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It is shown that, if a longitudinal wave is excited in a collision-free plasma and Landau-damps away,
and later a second wave is excited and also damps away, then a third wave will spontaneously appear in
the plasma. This wave appears long after the first two waves have damped away at a time propor-
tional to the interval between the first two waves, and is in that sense an echo. It is also shown that,
if a wave is continuously excited at one point in a plasma and a second wave is continuously excited
many Landau damping lengths from the first point, then a third wave will spontaneously appear many
Landau damping lengths from the second point. Fundamentally, plasma wave echoes are possible
because of the reversible nature of Landau damping. However, small-angle Coulomb collisions are very

effective in destroying the echo.

I. INTRODUCTION

It has long been recognized that electron plasma
waves can be damped, even in the absence of
collisions.” Collisionless damping (Landau damping)
has been the subject of extensive theoretical treat-
ments in recent years and is now believed to play
an important role in many related, but more com-
plicated, oscillation and instability phenomena. Only
recently has Landau damping been demonstrated
experimentally.” Landau’s treatment shows that
maeroscopic quantities such as the electric field
and the charge density are damped exponentially,
but that perturbations in the electron phase space
distribution f(z, v, f) oscillate indefinitely. Since the
electron density is given by n, = [ f(z, v, {) dv, one
may think of the damping as arising out of the
phase mixing of various parts of the distribution
function. In a previous letter’ we have outlined a
method by which the direction of the phase evolution
of the perturbed distribution function can be re-
versed by the application of a second electric field.
This results in the subsequent reappearance of a
macroscopic field (i.e., the echo), many Landau
damping periods after the application of the second
pulse. The plasma echo is related to other known
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echo phenomena’ in that the decay of a macroscopic
physical quantity of the system, caused by phase
mixing of rapidly oscillating microscopic elements
in the system, is reversed by reversing the direction
of phase evolution of the microscopic elements. In
this paper we give a more complete treatment of
the plasma wave echo, extend the previous work
to several important new situations, and consider
some of its consequences.

The basic mechanism behind the plasma echo
can easily be understood. When an electric field
of spatial dependence exp(—ik,x) is excited in a
plasma and then Landau-damps away, it modulates
the distribution function leaving a perturbation of
the form' f,(v) exp (—k,x + ikwt). For large ¢ there
is no electrie field associated with this perturbation,
since an integral over velocity will phase-mix to
zero. If after a time 7 a wave of spatial dependence
exp (tkor) is excited and then damps away, it will
modulate the unperturbed part of the distribution
leaving a first-order term of the form f,(v) exp [tkex —
thw(t — 7)), but it also modulates the perturbation
due to the first wave leaving a second-order term
of the form f,(v)f,(v) expli(ks — ki)x + thor —
i(ky — ky)vt]. The coefficient of v in this exponential
will vanish when ¢t = 7[k,/(k, — k1)]; so at this time
an integral over velocity of this term will not phase-
mix to zero, and an electric field reappears in the
plasma. If 7 is long compared to a collisionless

4+ E. L. Hahn, Phys. Rev. 80, 580 (1950); R. M. Hill,
and D. E. Kaplan, Phys. Rev. Letters 14, 1062 (1965); R. W.
Gould, Phys. Letters 19, 477 (1965); 1. D. Abella, N. A
Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).
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PLASMA WAVE ECHOES

damping period and [k,/(k, — k,)] is of order unity,
then this third electric field appears long after the
first two waves have damped away (i.e., it will be
an echo).

In addition to the second-order echo described
above (i.e., second order in the perturbation ampli-
tude), higher-order echoes are also possible. For
example, a third-order echo is produced when the
velocity space perturbation from the first pulse is
modulated by the second spatial harmonic of the
electrie field from the second pulse. The echo then
occurs at ¢ = 7(2k,/(2k, — k)] or ¢ = 27 when
k, = k,. This result is more closely related to echoes
of other types,* which are also third order for small
amplitudes.

It is also possible to have spatial echoes, and these
are probably easier to observe experimentally than
the temporal echoes described above. If an electric
field of frequency w, is continuously excited at one
point in a plasma and an electric field of frequency
w, > w; is continuously excited at a distance ! from
this point, then a second-order spatial echo of
frequency w, — w, is produced at a distance
l[ws/(w; — w,)] from the point where the first field is
excited. Of course, it is also possible to have higher-
order spatial echoes.

The second-order temporal echo is treated in
Sec. II of this paper. The calculation is based upon
a perturbation expansion of the collisionless Boltz-
mann equation in powers of the applied fields. The
self-consistent fields are taken into account through
Poisson’s equation and the combined system of
equations is solved by the Laplace transform method
used by Landau.' In Sec. III a similar calculation
is presented for the second-order spatial echo.
Higher-order echoes are treated in Sec. IV. This
calculation is not a perturbation expansion but is
valid to all orders. However, it does not include
the effect of the self-consistent fields of the plasma.
Section V discusses the effect of collisions and the
possible use of echoes to study collision relaxation
and weak turbulence in plasmas.

II. SECOND-ORDER TEMPORAL ECHO

The basic equations for the plasma wave echo
are the collisionless Boltzmann equation and Pois-
son’s equation

of e 3¢9f _
Yor " mozaw 0, ©

%w—@d=%mb—fﬁd: @

135

where f(z, v, ) is the electron distribution, ¢(z, f) is
the total electric potential, and ¢.,. is the potential
associated with the two externally applied pulses.
For the sake of simplicity, we limit the presentation
to one dimension and treat the ions as a uniform
positive background charge. If we assume that the
electron distribution is initially spatially homoge-
neous, f{z, v, t = 0) = f,(v), and that the two
externally applied pulses are given by®

bexe = Py €08 (k,7) 8lwyt] 4 P, cos (koz) ow,(t — 1),

then the Fourier transform of the spatial dependence
and Laplace transform of the time dependence of
both Egs. (1) and (2) can be written as

® + k)0, p) = o

+ox [

q %i(k — b — ) ),

= — kd’k (p)

k2¢1

k*$i(p) = 4mne f dv T.(v, p) +5 (8krs + 8e—1y)

k2<1>2

(61: ke & Op e, )

where ¢.(p) and f.(v, p) are the transformed poten-
tial and distribution. The convolution (or Faltung)
theorem has been used twice in expressing the
nonlinear term (d¢/dz) - (8f/dv), in Eq. (3), and the
prime on the sigma in Eq. (3) indicates that the
g = 0 term is being treated separately in the manner
usual for mode-coupling ecaleulations® (ie., f, is
recognized as having a zero-order part relative to
the applied potentials).

To solve Eqgs. (3) and (4), we expand in terms of
the applied potentials ®, and &,. The first-order
(or linear) solution can be written as

D,(8.x, + 8k, —x,) Bo(8e 1, T I
2€(k; P)wp 25(]0) p)wp ’
(5)

(6)

o (p) =

e, o _ €/ Mk E)h/)
fl(c (1), P) - P + ’L’CT) })
where

The velocity integral in this dielectric function is to
be evaluated along the contour originally preseribed
by Landau.' If we assume that |k,Lp| < 1, where

® &, and &, have the dlmensmns of electric potential
owing to our inclusion of w, in the arguments of the delta
functions.

¢W. E. Drummond, D. Pines, Nucl. Fusion Suppl.,
Pt. 3, 1049 (1962).
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136 T. M. O'NEIL
Lp is the Debye length, and retain only the Landau
pole' while taking the Laplace inverse of Eq. (5),
we find the following time-asymptotic solution (i.e.,
wt > 1)

¢ (1) >~ — 7 e sin oy, @)

where

_ T [Qf_o]
" 2 kl d v=wi/ks

is the Landau damping coefficient and «, = w,[1 +
2(k,Lp)?] is the frequency associated with wave
number k;. The second pulse produces a similar
response, except that it is delayed by time 7 and
is associated with Fourier component ¢, .

For the second-order response we concentrate on
the Fourier component ¢,,_,. Of course, ¢, .4,
®i,.x, and ¢, .., all have second-order terms, but
there is no echo associated with these terms. If we
let ks = k, — k, and use Egs. (5) and (6) to iterate
Eqgs. (3) and (4) we find

e BBokik,

f ‘/-1oo+cr dﬂ_
m  4k; s 2mT

.fiow a’ dp 1]\]3 L %
ciwior 2w e(ks, P)(p + k) O

o2 () =

e e_p'f
{c-(kz, pe(—ki, p — p)p" + ikp)
p(t—7) p’'7T

4 €

T e p — P, P — iklv)} @

where the contours for the p and p’ integrations are
defined by requiring that 0 < ¢ < o. To carry
out the p and p’ integrations, we use the Cauchy
residue method closing the contours on the side
which produces vanishingly small exponentials in
the numerator. If we assume that  is long compared
to a collisionless damping period and that the time
between the second pulse and the echo is the same
order as r (i.e., that |y,7|, |v27|, lvs7| > 1 and that
ki/k; ~ 1) then the residues at the poles arising
from the roots of the dielectric functions will all
be exponentially small and we may neglect them.

The pole at p’ = —1k,v and the double pole at
p = —iksv yield the contribution

@ _ ¢ PiPoliks f o e

BT o 4k dv k3 v e(—ky, k)
a ey(l 7) ]

et ; . 9

ap |:e(/€3, pelks, p — k) loeiie ©

This integral does not phase mix to zero when

AND
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t — 7> 7(k/ky) [i.e., when t ~ 1/ = 7(k,/k,)] and
this results in the echo. At this time the largest of
the three terms obtained by performing the implied
p derivative comes from the derivative of the ex-
ponential ¢”‘~". By setting the coefficient (¢ — 7)
produced in this differentiation equal to 7(k,/ks)
and by neglecting the other two derivative terms,
we find

e ® <I>2k kzlklr f dgp Ao
m

o2 (1) ~

] exp [that{r” — 8] .
e(—ky, th)e(ks, —iko)e(ks, —iksp)

The various dielectric functions in the denomina-~
tor of this integral are due to the self-consistent
fields associated with the two applied pulses and
the echo, and by setting these functions equal to
unity one recovers the result of Sec. IV for free
streaming particles (i.e., the limit in which the
self-consistent fields are negligible in comparison with
the applied fields). The velocity integral then yields

(10)

e @ Bkl kyr(r! — =~ 1)

(2) —

e () = m 4k,
/ dv eXp <—L)[21)i r'lmr(*’—l)'
- (11

@ i?f?khzr(r -t

¢)€s (t) m 4k3
-exp [—Kpe3(t — )],

where it has been assumed that f, = (277%)™% exp

(—v*/20%). One sees that the entire distribution
function contributes to the echo and that the echo
duration is of order At ~ 2/k,7,.

The dielectric factor [e(—k,, k)] in Eq. (10)
contains the effect of the self-consistent field which
immediately follows the first pulse. For kL, < 1,
this factor has a sharply peaked maximum for that
velocity ¢ which causes e(—Fk,, 7k,v) to nearly vanish,
the velocity of plasma waves with wavenumber k,.
Physically, the slowly damped plasma wave excited
by the first pulse, acts preferentially on electrons
with velocities near the wave phase velocity, giving
them a much greater perturbation than they received
from the externally applied pulse. Thus the perturba-
tion is primarily concentrated in a narrow range in
velocity space. The factor [e(k,, —ksv)]™" rep-
resents the effect of the self-consistent field following
the second pulse. Since k, > k,, a broader range of
electron velocities is affected by the second pulse.
Tinally, the factor [e(k;, —ksv)]™" represents the
effect of the self-consistent field generated at the
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time of the echo. For k,L, < 1, this factor also
has a sharply peaked maximum, and for k; = k,
the maximum in this factor will occur at the same
velocity as the maximum in [e(—k,, 7k,»)]”", thus
giving the integral in Eq. (10) a particularly large
value. Physically, the echo response is particularly
large when k; = k;, because the echo build up then
drives the plasma resonantly.

When ¢ < 7/, we can evaluate the integral in
Eq. (10) by closing the eontour in the upper half

kil 2nr
4k;

€
o) > — - 8,9,

.E[Qf_o

exp [(ks/k,)(Fiw, + v)(r' — 1)]
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v plane. Although the df,/dv term in the numerator
appears to make the integrand diverge for large
imaginary v [recall that f, = (275%) ¥ exp (—v%/25%)],
this factor is actually cancelled by the similar
behavior of the dielectric function e(—¥k,, ¢,v). In
this region of the » plane, we obtain contributions
from the poles of [e(—k,, 7kv)]™". By working in
the time-asymptotic limit (ie., w,(v' — ) > 1)
we can neglect all but the least damped poles (i.e.,
the Landau poles) and Eq. (10) yields

1 , (12)

" 161)

where the sum is over the two Landau roots (44w, -
v:1) of e(—k,, tw) = 0 [see Eq. (7)].
When ¢t > 7/, we must close the contour in the

2k 2nr
45

e
&2 (t) =~ p” b, %,

r=twi/ks k . k d .
* 5["’2; jc‘j (£, — 'Yl):lel:ka; k—z (e, — 'Yl):l _0—1) [5(_1‘51, zklv)]u=1w1/k1J

lower half » plane. In this region, we obtain con-
tributions from the poles of [e(k,, —iks»)]™' and
le(ks, —1ksv)]™'. Retaining only the least damped
poles yields the result

exp [ks/ky(Liw, — v,)(7" — ?)]

v=xwa/ka

9o

k . R i} .
€|:_‘k1; Ei (Eiw, — ’Yz):lf[kay % (1w, + ‘Yz):l 51") [e(hsy —Thst)]omsaarns
2

+av

r=tws/ks

It is interesting to note that the echo build-up
and decay is not symmetric; the build-up is gov-
erned by the term exp [y,(ks/k) (' — #)] and the
decay by the terms

exp [v2(ks/ko) (¢ — 7')]

and

exp [vs(t — 7)].

One can understand this result by recalling that
the time until an echo occurs is proportional to
the time between the excitation of the two fields
causing the echo [ie., v = 7(ko/ks)]. The time
between the self-field following the first pulse and
the application of the second pulse is less than the
time between the two applied pulses (i.e., less than
7); S0 the echo due to the self-field of the first pulse
should occur earlier than the main part of the echo;

exp (i — 75)(r' — )] .
e‘:-—k;, z_; (Liws — 'Ya):lf[kz; % (Fiw; + 'Ya)] ;% I:e(k;;, _ik3v):|’=*“/k’J,

(13)

and, in fact, the echo builds up at the decay rate
of the self-field of the first pulse—multiplied by a
stretehing factor k;/k,.

In a similar manner the time between the applica-
tion of the first pulse and the self-field following the
second pulse is greater than r, so the echo due to
the self-field of the second pulse appears after the
main part of the echo. Of course, the self-field of
the echo itself is masked as the echo builds up and
appears only as the echo decays, much as a resonant
circuit rings after it is excited.

It was mentioned earlier and can be seen directly
from Eqs. (12) and (13) that the echo is largest when
k, >~ k; (ie., when the echo drives the plasma
resonantly). Specializing to this case allows us to
neglect the first term in Eq. (13), since k, =~ k,
implies k, =~ 2k; and }y,| >> |ys|. Evaluating the
dielectric functions for this case allows us to rewrite
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Eqgs. (12) and (13) as
#20) = 0,0, 22)(

mb,

Fyks L _)
ka(ky + ks)®

— (ka/l )y, Y cos [ (ks /R)(r — 1) + 3]
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[wi(k:s - kl)z/(k.?» + k1)2 + ’Y?]%
v5e"" 77 cos [wy(t — 1) + &)

for t < 7/,
(14)

[wi(ka - k1)2 /(k3 - kl)z + ’Yg]%

where tan & = [vi/w)l(ks + ki)/(ks — k)] and
tan & = [ya/w,l[(ky + ks)/(ky — ko)l

The results expressed in Eqgs. (12), (13), and (14)
take into account only the least damped poles and,
consequently, are valid only in the time-asymptotic
limit w,|t — 7| > 1.

To obtain the shape of the echo near its peak
(i.e., where w,|t — 7| < 1), we have numerically
evaluated the velocity integral in Eq. (10) for three
representative values of k,Lp and ksL,. Figure la
shows the equal-wavenumber case, in which the
build-up and decay is approximately symmetrical.
Figures 1b and 1c show the cases k, < k; and k, > ks,
which exhibit asymmetrical build-up and decay dis-
cussed earlier.

aF A
il /\
0 V/\V [\\/Av
-2k
—4f
at
B.

: VVVVVVA'

A ] \/\/\f

1 I L H
-10 -5 o] 5 10

wp (t-7')

Fre. 1. Normalized echo wave shapes [, times integral
in Eq. 10]. (A) kiLp = kslp = 1/v2 koLp = V2, (B)
]ElLD = % k:Lp = %kaLD =1, (C) kiLp =1 koLp = §ksLp =

2z

for t> 7/,

III. SECOND-ORDER SPATIAL ECHO

An idealized method of applying the two external
fields for a spatial echo is with a set of two dipole
grids (see Fig. 2), each dipole grid structure being
composed of two infinitesimally separated single
grids. If the two grids in the first dipole have peak
to peak potential difference ®, and are driven at
frequency w, and the second pair, separated from
the first pair by distance [, have potential difference
®, and are driven at frequency w,, then the externally
applied field will be of the form

Eoe = ®, 8(2) cos (wt)e’ + &, 8z — 1) cos (wit)e’™,
(15)

where the exponentials ¢’‘ are adiabatic switching
factors introduced as a calculational convenience.
We let §/w approach zero at the end of the calcula-
tion.

Of course, in any real grid system, the grids form-
ing the dipole structure must be a finite distance
apart, and the delta functions in Eq. (15) should
correspondingly be replaced by functions of finite
width. However, if this width is much less than a
Debye length so that the electrons can pass between
the grids in much less than one cycle, the external
field may be approximated well by Eq. (15).

By Fourier transforming the spatial and temporal
dependence of Egs. (1), (2), and (15) and by iterating
the resulting equations with respect to w;, and w,,
we find the following expression for the echo electric
field (i.e., the field associated with frequency w; =
Wy — W),

(=]

»
"

~

x=L

w3= wz—wl

Fic. 2. Schematic drawing of transmitter-receiver arrange-
ment for spatial echoes.

Downloaded 10 Feb 2006 to 131.215.225.175. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



PLASMA WAVE ECHOES

139

dfo/ v

2e @ <1>2 - T dk!
E,(2) = w, f_m f or J_o 2n [ilko + w5) + 0%k, ws)

tk(z—=1)+ik'1

(16)

(4
.{e(k’, —w)elk — k', w)[i(k'y — w,) + 8]

where’
ek, @) = 1 — (2/k%) [ do 0fo/00(v + w/k — 5 8/k)™".

Note that this expression is just the spatial
analog of Eq. (8). Of course, there are also second-
order terms associated with the frequencies w, -+
wy, 2w;, and 2w,, but there is no echo associated
with these terms.

The k and &’ integrands in Eq. (16) are the product
of a rapidly oscillating exponential and of several
factors which have sharply peaked maxima. In the
asymptotic limit of large [ and (z — 1), phase mixing
guarantees that the main contribution to the inte-
grals comes from these maxima and that the con-
tribution from any one maximum is small when the
width of that maximum is large compared to an
oscillation period of the exponential. Consequently,
we may neglect the contribution from the maxima
associated with the dielectric functions by working
in the range where [ and # — [ are large compared
to a Landau damping length, the width of the
maxima associated with the dielectric functions.

1 afg

T w)ele =

thx—1ik’1
, —o)[ik’y + @) + b‘]} ’

There remains only the contribution from the max-
ima associated with the factors of the form [i(kv +
w) + 8]7" and, in the limit where § approaches zero,
these terms yield

s € <I><I>2/‘ v afo gttt/
= .
? 1)3 [(w,/v), —w]

E,.(z)

17)

9 { elk(z 3} }
b—]é ek — (wi1/0), wo]elk, w3)) k=wuro’

Note that only electrons with v > 0 drive the echo.
However, electrons with v < 0 participate in the
plasma response to this drive and are taken into
account through e — (w;/v), ws].

This integral does not phase-mix to zero when
2z — I = ll;/w,] (.., when £ = I' = I[w,/w;]) and
this results in the echo. Near this value of z, the
largest of the three terms obtained by performing
the implied % derivative comes from the derivative
of the exponential. By setting the coefficient (z — 1)
produced in this differentiation equal to I[w, /ws] and
by neglecting the other two terms, we find

ei(w./v)(l’—z)

ze ®,Py ‘/‘w
w(x)_ m 4 lo dv

By making use of the definitions f,(v) =

0" v (w0 /0),
exp [—v*/202)(27%) "% and ¢ = 7,/v. Eq. (18) can be rewritten as

ol ), wrle—y/o); wn] (18)

exp [—(3¢%) + 1(wy/5)(V — )]

o = (o) e [

6[(“’1/1_)0);5

ol —@af5)f, ol — o)t ] Y

This integral can be evaluated by the saddle point method. For # < I’ the argument of the exponential
has a saddle point at ¢ = ¢'""*[(ws/2,)(I' — 2)]7%; s0 we deform the contour through this point making sure

that we still pass under the Landau pole of 1/¢[(w,/7.)¢,

—w,}, labeled pole 1 in Fig. 3a. In the asymptotic

limit (i.e., |[v — I'| >> Ly), the main contributions to the integral come from the saddle point integral and

the Landau pole

_ @)(@z)( ‘ﬂ)
< 4 \m7* kllws

E, (x) =

_ziLgklrl exp [i(ws/w) (e, 4 T —

{e“"“’ exp [3(wy/8)} (" — 2} (=1 + 3iv3))]
27V3 (o L) (oo Lp) (ks L) 2w/ (I — o)

where
ky = (w0,/V3 8.)(w}/wl — 1)}

7 This definition differs from our earlier definition in that
we write —iw for p.

x)]} R

30k L)L — o /wi — (120, T, L2)]

and
= [(rwr/60:k1)] exp [—3(w,/ki5.)*)/ 2nol)t

are the wavenumber and spatial decay constant
associated with the wave of frequency «,.
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For z > U the appropriate saddle point is at
¢ = ag/ble — 1))

so we deform the contour through this point, making
sure that we still pass above the Landau poles of
le(—wo/v., @)]7" and [e(—wa/v.8, @3)]™", labeled

ke (7))

E,.(2) =

AND R. W,

GOULD

poles 2 and 3 in Fig. 3b. If we specialize to the case
where w, ~ w; (i.e., w, >~ 2w,) then T', will be much
larger than T'; and we may negleet the contribution
from pole 2 compared with the corresponding con-
tribution from pole 3. Taking into account the
saddle point integral and pole 3 yields the result

{e 7 exp Glos/0)! o — V(=1 — i3VA)) HRLLEC 0 g
27 V3 (kyLp) (kaLp) (6, Lo) (ws/5.) @ — 1) 30e,Lp) (1 — wifesy — 12ik3FaL§]
Both Eqs. (20) and (21) exhibit the familiar non- where u; = ek,®,/mw, and u, = ek,®;/mw, are

exponential build-up and decay far from the echo
maximum (i.e., the first term in each brace) which
is characteristic of the saddle point contribution.
Furthermore, one expects the exponential contribu-
tion to be asymmetrical about + = I’ when w;, # o,
as for temporal echoes.

IV. HIGHER-ORDER ECHOES

In the previous sections we have discussed echoes
in the lowest order in which they appear. The echo
amplitude is proportional to the first pulse amplitude
and to the second pulse amplitude. The appropriate
small dimensionless parameters are k,u,7 and kyu,r

~ POLE 3 4

N SADDLE POLE 2

N o
N POINT

N
N

Fie. 3. Integration C(()ntour for Eq. (19). (A) wp(t — ') <0,

Bloy(t — ') > 0.
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the velocities imparted to electrons by the electric
fields of the first and second pulses, respectively, at
points where field is a maximum. We now obtain
a solution to the same problem, which is valid to
all orders in the two pulses. The calculation is
similar to Webster’s® ballistic theory of the klystron
in which particles are acted on impulsively by the
external field and then free stream, bunching and
debunching as they go. Since particle acceleration
due to plasma supported fields is not taken into
account, the calculation is only valid when these
fields are negligible compared to the two externally
applied fields. This can be insured by making the
Debye length large enough.

The formulation of the problem in terms of par-
ticle orbits is particularly simple and allows for
overtaking or crossover of particles of a given ve-
locity class. The unperturbed particle orbit is z =
zo + vst where z, and v, are the initial (¢ = 0)
position and velocity, respectively. Assuming the
electric field to be given by

eE,/m = u, 6(t) cos kyx + u, 6(t — 1) cos kx,
the perturbed orbit is readily found to be

2(t, xo, vo)
=y + tvo + u, cos kyzy), 0Lt 7 (22a)
= 2(7, %o, vo) + Ut — 7) cos k[a(r, 2o vo)]
+ u, (¢ — 7) cos kyxy , r <t (22b)

The spatial Fourier components of the electric charge
density is given by

Ok = T f dx dv e " f(x, v, 1)
(23)

= N ff dxy dvg ¢ fo(v)

¢ D. L. Webster, J. Appl. Phys. 10, 501 and 864 (1939).
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where the latter form follows from f(z, v, t) dx dv =
fovo) dxo dv,.

Consider the response to the first pulse. Sub-
stituting Eq. 22a into Eq. (23) and expanding the
exponential with the aid of the identity

e ' = 3 ()" .(a) exp (—imb)

we find that the charge density vanishes unless
k= —mk,,m = 0, 1, --- and that

P-mk, = Noe(—%)"J (kyust) exp [— (3mk,.1)"]. (24)

From this it follows that various Fourier components
are present, rising initially as ¢, then falling rapidly.
For %, « % only the fundamental components
m = =1 are substantial. The actual time behavior
is not oscillatory (no plasma oscillations) since the
self-consistent field of the plasma has been neglected.
Nevertheless, one expects this to be approximately
correct when kL, > 1.

To obtain the response to two pulses (r < ) we
proceed in a similar manner using Eq. (22b) and
Eq. (23) and find that the charge density vanishes
unless

kmn = —mk, + nky, = k. (25)
For these wave numbers Eq. (23) may be written as

p(t) = moe(—1)"""J (a)

2 i@ [ e, (20

where a = kn.us(t — 7), 8 = kit vy = nkyu,r, and
¢ = (kaut — nky7)s,. The | summation yields
Ja(B — ) and the velocity integral yields exp
[—(£°/2)] for a Maxwell distribution. We rewrite this
result as
pmn(t) = nOeAmn(t)gmn(t - Tmn); (27)
where
Tmn = (nkZ/k’mn)T (28)

is the echo time,
Ionl®) = 2 (VD" exp [~ (V2] (29)

is the echo pulse shape factor, and

Jm[kmnul(t _ Tmn)]
B Y I R
(30)

is the echo pulse amplitude. When u, and u, are
small compared to 7, 4..(t) is slowly varying com-
pared to g,,.(t). Furthermore, only A4,,(t) depends
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on the pulse amplitudes %, and wu,. In this limit
A pn(7,s) gives the amplitude of the echo and ¢,..(t)
gives its shape. Thus we see that, provided 7,., > =
each spatial Fourier component with combination
wave number given by Eq. (25) exhibits an echo
pulse at time 7, given by Eq. (28). For weak pulses
Eq. (30) reduces to

An(Tan) = <—z>(¢;f,,)(¢;~‘v),% <m§év>
(31)

which exhibits a power law dependence on the
two-pulse amplitudes v, and u, and the pulse separa-~
tion 7, as might be expected for a nonlinear process.

Higher-order spatial echoes have been treated in a
similar manner assuming that two double grid strue-
tures provide localized oscillating electric fields at
z = 0, with frequencies w, and w,, respectively. A
Fourier analysis of the beam current shows that
the frequencies

W= =M + ey, = w,,

(32)

are present, and that spatial echoes at frequency
Wma OCCUY A

W,

z = l=1,.,

o (33)
provided, of course, that I,, > I. The separation of
the current density expression into the product of
an amplitude factor and a pulse shape factor as in
(27) is, unfortunately, not possible in the spatial
case because of the appearance of the integration
variable v, in the Bessel functions. However, for
small ®, and ®, one can show that the amplitude
of the echo of frequency w,, is proportional to
787" ", a result similar to Eq. (31).

V. DISCUSSION

In the previous sections we consistently treated
the ions as a uniform positive background charge.
By taking ion dynamies into account we could
obviously extend the above work to include ion
echoes. Since the typical time scales associated with
ion dynamics is longer than that associated with
electron dynamies by the factor w,,/w,, = (m;/m,)}
temporal ion echoes may be easier to observe ex-
perimentally than temporal electron echoes.

In an experimental observation of echoes one
must be sure that collisions do not destroy the echo.
This oceurs if collisions have enough time to smooth
out the velocity space perturbations of the form
¢, Since only small-angle collisions are required
to smooth out such fine-scale velocity perturbations
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(the perturbation is fine-scale if k7,£ >> 1) and since
there are many more small-angle Coulomb collisions
than 90° collisions, the echo may be destroyed by
Coulomb collisions even though the time between
the first pulse and the echo is much less than the
90° deflection time.

This point can be expressed quantitatively by
noting that when the 9°/3v® term in the Fokker—
Planck collision operator acts on a perturbation of
the form ¢**** it brings down a factor t* and thereby
produces an effective collision frequency much larger
than the 90° collision frequency (vqo),

2
ikot

g

Verr = Vsofjf
(34)

Varr = voolik t® o Vgo(wpt)z.

As may be seen from heuristic arguments and as
checked by the rigorous calculation of Karpman,’
these collisions make the velocity space perturbation
decay like e7”*'** = ¢7>*“»"** Consequently, small
angle Coulomb collisions will be important unless
vgow:ra < 1. For spatial echoes, the equivalent
condition is

vgowf,(l/z'),)g = la/Lgkgo < 17
where Ay = 7,/v5 is the mean free path for 90°

scattering.

9V. I. Karpman, Zh. Eksp. Teor. Fiz. 51, 907 (1966)
[Sov. Phys. —JETP 24 603 (1967)]

T. M. O'NEIL AND R. W.

GOULD

By gradually increasing 7 or ! until collisions
modify the echo, one might be able to use the
plasma wave echo as a tool for studying the Coulomb
collision rate. Since the echo enhances the effective
Coulomb ecollision rate, such measurements would
even be possible in a plasma where electron neutral
collisions normally mask Coulomb collisions. By
using a second-order echo with &, = ks (or w, = w;)
corresponding to weakly damped plasma waves, one
could selectively study the collisions associated with
the small group of electrons traveling at the wave
phase veloeity associated with k, = ks (or w; = ws).
This same technique might also be used to study
the quasi-linear diffusion operator in a weakly tur-
bulent plasma.

From a fundamental point of view, the experi-
mental observation of plasma wave echoes would
provide a demonstration of the reversible nature
of collisionless damping and phenomena governed
by the Vlasov equation.
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