∗

t represents the non-contemporaneous cross-products, while ηηηt and ηηηt−1 are contemporaneous

squared terms: v∗

t = 2D+
n (vech(εεεtεεε

′

t−1)), where D+
n = (D′

nDn)−1D′

n and Dn is the duplication matrix.

We define the variance matrix of v∗

t as ΣΣΣv∗ = E[v∗

t v
∗
′

t ]. Each term in v∗

t has zero mean and is

uncorrelated with any other term of v∗

t and with ηηηt−j , j = 0, 1, . . . , k − 1. The term v∗

t acts as a noise

term that is added to the sum of the high frequency second order process ηηηt. Uncorrelation of v∗

t is

a crucial property to obtain closeness of the temporally aggregated MGARCH. The MGARCH model

expressed at the low frequency, indeed, needs to possess a VARMA representation in which the (low

frequency) error term is a weak white noise. Since v∗

t is incorporated in the (low frequency) VARMA

error term, we need v∗

t to be uncorrelated. We hereafter state the main result of this section, which is

valid for any aggregation frequency k.
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Result 8 The temporal aggregation of ηηηt in (26), denoted ηηη∗T , follows a VARMA(1, 1) model

ηηη∗T = ψψψ∗ + (A∗ + B∗)ηηη∗T−1 + w∗

T (29)

where w∗

T = ιιι∗T −B∗ιιι∗T−1. Moreover, ιιι∗T is a weak white noise with variance matrix ΣΣΣιιι∗ = E[ιιι∗T ιιι
∗
′

T ].

Furthermore, the temporal aggregation of ht in (25), denoted h∗

T , follows a weak MGARCH(1, 1) model

h∗

T = ψψψ∗ + A∗ηηηT−1 + B∗h∗

T−1

where ψψψ∗ = k(IIIN + (A + B) + . . . + (A + B)k−1)ψψψ and the B∗ matrix can be recovered as a solution of

the non-linear system

B∗ΓΓΓw∗(1)B∗
′

+ B∗ΣΣΣw∗ + ΓΓΓw∗(1) = 0 (30)

with all the eigenvalues of B∗ smaller than one in modulus. Once B∗ is determined, it is used to calculate

A∗ = (A + B)k −B∗.

The matrices ΣΣΣw∗ = E[w∗

T w∗
′

T ] and ΓΓΓw∗(1) = E[w∗

T w∗
′

T−1] represent the variance and the first-order

autocovariance of the aggregate MA(1) vector process in (29). Higher orders autocovariances are null.

Expressions for w∗

T , ΣΣΣw∗ and ΓΓΓw∗(1) and the proof of the result are derived by Hafner (2004). In general,

ΣΣΣw∗ and ΓΓΓw∗(1) matrices are functions of the variance matrix of ιιιt, ΣΣΣι, and of the variance matrix of

v∗

t , ΣΣΣv∗ , i.e. ΣΣΣw∗ = f(ΣΣΣι,A,B) and ΓΓΓw∗(1) = g(ΣΣΣι,A,B). The matrices ΣΣΣι, A and B may be used to

determine ΣΣΣw∗ and ΓΓΓw∗(1). These are plugged inside (30), which has to be solved numerically. In this way,

starting from the disaggregate parameters, i.e. ΣΣΣι, A, B, ψψψ, it is possible to recover the corresponding

aggregate parameters, i.e. ΣΣΣι∗ , A∗, B∗, ψψψ∗.

6.1 Empirical Application to DAX and CAC 40 Indexes

As an illustration, we estimate a bivariate GARCH(1, 1) model on two daily log returns series for DAX

and CAC 40 indexes. The DAX is the most commonly cited index for measuring returns on the Frankfurt

Stock Exchange. It is comprised of the 30 largest stocks traded on the exchange. The CAC 40 consists of

the 40 stocks that are most representative of the various economic sectors quoted on the Eurolist market

operated by Euronext Paris. Data range from March 2, 1994 to August 25, 2000. The data set consists

of 1,693 observations. Top panels of Figure 4 display the returns. Kurtosis statistics (5.54 and 4.72 for

DAX and CAC 40, respectively) confirm, as expected, the tail thickness often found in financial time

series, as well as the volatility clustering that can be observed in the panels.
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[FIGURE 4 ABOUT HERE]

The estimated model is a bivariate diagonal BEKK(1, 1, 1),20

yt
(2×1)

= µµµt + εεεt,

εεεt
(2×1)

= H
1/2
t ξξξt, ξξξt ∼ i.i.d. N(0, I2)

Ht
(2×2)

= C̃C̃′ + Ã′εεεt−1εεε
′

t−1Ã + B̃′Ht−1B̃ (31)

where C̃ is a lower triangular parameter matrix and H
1/2
t is a positive-definite parameter matrix such

that Ht is the conditional covariance matrix of yt. We assume that the disaggregate process εεεt is strong

multivariate GARCH with Gaussian innovations (i.e. whose distribution belongs to the class of spherical

distributions with finite fourth moments). Note that a diagonal BEKK(1, 1, 1) is the easiest specification

in terms of number of parameters to estimate, since the parameter matrices Ã and B̃ are required to be

diagonal. Estimation results for the bivariate BEKK(1, 1, 1) model in (31) are given in Table 3. Estimates

are in line with results found in the literature. The intercepts are small, though significantly different

from zero, and the volatility shows persistence.

[TABLE 3 ABOUT HERE]

As explained by Engle and Kroner (1995), the BEKK(1, 1, 1) in (31) is equivalent to a VEC(1, 1)

model in which the corresponding parameter matrices are determined according to

ψψψ = vech(C̃C̃′)

A = D+
2 (Ã ⊗ Ã)′D2

B = D+
2 (B̃ ⊗ B̃)′D2 (32)

where D2 is the duplication matrix of order two and D+
2 is its generalized inverse, i.e. D+

2 = (D′

2D2)
−1D′

2.

Based on (32), therefore, the estimated BEKK(1, 1, 1) is equivalent to the following estimated VEC(1, 1)

20This is a different formulation than the VEC one. In the latter, conditions may be imposed on the parameters

to ensure that the conditional covariance matrices are positive-definite. See Bauwens et al. (2006) for further

details. To guarantee the positivity of Ht without imposing restrictions on the parameters, Engle and Kroner

(1995) introduce an alternative parameterization for Ht, known as BEKK. We refer to Engle and Kroner (1995)

for additional details and explanations.
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model:

vech(Ht) =













ht,11

ht,21

ht,22













= ψψψ + A













ηt−1,1

ηt−1,2

ηt−1,3













+ B













ht−1,11

ht−1,21

ht−1,22













(33)

where

ψψψ = 10−5













0.1880

0.1124

0.2283













, A =













0.0555 0 0

0 0.0612 0

0 0 0.0673













, B =













0.9316 0 0

0 0.9244 0

0 0 0.9172













Bauwens et al. (2006) discuss stationarity conditions for multivariate GARCH. For the VEC(1, 1) in

(33), the maximum eigenvalue of the matrix (A + B) is smaller than one, hence the overall estimated

model is covariance-stationary. Furthermore, “A correct understanding of the fourth moment structure

turns out to be essential for the study of temporal aggregation”, as explained by Hafner (2004, p. 9).

Specifically, it is necessary to check that fourth moments of εεεt are finite.21 We rely on Theorem 2 of

Hafner (2003, p. 31), where the following expression for the fourth moments of εεεt is provided

vech(ΣΣΣη) = G2 (I9 − Z)
−1

vec(σσσσσσ′)

with G2 = c(2(L+ ⊗D+
2 )(I2 ⊗C22⊗ I2)(D2 ⊗D2)+ I9) and c = 1, since we are dealing with multivariate

Gaussian innovations. Here L+ and C22 are the elimination and commutation matrices of order 2,

respectively. For VEC (1, 1) models with spherical innovations, according to Theorem 3 of Hafner (2003,

p. 31), we need all the eigenvalues of the matrix

Z = ((A ⊗A)G2 + A ⊗B + B ⊗A + B ⊗B) (34)

to have modulus smaller than one for the fourth moments to be finite. The maximum eigenvalue of the Z

matrix in (34) is indeed smaller than one, hence this condition is satisfied.22 Since the estimated model is

covariance-stationary and possesses finite fourth moments, we can proceed to apply results on temporal

aggregation of MGARCH models.

The main issue to be addressed is how the model changes when the DAX and CAC 40 log returns

series are temporally aggregated, i.e. the behaviour of the elements of the A and B parameter matrices

21To this end, we remind that ΣΣΣη is a matrix of such fourth moments.
22All the results and the MATLAB codes are available from the authors upon request.
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as a function of the aggregation frequency k.23

The bottom panels of Figure 4 display the behaviour of the elements of the B∗ and A∗ parameter

matrices for k=2, 3, . . ., 100. For each of the 99 values of k, the non-linear system in (30) is solved.

For any k, once B∗ is determined it is used to calculate A∗ = (A + B)k − B∗. For large k, the

aggregated parameters converge towards zero as expected. In general, they all tend to decrease as k

increases, except for some strange erratic behaviour for aggregation frequencies between 12 and 30. In

fact, theorem 2 in Hafner (2004) states that conditional heteroskedasticity of the temporally aggregated

process εεε∗t = εεεt + εεεt−1 + . . . + εεεt−k+1 disappears asymptotically (for k → ∞). In summary, the main

message conveyed is that convergence to zero of the B∗ and A∗ matrices is very slow. This slow decay

may be due to the fact the disaggregate process in (33) is close to the stationarity boundary. It could be

interesting to assess, empirically, how the convergence changes with different model specifications at the

disaggregate frequency. This is out of the scope of the survey and is left for future research.

7 Conclusion

We provide a comprehensive and up-to-date survey of temporal aggregation for univariate and multivari-

ate mean and variance time series models, which has so far been lacking in the literature. We review

results for temporal aggregation of AR, ARIMA, ARIMA with seasonality, ARIMAX and GARCH mod-

els. Additionally, we extensively discuss temporal aggregation of vector ARMA and multivariate GARCH

models. Finally, we address in detail the issue of instantaneous causality spuriously induced by temporal

aggregation. Three empirical applications complete the article.

[TABLES 4, 5 AND 6 ABOUT HERE]

In Tables 4, 5 and 6, we provide an overview of the results obtained for the classes of univariate and

multivariate models presented throughout the paper. Actually, Tables 4, 5 and 6 include further results

not surveyed in the previous sections. In particular, Table 4 shows the orders for stock aggregation of

several ARIMA models. Table 5 presents the orders of aggregate ARIMAX models, for all the flow and

23We are grateful to Christian M. Hafner for providing us with the GAUSS code to calculate the temporally

aggregated parameters of the MGARCH model in (33) as a function of the aggregation frequency.
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stock combinations between the endogenous and the exogenous variables. Table 6 gives the orders for

stock aggregation of ARMA-GARCH and vector ARMA models.
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Table 1: Estimated and aggregated models (Belgian Federal Deficit)

Monthly Quarterly Annual

estimated aggregated aggregated

model model model

Number of obs. 252 252 252

Model ARIMA(0, 0, 1)(0, 1, 1)12 ARIMA(0, 0, 1)(0, 1, 1)4 ARIMA(0, 1, 2)

Constant 0.7802e-03 0.0023 0.0094

MA1 -0.2159 (lag 1) -0.0957 (lag 1) -0.4291 (lag 1)

MA2 -0.4014 (lag 12) -0.4014 (lag 4) 0.0111 (lag 2)

σ2
ε or σ2

ε∗ 4.1931e-05 9.4580e-05 3.2720e-04

Quarterly Annual

estimated estimated

model model

Number of obs. 84 21

Model ARIMA(0, 0, 1)(0, 1, 1)4 ARIMA(0, 1, 2)

Constant 0.0024 0.0097

MA1 -0.3885 (lag 1) -0.7148 (lag 1)

MA2 -0.3494 (lag 4) -0.1476 (lag 2)

σ2
ε∗ 9.0723e-05 1.1827e-04

Table 2: Univariate GARCH estimation

Coefficient Estimate Std. Err. t-value

ψ̂ 0.0203 0.0109 1.8624

â 0.0918 0.0206 4.4563

b̂ 0.8795 0.0253 34.7628

ν̂ 7.8370 1.4886 5.2647

No. Observations 1,303 No. Parameters 4

Univariate GARCH(1, 1) model estimated on MSCI In-

dex. The estimated model is ht = ψ̂ + âε2t + b̂ht−1, with

the rescaled innovations following a standardized Student

distribution with ν̂ degrees of freedom. Estimation sam-

ple: from April 1, 2001 to April 30, 2006.
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Table 3: Multivariate GARCH estimation

Coefficient Estimate Std. Error t-value

µ̂1 0.000754 0.00025 3.019656

µ̂2 0.000659 0.00024 2.748973

ˆ̃
C(1, 1) 0.001371 0.000136 10.08479

ˆ̃
C(2, 1) 0.00082 0.000135 6.083377

ˆ̃
C(2, 2) 0.001269 0.000122 10.36536

ˆ̃
B(1, 1) 0.965193 0.003946 244.5871

ˆ̃
B(2, 2) 0.957724 0.004081 234.6605

ˆ̃
A(1, 1) 0.235672 0.013333 17.67637

ˆ̃
A(2, 2) 0.259498 0.013338 19.45521

No. Observations 1,693 No. Parameters 9

Multivariate GARCH model estimated on DAX and CAC

40 log returns series. The estimated model is the bivari-

ate BEKK(1, 1, 1) in (31), with Gaussian innovations.

Conditional Mean (same for all series): ARMA(0, 0)

model. Conditional Variance: Diagonal BEKK(1, 1). Es-

timation Sample: from March 2, 1994 to August 25, 2000.
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Model Aggr. Model AR S AR MA S MA

FLOW

AR(p) ARMA(p, r) p - r =
⌊

(p+1)(k−1)
k

⌋

-

ARMA(p, q) ARMA(p, r) p - r =
⌊

(p+1)(k−1)+q

k

⌋

-

ARIMA(p, d, q) ARIMA(p, d, r) p - r =
⌊

p(k−1)+(d+1)(k−1)+q

k

⌋

-

ARIMA(p, d, q) × (P,D,Q)s ARIMA(p, d, r) × (P,D,R)s∗ p P r =
⌊

p(k−1)+(d+1)(k−1)+q

k

⌋

R =
⌊

(P+D)s∗k+(Q−P−D)s
k

⌋

STOCK

AR(p) ARMA(p, r) p - r =
⌊

p(k−1)
k

⌋

-

ARMA(p, q) ARMA(p, r) p - r =
⌊

p(k−1)+q

k

⌋

-

ARIMA(p, d, q) ARIMA(p, d, r) p - r =
⌊

p(k−1)+d(k−1)+q

k

⌋

-

ARIMA(p, d, q) × (P,D,Q)s ARIMA(p, d, r) × (P,D,R)s∗ p P r =
⌊

p(k−1)+d(k−1)+q

k

⌋

R =
⌊

(P+D)s∗k+(Q−P−D)s
k

⌋

Summary of the orders of the polynomials in the aggregated models. First column is the low frequency model. Second column is the aggregated

model. The remaining columns are the others of the aggregated models as a function of the orders of the polynomials of the original models.

Aggr. stands for Aggregated and S for Seasonal.
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k

⌋

STOCK+FLOW

ARIMAX(p, d, q)(m) ARIMAX(p, d, r)(a) p the greater of

ARIMA(v, d̃, w)
⌊

(p+d)(k−1)+q

k

⌋

and a =
⌊

(p+d)(k−1)+m+d̃

k

⌋

+ v + d̃
⌊

(p+d)(k−1)+m+d̃

k

⌋

+
⌊

(v+d̃+1)(k−1)+w

k

⌋

STOCK+STOCK

ARIMAX(p, d, q)(m) ARIMAX(p, d, r)(a) p the greater of

ARIMA(v, d̃, w)
⌊

(p+d)(k−1)+q

k

⌋

and a =
⌊

(p+d)(k−1)+m−1+d̃

k

⌋

+ v + d̃
⌊

(p+d)(k−1)+m−1+d̃

k

⌋

+
⌊

(v+d̃)(k−1)+w

k

⌋

Summary of the orders of the polynomials in the aggregated models with exogenous variables with four different scenarios.

FLOW+FLOW means the yt and xt are both flow variables. Similarly for the other cases. First column shows the high fre-

quency models for the dependent and exogenous variables. ARIMAX(p, d, q)(m) means that xt is present in the model through m

lags. Second column is the aggregated model for the dependent variable. ARIMAX(p, d, r)(a) means that xt is present in the model

through a lags. The remaining columns are the orders of the aggregated models as a function of the orders of the polynomials of

the original models. Aggr. stands for Aggregated and Lag Exog. for the lag of the exogenous variable in the aggregated model of

the dependent variable.
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Model Aggr. Model AR MA

FLOW

ARMA(p, q)-GARCH(P,Q) ARMA(p, r)-GARCH(R,R) p r =
⌊

(p+1)(k−1)+q

k

⌋

R = r̃ + 1
2
r(r + 1)

r̃ = max(P,Q)

r = p− s for sk < p− q + 1 ≤ (s+ 1)k, s = 0, 1, . . . , p

VARMA(p, q) VARMA(p, r) p r = p for p = q

r = p+ 1 + s for sk < q − 1 − p < (s+ 1)k, s = 0, 1, . . .

MGARCH(1, 1) MGARCH(1, 1) 1 1

STOCK

ARMA(p, q)-GARCH(P,Q) ARMA(p, r)-GARCH(R,R) p r =
⌊

p(k−1)+q

k

⌋

R = r̃ + 1
2
r(r + 1)

r̃ = max(P,Q)

r = p− 1 − s for sk < p− q ≤ (s+ 1)k, s = 0, 1, . . . , p− 1

VARMA(p, q) VARMA(p, r) p r = p for p = q

r = p+ s for sk < q − p < (s+ 1)k, s = 0, 1, . . .

Summary of the orders of the polynomials in the aggregated models. First column is the low frequency model. Second column

is the aggregated model. The remaining columns are the others of the aggregated models as a function of the orders of the

polynomials of the original models. Aggr. stands for Aggregated. Note that, for VARMA models, s is the lowest value such

that the inequalities are satisfied.
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Figure 1: Representation of the temporal aggregation mechanism for k = 12.
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Figure 2: Belgian Federal deficit in real terms at different aggregation frequencies (January

1981-December 2001), y-axis is in Billion Euros: (a) monthly; (b) quarterly; (c) annual.
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ψ∗ a∗

b∗ κ∗

y

Figure 3: First and second rows show the Morgan Stanley Capital International (MSCI) Index

for Indonesia (April 1, 2001 - April 30, 2006), at different aggregation frequencies: (a) daily;

(b) weekly; (c) biweekly; (d) monthly. Last two rows show the aggregated GARCH parameters

(y-axis) at different frequencies (x-axis): k=2, 3, . . ., 50.
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(a) (b)

(c) (d)

Figure 4: DAX (a) and CAC 40 (b) log returns series from March 2, 1994 to August 25, 2000.

Temporally aggregated elements of the parameter matrices (c) A∗ and (d) B∗ as a function of

the aggregation level, for k=2, 3, . . ., 100.
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