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Abstract—The development of upper limb prosthesis that are
able to relay information on their status back to the user is an
important step towards making this assistive technology more
intuitive. Applied within this context, neuromorphic hardware
has the potential to reduce processing time while simultaneously
reducing power requirements. Towards this, we have begun a
systematic evaluation of algorithms that best leverage rich neu-
romorphic data, and how such algorithms may be implemented.
In this paper, we apply conventional machine learning techniques
to temporal domain representations of textures derived from
a neuromorphic tactile sensor. We then contrast these results
with those from a novel spatio-temporal domain classification
approach, the Hierarchy of Event-Based Time-Surfaces (HOTS).
We achieved higher accuracies when classifying temporal data
with our supervised learning methods (91% with a KNN) than
when classifying with HOTS (76% with a single layer), indicating
that simple temporal encoding is sufficient for the classification
of texture.

I. INTRODUCTION

The human sense of touch is paramount to the way in
which we interact with the world around us. The identification
of textures is an important aspect of our active sensing and
approach to manipulation tasks [1]. Heterogeneous popula-
tions of subcutaneous mechanoreceptors work in tandem to
generate this important tactile information. There is a high
density of these mechanoreceptors within the skin of the hand,
particularly at the finger tip, providing the tactile feedback
we use to interact with and manipulate objects [2]. The
sensation of texture is encoded in the spiking pattern of
mechanoreceptors and thus, decoding these patterns is how we
infer details from our surroundings. Furthermore, identifying
potentially noxious surfaces quickly, as humans do, would help
autonomous robotic manipulators, including active prosthesis,
to avoid damage.

Neuromorphic systems seek to emulate the spiking be-
haviour of biological neurons and introduce potential im-
provements in computing speed and power efficiency when
processing data [3]. For these reasons, the use of neuromorphic
technology has been promoted by Tavanaei et al. as an energy
efficient alternative to widely used convolutional neural net-
works (CNNs) [4]. Taking a neuromorphic approach to texture
detection specifically, allows us to create systems capable of
human-level performance on texture identification tasks, as
well as exploring neuroscientific theories in order to learn

Fig. 1: Experimental setup: (a) the ABB (IRB 120) industrial
robotic arm sliding the neuroTac sensor (49 taxels with 2.5mm
spacing) across the surface of each artificial texture (shown in
white) with uniform pressure. (b) an exploded view of the
neuroTac optical sensor [5]. (c) peristimulus time histogram
(PTSH) showing the cumulative spike rate of the neuroTac in
response to repeated presentations of a typical artificial texture.

more about how these processes may occur within the human
brain.

Texture sensing and processing has myriad applications
throughout the field of robotics, namely complex manipulation
tasks and prosthetics. A forecast increase in upper limb loss
by 2050 [6] creates a more urgent need for advanced tactile
prostheses that are able to relay sensory information to the
user. Active prostheses stand to gain from the previously men-
tioned benefits of neuromorphic design in a number of ways.
Current generation active prosthesis are often heavier than the
biological arm of the intended user [7]. The introduction of
neuromorphic hardware reduces power requirements [8] and
therefore battery size, leading to lighter, more intuitive pros-
thesis. The need for users to be able to react quickly to noxious



touch sensations further supports the use of neuromorphic
algorithms, due to their potential for faster processing [9].

While the use of neuromorphic texture classification has
been explored previously [5], [10], [11], a direct comparison
of different classification methods for neuromorphic data,
using the same tactile sensor for each, is yet to be presented.
Within this paper we present the results from the following:

1) The application of supervised machine learning methods
for classification of two neuromorphic datasets, using
time-dependent firing rates.

2) The application of a state of the art spatio-temporal
classification algorithm (HOTS) to two neuromorphic
datasets.

3) A comparison of these algorithms for the classification
of tactile texture data.

II. RELATED WORKS

A. Texture Classification

Research is ongoing into tactile sensors with varying levels
of complexity and methods of detection [12]–[15]. Many
tactile sensors look to mimic the role of the mechanoreceptors
within human skin, making them ideal for the collection of
texture data. Non-spiking tactile sensors often require the
further extraction of features from their output in order to
format data for supervised learning. Although these sensors
often report high performance when using supervised machine
learning techniques [16], [17], the additional computational
overheads detract from their utility for real-time classification.

Unsupervised learning methods have also been applied to
texture classification tasks [10]. This work achieved a high
accuracy of mean = 86.46, albeit on a small number of
textures (n = 3). The conversion of sensor output data to neu-
romorphic data, however, increases computational overheads
and processing time.

Rongala et al. [18] have previously shown that neuromor-
phic encoding methods can be robust by maintaining high
accuracies (97) in a variety of sensing conditions. They did
so by using neuromorphic encoding combined with delays in
spiking neural networks. We opted to explore the performance
of HOTS on texture classification to distinguish the temporal
and spatial aspects of the spikes produced.

Our research uses the neuroTac [5], a neuromorphic version
of the TacTip tactile sensor [14]. This optical sensor utilises
an array of markers (taxels) on the inside of a compliant tip.
The deformation of these taxels is monitored by an event-
based camera (Davis240, iniVation) which produces a spiking
output for each individual pixel, in a process akin to that of
natural mechanoreceptors. The spiking events produced by the
neuroTac are in the Address Event Representation (AER) data
format, and include both a spatial (pixel location) and temporal
(event time in microseconds) component [19].

The use of this sensor and the application of the HOTS
classification architecture differentiates our research from pre-
vious studies into neuromorphic texture classification. While

[5] was conducted as an initial investigation into data analysis
with the neuroTac, our work looks to utilise its data with dif-
ferent methods of classification. This includes using a spiking
neural network (SNN) (HOTS). We validate our approach on
both artificial and natural textures and investigate the spatio-
temporal characteristics of neuromorphic tactile data produced
by the neuroTac.

B. Psychophysical Baseline

A psychophysical baseline against which to compare the
performance of our trialled classification methods was selected
based on research into similar texture classification exper-
iments with human participants [20]–[22]. An accuracy of
83%±3% mean standard deviation, was recorded by Delhaye
et al. for human participants (n = 5) asked to classify 9
textures moving against their skin at a constant speed. Lower
performances were found by Chun et al, with a mean accuracy
of 57.8% presented (n = 50), albeit when participants were
asked to classify 12 natural textures. A study by Amini, Lipton
and Rus had participants (n = 10) classifying 3 different
textures, both absolutely and relatively to a prior texture. Using
their average results for absolute classification we find their
subjects gave an accuracy of ≈ 72%. Based on these studies
we have concluded on a baseline of 65% to be an appropriate
baseline against which to appraise our investigated classifiers.
This decision was made to align more with the Chun et al study
due to its higher number of participants and similar number
of trialled textures. Although we increased the performance of
our baseline slightly to account for the reduction in number
of textures and the artificial nature of our textures.

Despite the sources cited above, there are relatively few
published studies that recount semantic differential tasks con-
ducted with human participants. Often more emphasis is given,
within human trials, to the grouping of similar textures [23],
[24]. A process more akin to clustering rather than classifica-
tion.

III. METHOD

A. Experimental Setup

A series of artificial textures 3D-printed in ABS plastic
were utilised during this experiment. These textures were
composed of 1mm cylindrical protrusions ranging in size from
R = 0−5mm in steps of 0.5mm, where R is the radius and
distance between each cylindrical pin on the surface. We used
a 6-dof robotic arm (ABB, IRB120) to move the neuroTac
at a constant velocity (12 mm/s) across the surface of each
of the 11 textures for 5000 ms (Fig. 1(a)). This method of
interaction was chosen based on neuroscience studies demon-
strating the importance of motion in texture recognition [25].
We completed 100 trials per texture to produce 1100 samples
from which to train and test our classifiers. For the purpose
of training and testing our algorithms, this dataset was split
into training and validation sets with ratios of 0.8 and 0.2
respectively. K-fold cross-validation (k = 10) was used to
further validate our models.



Fig. 2: The top row shows the textures used to create our
natural texture dataset. The integer label for each texture is
shown, with Table I providing information on the materials
used. The bottom row shows our artificial textures, made up
of a series of cylindrical pins.

Texture Label Texture Material
0 Acrylic
1 MDF
2 Foam
3 Plywood
4 Microdot Foil
5 Metallic Mesh
6 Liquid Satin
7 Felt
8 Fleece
9 Fake Fur
10 Wool

TABLE I: Table showing the natural textures trialled within
this paper, with related label from dataset.

A dataset was also collected using an assortment of natural
textures with the goal of testing any hypothesis derived from
the artificial textures, with real-world data. The textures chosen
were a subset of the textile and non-textile textures used
during initial trials with the neuroTac [5]. Our data collection
methodology was kept constant. The number of textures,
iterations were also kept constant (10 and 100 respectively)
in order to conform with our artificial texture dataset.

B. Temporal Classification

Initial research with the neuroTac utilised a K-nearest neigh-
bours algorithm to classify incoming texture data [5]. During
this investigation we further this by testing two additional
supervised classification algorithms (Naive Bayes, Multi-layer
Perceptron (MLP)).

Original work with the neuroTac looked to investigate
different encoding methods for the sensors’ spiking output.
In this work we utilise the same temporal encoding method to
create spike train representations of our input data (Equation
1).

Rep(T ) =

N∑
n=1

T+∆T∑
t=T

tin (1)

Rep(T ) gives an encoded representation of the incoming
spike train, within a moving time window of size ∆T moving
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Fig. 3: A comparison of PSTHs from our artificial dataset and
natural datasets. As shown in this figure, the artificial textures
provided a much higher spike rate than the natural textures.
This is consistent across all labels.

in 1 ms increments where tin is a spike time event with index
i for pixel n and N is the total number of pixels. This method
sums the number of spikes within a time window creating an
encoding akin to time-dependent rate coding.

We use this time-dependent rate coding to pre-process
events before classification which ignores the spatial distribu-
tion of events, creating non-overlapping windows of activity
for analysis.

The classification of textures with our classical algorithms
utilised the firing rate (Rep(T )) within these distinct timing
windows (T +∆T ). The size of the time window was shown
during testing to affect accuracy and was therefore optimised
using a Bayesian optimization procedure (Figure 5(a)). The
Hyperopt Python module was used for all optimisations within
this paper [26].

Figure 3 shows an example histogram of spike intensity over
a 5000ms data collection sweep (∆T = 10ms, n = 100).
A high intensity of spikes can be found within the initial ≈
500ms of the data. This indicates that the initial movement of
the sensor encodes more information than the frequent stick-
slip events [27] that occur throughout the test. To investigate
this further the algorithms were tested with varying sample
lengths (tin), as discussed within section IV-A.

C. Spatio-temporal Classification

The data collected by the NeuroTac was analysed in the
spatio-temporal domain, via the adaptation and application of
the Hierarchy of Event-Based Time-Surfaces (HOTS) pattern
recognition architecture, presented within [28].

This method of classification converts event-based data into
a subset of fundamental spatial features, occurring around an
initial pixel event, in order to form time-surfaces (Figure 4).
When any event occurs, a time-surface (square of side length
2rad + 1, centered on said event) is produced by applying
an exponential decay (τ ) to recent surrounding events. During
training, a set of time-surface prototypes (f ) are created. Post
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Fig. 4: (a) Example time surfaces formed around a central spiking event. The height of the surface in the z direction indicates
the timing of any pixel event in relation to the central spiking event. The initial value of τ was kept constant throughout this
experiment at 20us, with a multiplication factor of Kτ = 2. (b) Histograms showing the differing distributions of fundamental
time-surfaces (f ) within two natural textures (1 and 10).

training, incoming event streams are converted into a series
of surfaces which are in turn compared to the fundamental
surface prototypes. The closest matching prototype produces
an output event. The density of these fundamental surface
outputs within each data label is used to create a histogram
of prototype activations. Different textures will thus display
signature distributions of time-surface activations (Figure 4
(b)).

HOTS uses a layered structure, similar to conventional
multi-layered CNNs, to create the hierarchical model it’s
named for. The three layered system builds on the initial event
data input to describe increasingly complex features. It does
so by increasing the size of the time-surfaces both spatially
and temporally with each subsequent layer. The following
equations describe the network structure:

radl+1 = Krad · radl (2)

fl+1 = Kf · fl (3)

τl+1 = Kτ · τl (4)

Where Krad, Kf , Kτ are the multiplication factors used to
increase the size of the time surface, number of total surface
prototypes, and decay constant between layers respectively.

When testing the network, a data point is classified based
on the labelled histogram that returns the minimum euclidean
distance to the histogram of said data point.

Optimisation of the following parameters was performed
on the HOTS architecture. The bounds of the optimisation are

Hyperparameter eps sam f1 rad1 Kf

Range 1-6 10-22 1-32 1-10 1-3

TABLE II: Hyperparameter ranges for HOTS optimisation.
These ranges are the result of initial manual optimisation.

described in Table II with the results shown in section IV-B:

1) eps & sam - For an event to have a time surface built
around it, it must first pass through a noise filtering step.
An event is filtered out if a neighbouring event fails to
occur within radius eps in ≥ sam samples.

2) f1 - The number of fundamental features identified
within the first training layer

3) rad1 - The radius of the time surfaces within the first
training layer

4) Kf - Multiplication factor used to increase the number
of features identified per layer

For this application we constrained the maximum pixel
region for each surface to rad = 10 with the aim of creating
time surface prototypes that appropriately represent the entire
spiking activity around individual taxels.

IV. RESULTS

A. Temporal Classification

The peak accuracies for the temporal classification al-
gorithms can be seen in Table III. These accuracies were
derived using the optimisation process described in Fig. 5. A
lower relative accuracy for natural textures, when compared



Fig. 5: the optimisation process with the classical machine learning approaches. (a) Relation between the size of the timing
window (∆T ) used to calculate spike intensity and texture classification performance for each classical algorithm. (b,c and d)
Relation between increasing amount of training data and texture classification performance. Note that a timing window of size
∆T = 100ms was used to optimise this hyperparameter based on the results of the testing shown in (a)

to the artificial textures, is shown across all classification
methods. The uniform nature of the artificial textures generates
more regular and repeatable spiking patterns, as evidenced
by comparing PSTHs for natural and unnatural textures (Fig.
3). Due to the nature of our spike rate dependant classifiers,
this activity hugely contributes towards this discrepancy in
accuracy.

A deeper understanding of our classifier results can be
derived from the confusion matrices shown in Fig.6. Across
classification methods, these matrices report their highest
confusion in the middle (4 − 6) and lower ranges (0 − 6),
for artificial and natural textures respectively.

We postulate that the lower range textures (0 − 3) of the
artificial dataset create distinct taxel oscillations due to friction,
reflected in spiking activity. Meanwhile, the large values for R
at the higher ranges (7− 10) cause taxels to follow repeatable
paths across the texture, again leading to easily distinguishable
output patterns. It is between these ranges then that the largest
confusion is observed, as the spike rates are more similar.

High levels of confusion are seen across methods in the
lower range (labels 0− 6) of our natural dataset, as displayed
in Fig. 6(b). This confusion is caused by the smoothness of
the textures in question. We see largely similar spiking pat-
terns from the sensor, attributed to an observably comparable
smoothness, within this range.

To aid in the analysis of our classifiers we devised a time-
to-classification metric (tC). This metric gives an indication of
algorithm performance by taking the window of time required
for the algorithm to reach an accuracy of within 10% of its
peak value. The increase in accuracy of each algorithm over
time is shown in Fig.5 with the tC value presented in Table.
III.

Our artificial dataset reports tC values of between 400 and
700ms. With ∆T = 100ms for these tests, the difference in
value between the classifiers can be considered fairly negligi-
ble. The natural textures required longer tC values which is
consistent with the decrease in accuracy seen between datasets.
Although the Naive Bayes and KNN classifiers reported tC
values similar to those achieved on the artificial dataset, the
MLP required 2300ms of spiking data to confidently classify
the textures.

B. Spatio-temporal Classification

Implementation of the HOTS architecture on our artificial
dataset resulted in a network capable of classifying neuromor-
phic texture data with a peak accuracy of 76%. The natural
textures produced a lower peak accuracy of 61%, consistent
with the drop-off in accuracy seen between datasets using prior
methods. The respective confusion matrices are shown in Fig.
6.
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Fig. 6: Normalised confusion matrices for all texture classification methods trialled within this paper. (a) shows the confusion
matrices for the artificial texture dataset, with (b) showing results from the natural dataset.

Dataset Metric Algorithm
Naive Bayes KNN MLP

Artificial Peak Accuracy (%) 85 91 84
tC (ms) 400 500 700

Natural Peak Accuracy (%) 70.3 68.75 63.8
tC (ms) 500 500 2300

TABLE III: Peak accuracies achieved by each supervised
algorithm used to classify temporal data

The peak accuracy of our adapted HOTS architecture was
achieved by reducing the number of convolutional layers from
the three used within the original publication. Testing with our
datasets showed that reducing the number of layers lead to
an increase in peak accuracy (Table IV). This was consistent
across datasets. This further investigation into network layers
was undertaken after initial testing with the three layer system
yielded relatively poor results when compared to our temporal
domain data (≤ 50% accuracy). Optimisation processes were
run for each differently layered system in order to confirm this
trend. A comparatively large increase in accuracy was seen for
both the two layer and single training layer systems.

As presented by Lagorce et al. [28] within the original
literature, the HOTS architecture identifies more complex
features as the number of layers increases. We can assert from
our results that during training HOTS is extracting features
from our data that, although present, are not intrinsic to

Peak Accuracy (%)
Number of layers Artificial Dataset Natural Dataset

3 40 50
2 55 53
1 76 61

TABLE IV: Peak accuracy achieved for different number of
layers within the HOTS architecture after optimisation.

specific textures.

V. DISCUSSION AND FUTURE WORK

The rapid detection of object texture would provide ma-
nipulators with a means to autonomously identify objects and
avoid noxious surfaces. Implementing these algorithms into
active prosthesis would also allow for an improved and more
intuitive user experience. For the purpose of this research
we used the neuroTac optical tactile sensor to collect a
neuromorphic dataset for a set of artificial and natural textures.
Our application of supervised machine learning algorithms to
this texture data, in the temporal domain, was used to form
a baseline from which we could compare a spiking neural
network architecture (HOTS), that was able to exploit the
spatio-temporal nature of our neuromorphic data.

Texture classification of our datasets in the temporal domain
yielded high accuracies (91%), greatly exceeding random
chance for this number of textures (≈ 9.1%). This high accu-



racy was maintained across all tested algorithms highlighting
the importance of the temporal domain for the classification
of these textures. Our findings concur with biological research
conducted on Merkel cells and type I Slowly Adapting (SAI)
afferents [29], the cells that the tactip head is designed to
emulate [30]. The spatio-temporal analysis of our dataset
yielded a much lower relative performance (50%) than the
temporal domain classification and only increased to a similar
performance (76%) when the architecture was stripped back to
a single layer. The rapid classification time of tC ≤ 2300ms is
promising as, with trial lengths of 5000ms, it brings forth the
possibility of real-time classification. Future work is planned to
investigate online real-time texture classification using SNNs.

The results presented within this paper indicate that simple
temporal encoding of spikes from the neuroTac is sufficient to
accurately classify textures. The use of our spatio-temporal
classifier (HOTS) fails to improve on our temporal classi-
fication accuracies. This is true across a dataset of both
regular artificial and irregular natural textures. Comparing our
results to our psychophysical baseline, we can see that all
trialled temporal classification algorithms exceeded our human
performance baseline. Despite these high accuracies, higher
levels of confusion were observed for smoother textures within
our results. Investigations into whether this error can also be
seen with human participants are planned as future work in
this area. HOTS only began to outperform human participants
when stripped back to a single training layer. It must also be
noted that HOTS did not exceed our baseline, with any number
of layers, when working with natural textures. We speculate
that any spatial domain classification may be affected by the
morphology of the neuroTac itself, specifically the layout of
the taxels within the tip. Although the HOTS architecture did
not perform well for this application, further adaptations could
lead to its use neuromorphic touch applications such as edge
detection or slip.

VI. CONCLUSIONS

A series of algorithms have been evaluated for perfor-
mance in texture discrimination using both temporal and
spatio-temporal data from a neuromorphic visuo-tactile sensor.
Classifiers utilising the temporal data performed above a
human baseline, achieving a peak accuracy of 91%, and were
able to rapidly classify both artificial and natural textures
(tC ≤ 2300ms). Our chosen spatio-temporal classifier un-
derperformed when compared to the temporal classifiers (≤
76% accuracy). Decomposition of the HOTS spatio-temporal
classifier revealed that temporal information encoded in the
spike responses to these textures was sufficient for robust
classification.
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