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Abstract: The prevalence of Alzheimer’s disorder (AD) is increasing worldwide, and the co-morbid
anxiety is an important, albeit often neglected problem, which might appear early during disease
development. Animal models can be used to study this question. Mice, as prey animals, show an
innate defensive response against a predator odor, providing a valuable tool for anxiety research.
Our aim was to test whether the triple-transgenic mice model of AD shows signs of innate anxiety,
with specific focus on the temporal appearance of the symptoms. We compared 3xTg-AD mice
bearing human mutations of amyloid precursor protein, presenilin 1, and tau with age-matched
controls. First, separate age-groups (between 2 and 18 months) were tested for the avoidance of
2-methyl-2-thiazoline, a fox odor component. To test whether hypolocomotion is a general sign of
innate anxiety, open-field behavior was subsequently followed monthly in both sexes. The 3xTg-AD
mice showed more immobility, approached the fox odor container less often, and spent more time
in the avoidance zone. This effect was detectable already in two-month-old animals irrespective of
sex, not visible around six months of age, and was more pronounced in aged females than males.
The 3xTg-AD animals moved generally less. They also spent less time in the center of the open-field,
which was detectable mainly in females older than five months. In contrast to controls, the aged
3xTg-AD was not able to habituate to the arena during a 30-min observation period irrespective of
their sex. Amyloid beta and phospho-Tau accumulated gradually in the hippocampus, amygdala,
olfactory bulb, and piriform cortex. In conclusion, the early appearance of predator odor- and open
space-induced innate anxiety detected already in two-month-old 3xTg-AD mice make this genetically
predisposed strain a good model for testing anxiety both before the onset of AD-related symptoms
as well as during the later phase. Synaptic dysfunction by protein deposits might contribute to
these disturbances.
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1. Introduction

The prevalence of Alzheimer’s disease (AD) is increasing world-wide due to the aging
society. During the pandemic’s and post-COVID scenarios, the loss of human lives and
the implementation of physical distance measures might have a greater impact on the
elderly, as neuropsychiatric symptoms are quite prevalent in this population [1]. From one
side, anxiety may be a prodrome for symptomatic AD [2,3], and from other side, stress [4]
and, based upon an umbrella review, anxiety are considered to represent a risk factor for
dementia [5]. There is a longitudinal change during the course of the disorder, e.g., anxiety
being more severe in the early onset AD forms than in the late onset forms [6].

The triple transgenic Alzheimer’s disease strain (3xTg-AD) is a common mouse model
used for studying the pathology and mechanism of AD [7,8]. Pathological hallmarks appear
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gradually, normally detectable from six months onwards [9]. Earlier studies examined
the anxiety of this 3xTg-AD mice induced by bright, open spaces using open-field (OF),
elevated plus maze (EPM), or light-dark box (LD) behavioral tests (see Supplementary
Table S1).

Although OF was examined between 2 and 19 months of age, in most cases, only one
age group was observed. Only one study compared four ages from 3 till 12 months [7].
Approximately one third of the studies used both sexes, while another third reported only
males or females. Nevertheless, the results were equivocal, with some authors reporting no
difference between age-matched controls and 3xTg-AD mice (approximately half of the
studies), while others found significantly enhanced anxiety (half of the studies regarding
EPM and LD; third of the OF tests). Controversially, even reduced rather than enhanced
anxiety was also detected (third of the OF tests, and 1-1 study for EPM and LD). When
freezing was reported, it was always elevated in 3xTg-AD compared to controls. Interest-
ingly, even the same research group using EPM in six-month-old 3xTg-AD mice reported
reduced [10], unchanged [11], as well as enhanced [12] anxiety. Thus, the question, whether
the 3xTg-AD mice model reflects the expected enhanced anxiety remains to be elucidated.
One possible explanation for the discrepancies might be the temporal appearance of the
symptoms. Therefore, we conducted longitudinal studies covering a wide age-range.

Moreover, we were focusing on the highly conservative avoidance of predator odor, an-
other anxiety modality not examined before. Predatory cues are universal danger signals in
all vertebrate species, including humans, modulating behavioral responses on the approach-
avoidance dimension (e.g., exploration vs hiding) with significant autonomic and stress
axis activation [13]. Prey animals, such as mice or rats, show innate defensive responses
upon exposure to predator odor, providing a valuable means for studying the neurobiology
of anxiety [14]. A monomolecular component of fox odor (i.e., 2-methyl-2-thiazoline (2MT))
is commercially available and often used as negative emotional challenge [15] to study
avoidance behavior and anxiety [13,16].

The main neuropathological features of the disease are the deposition of extracellular
amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (from hyperphospho-
rylated Tau protein; pTau) [17], which were observed at several points in the olfactory
system (olfactory epithelium, piriform cortex, and in the olfactory bulb (OB)) in a variety
of transgenic mouse models [18–20]. In OB, the effect of deposits may change over time
during the course of dementia, and their presence should be confirmed in our local colony
as a possible background mechanism of any observed changes in fox odor avoidance.
While initially an increase in synaptic transmission and electrical activity was detected in
transgenic mice [20–22], but at later age a decrease in activity was observed [20,23]. Thus,
based upon this transient, silent period in electrical activity at six months of age we might
expect a similar a transition state even in the behavior. We can even assume that symptoms
will be detectable before and after (corresponding to the increased and decreased electrical
activity, respectively) but not during this period in six-month-old animals, the known
timepoint of appearance of AD hallmarks [9].

Here, we intended to examine the temporal appearance of innate anxiety in response
to a predator cue comparing 3xTg-AD mice with age-matched controls. We hypothesized
an enhanced anxiety. Thus, the 3xTg-AD mice should avoid the fox odor (2MT) more than
the control animals. Predator odor stimuli are significant stressors shaping behavioral
reactivity in the long-term and therefore it can be used as a model of post-traumatic stress
disorder [13]. To avoid confounding effects of previous testing, separate animals were
used for each age-groups. AD [24] as well as anxiety [25] are more prevalent among
females. However, most of the preclinical (as well as clinical) studies are performed on
males. Therefore, at selected age-groups (i.e., before and after the presumable transient
period), a sex comparison was also performed. The detected hypolocomotion can be the
consequence of enhanced anxiety from the predator odor or can reflect a general innate
anxiety. To test the idea that 3xTg-AD mice have enhanced innate anxiety, another model,
the OF was used reflecting innate anxiety from bright, open spaces [26]. Although OF was
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studied in 3xTg-AD mice before (see Supplementary Table S1), mostly a single age or sex
were examined. Moreover, the results were equivocal (see earlier). Thus, testing our local
colony seemed to be reasonable.

2. Materials and Methods
2.1. Animals

Adult 3xTg-AD mice were compared to age-matched C57Bl/6J control mice (n = 211;
Jackson Laboratory, USA) [7,8]. All animals were group-housed (3–4 mice/cage) in Plexi-
glass chambers at constant temperature (22 ± 1 ◦C) and humidity (40 ± 10%) under reverse
circadian light-dark cycle (lights-off at 8:00 a.m., lights-on at 8:00 p.m.). All behavioral tests
were performed during the first half of the active (dark) cycle (between 9:00 and 14:00).
Regular laboratory chow (Sniff, Soest, Germany) and tap water were available ad libitum.

Experiments were carried out in accordance with the European Communities Council
Directive recommendations for the care and use of laboratory animals (2010/63/EU)
and were reviewed and approved by the Animal Welfare Committee of the Institute of
Experimental Medicine.

2.2. Experimental Design

Experiment 1. Fox odor avoidance in separate age-groups using males (2- (n = 14–10/group),
4- (n = 18–17/group), 6- (n = 11/group), 8- (n = 8/group), 12- (n = 4–6/group), 15-
(n = 10/group), 18-month-old (n = 9–10/group)) and females (2- (n = 5–10/group) and
15-month-old (n = 5–7/group)). To have a comprehensive picture, we aimed to examine
the temporal resolution in 2-month “bins”, however, after 12-month, due to insufficient
number of animals, we switched to 3-month “bins”. Our main goal was to reveal temporal
differences. Therefore, sex differences were addressed only at two ages (2 and 15 months,
i.e., before and after the presumable transient period).

Experiment 2. Longitudinal, repeated (between 2 and 11 months of age) exploration
of open-field behavior in male and female mice (n = 8/group at the beginning). As
spending 5 min in an open arena does not have long term behavioral consequences, the
same animals were examined repeatedly. The animals were tested monthly in slightly
different environment to avoid habituation to the arena. As hypolocomotion was found
repeatedly during 5 min testing, the question arose whether it is an initial anxiety in a new
environment (which will be released after a while) or more a sign of innate anxiety from
open, bright spaces, which does not diminish over time. To test this hypothesis, at the
termination of our experiment (in 11-month-old mice), we conducted a more prolonged
observation (30 min).

Experiment 3. Immunohistochemical confirmation of Aβ accumulation and pTau
appearance in 2- and 12-month-old animals (i.e., before and after the presumable transient
period [9]; female, n = 3; 3xTg-AD) in the OB, motor and somatosensory cortex, hippocam-
pus, and basolateral amygdala regions as relevant regions for cognitive impairment (cortex,
hippocampus), emotions (amygdala), or smell loss (OB).

2.3. Behavioral Testing
2.3.1. Predator Odor Test Using 2-methyl-thiazoline (2MT)

We assessed the avoidance response to an ecologically relevant aversive stimulus (i.e.,
predator odor) by means of a synthetic analogue of a fox anogenital product (2-methyl-2-
thiazoline; 2MT; #M83406 Merck (Sigma-Aldrich, Darmstadt, Germany), in a transparent
Plexiglass arena (43 × 27 × 19 cm) [13]. Testing was carried out in a fume hood with
medium-light intensity (120 lux) in covered arenas to equalize odor exposure across sub-
jects. During testing, 2MT (40 µL in 1 mL distilled water, 50 µL/animal) was presented
on a filter paper placed in a plastic vial cap affixed to the corner. One eighth of the box
containing 2MT was defined as approach zone, while the distant quarter as avoidance
zone. At start, animals were placed in the corner opposing the odor zone and were left to
freely explore the covered arena for 10 min. Filter papers were immediately removed at
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the end of the test, then the testing arena was cleaned with 20% ethanol, wiped dry, and
left ventilated for an additional 2 min before the next test. The following parameters were
analyzed by EthoVision XT 15 software (Noldus, Wageningen, the Netherlands): (1) loco-
motor/horizontal exploratory activity (total distance moved in cm); (2) the time spent in the
approach zone (corrected by locomotion: (duration spent in the approach zone)/(distance
travelled), s/m); (3) the number of entries into the approach zone; (4) the time spent in the
avoidance zone (corrected by locomotion: (duration spent in the avoidance zone)/(distance
travelled), s/m); (5) the number of entries into the avoidance zone; and (6) time spent
with immobility (not moving; s). Male mice were used throughout. However, 2- and
15-month females were also additionally involved. In these 2- and 15-month age-groups,
additional behavioral variables were quantified, namely hand-scored by an experimenter
blind to treatment groups (Solomon Coder, version beta 19.08.02, Budapest, Hungary).
These variables were the following (time spent with the given behavior expressed as %
of 10 min observation period): (1) freezing: no apparent movement; (2) sniffing the odor
container; (3) rearing: vertical movement.

2.3.2. Open-Field Test

Exploratory activity and anxiety-like behavior without predator stimuli was assessed in
an open-field arena under medium-light intensity (120 lux). The exact size (50 × 45 × 15 cm
or 40 × 40 × 30 cm) as well as the color (white or black) and smell (ethanol or soap) of
the arena was changed from month to month to avoid loss of interest. Nevertheless, the
plastic walls were always cleaned between animals and 4 animals were tested at a time.
Mice were placed in the center and were allowed to explore the arena for 5 min [27]. At
11 months of age (last occasion), the 30-min test was conducted. The distance travelled
was considered as a main parameter of locomotion. The inner 70% zone was considered as
center, and time spent here was an index of anxiety. Here we did not calculate corrected
duration spent in the center, while the animals were placed there and not moving animals
stayed there, leading to a misleading reduced anxiety parameter. All behavioral variables
were quantified using EthoVision XT 15 software.

2.4. Immunohistochemistry

Mice were anesthetized with a ketamine-xylazine solution (16.6 mg/mL and 0.6 mg/mL,
respectively) and transcardially perfused with ice-cold phosphate-buffered saline (PBS),
followed by ice-cold paraformaldehyde (4% PFA, VWR International, Leuven, Belgium,
#28794.295; in TRIS VWR International, Leuven, Belgium, #103154M). Brains were rapidly
removed and post-fixed overnight in 4% PFA at 4 ◦C, then incubated in a solution containing
30% sucrose (D-(+) saccharose puriss, Lach-Ner, Neratovice, Czech Republic, #57-50-1) in
TRIS before slicing. Thirty-µm coronal sections were collected on a sliding microtome and
stored in a cryoprotectant solution (containing 20% glycerine, Molar Chemicals, Halásztelek,
Hungary, #03490-101-340; 30% ethylene glycol, Molar Chemicals, Halásztelek, Hungary,
#03010-203-340) at −20 ◦C until immunohistochemical staining.

To investigate the amyloid plaques and hyperphosphorylated tau, we used peroxidase-
based immunohistochemistry, with nickel-diaminobenzidine tetrahydrochloride (Ni-DAB;
3,3’-Diaminobenzidine tetrahydro-chloride hydrate, Merck (Sigma-Aldrich), Darmstadt,
Germany, #D5637-1G; nickel(II) sulfate hexahydrate, Merck (Sigma-Aldrich, Darmstadt,
Germany,#227676-500G ) visualization. Before staining for amyloid, a 95%, 10 min formic
acid (Merck, Sigma- Aldrich, St. Louis, MO, USA, #F0507) pre-treatment was performed.
Slices were incubated for 72 h, at 4◦C in primary antibodies: anti-Aβ1–42 (1:500, poly-
clonal anti-rabbit, Invitrogen, Waltham, MA USA, #71–5800) and anti-phospho-Tau (1:500,
monoclonal anti-mouse AT8, Invitrogen, Waltham, MA USA, #MN1020). As secondary, bi-
otinylated anti-rabbit (1:200, Jackson ImmunoResearch, West Grove, PA, #111–065-003) and
anti-mouse (1:200, Jackson ImmunoResearch, West Grove, PA, #715–065-151) antibodies
were used, followed by an avidin-biotin treatment (VECTASTAIN Elite ABC-Peroxidase
Kits, Vector Laboratories, Newark, CA, USA, #PK-6100) at room temperature for 2 h. Visu-
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alization was performed with a Ni-DAB and glucose oxidase (Merck, Sigma-Aldrich, St.
Louis, MO USA, #G7141-10KU) solution. The labelling was imaged using Nikon Eclipse
Ei microscope with a Digital Sight 1000 camera at 4× magnification and representative
images are presented.

2.5. Statistics

Data are expressed as mean ± standard error of the mean (SEM). Differences between
groups were analyzed using StatSoft 13.5 (Tibco, Palo Alto, CA, USA) by mix or factorial
ANOVA (factors: genotype and sex and repeated measure on age/time) followed by Fisher
LSD post hoc analyses. Multiple regression analysis was used to reveal body weight
influence. The significance level was set at p < 0.05 throughout. The details of the statistics
are given in the Section 3.

3. Results
3.1. Fox Odor Avoidance Behavior

The 3xTg-AD animals moved significantly less than their age-matched controls (p < 0.01,
Figure 1A, Table 1). Interestingly, the controls, but not the 3xTg-AD mice moved more
with age (age: p < 0.01, genotype × age: p = 0.05). During the post-hoc test the genotype
difference was not detectable in six-month-old mice, and in 8- and 15-month-old mice the
difference was only marginally significant (0.05 < p < 0.10), with significant differences in
other age-groups (at least p < 0.05). Coherent with the less movement, the 3xTg-AD animals
spent more time in immobile, not moving position (p < 0.01, Figure 1B). The animals tended
to freeze less with age (p < 0.01). However, once again, the six-month-old age group showed
less difference between genotypes, with the two groups being almost identical (p = 0.966).

All animals were afraid of the fox odor, as reflected by 200–500-times more time spent
in the avoidance than in approach zone despite only a double multiplier in their size. In
fact, the 3xTg-AD mice in general avoided the 2MT smell more than their age matched
controls (496.901 ± 48.829 vs. 279.099 ± 43.417 times difference) (F(1176) = 10.898, p < 0.01).

Due to differences in locomotion, we corrected the time spent in different compart-
ments with it (s/m) (Figure 1C; Table 1). After correction, the previously significant
genotype difference in approach time became non-significant. However, the age effect
remained detectable (p < 0.05). Namely, with increasing age the animals spent significantly
more time near the 2MT container than the younger animals. As expected, the approach
frequency was lower in 3xTg-AD mice (p < 0.01), but this also increased with age (p < 0.05,
Figure 1D). Although one might think that the avoidance time is a pure reverse of the
approach time, there is a middle zone in between them (Figure 1C insert). Thus, avoidance
requires activity. Indeed, 3xTg-AD animals were more afraid of the 2MT smell, spending
more time in the avoidance zone than their age-matched controls, and this effect became
highly significant after correction (p < 0.01, Table 1, Figure 1E). Interestingly, a longer
amount of time was accompanied by fewer entries of 3xTg-AD mice into this avoidance
zone (p < 0.01, Figure 1F). The number of entries increased with age in control, but not in
3xTg-AD animals (p < 0.05).

Similar to previous tests, the two-month-old 3xTg-AD animals moved significantly
less (Figure 2A; Table 2.; p < 0.01). The tendency for lower approach frequency (p = 0.05), as
well as significant genotype difference in corrected avoidance duration (p = 0.01), avoidance
frequency (p < 0.01), as well as freezing time (p < 0.01) and frequency (p = 0.05), and
frequency of sniffing the 2MT container (p < 0.05) all suggested enhanced anxiety of 3xTg-
AD animals (Figure 2B–H). In two-month-old animals, there was no difference between the
two sexes, except in freezing frequencies, which was higher in females without genotype
influence (Male-Control: 45.786 ± 2.118; Male-3xTg-AD: 41.600 ± 2.344; Female-Control:
64.200 ± 6.102; Female-3xTg-AD: 52.800 ± 5.083).
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Figure 1. Fox odor avoidance behavior in male mice in different age groups (2, 4, 6, 8, 12, 15 and
18 months). (A) Distance travelled in centimeters during 10 min. The 3xTg-AD animals moved
significantly less than the control animals (p < 0.01). Additionally, the control groups moved more
with age (age: p < 0.01, genotype × age: p = 0.05). (B) Time spent without movement (“freezing”).
Consistently with the previous result, the 3xTg-AD animals spent more time immobile (p < 0.01). In
both groups, the tendency to freeze decayed with age (p < 0.01). (C) Corrected approach time to fox
odor zone and representative image of the fox odor test. Due to differences in locomotion between
the genotypes we opted to measure the approach time in s/m. In both groups, older animals spent



Biomedicines 2023, 11, 262 7 of 21

more time near the fox odor (2-methyl-2-thiazoline, 2MT; p < 0.05). (D) Frequency of approaching
the odor zone and illustrative example of mouse activity by heatmap (the warm (i.e., red) areas’
values are high and the cold (i.e., dark blue) areas’ values are low). The 3xTg-AD approached the
2MT containing zone less frequently (p < 0.01), however, this also increased with age (p < 0.05).
(E) Locomotion corrected time spent in the avoidance zone. The 3xTg-AD animals spent more time
in the avoidance zone than their age matched controls (p < 0.01). (F) Number of entering into the
avoidance zone. As 3xTg-AD animals spent more time in the avoidance zone, they entered this zone
less frequently (p < 0.01). Moreover, the age increased the number of entries in the control group, but
not in the 3xTg-AD animals (p < 0.05). Data are shown as the mean ± SEM. The individual raw data
points are represented as triangles. * p < 0.05, ** p < 0.01 vs. Control; + p < 0.05, ++ p < 0.01 vs. 2 m.
# = amount of approach and/or avoidance frequency.

Table 1. Statistical data (results of factorial ANOVA) of fox odor avoidance behaviour (Experiment 1). The
corresponding data are presented on Figure 1. Parameters were analyzed by EthoVision software.
Male control and 3xTg-AD mice were compared in 2–18-month age range. Degree of freedom
was 1132. Significant main effects are highlighted in red, while blue colour represents marginally
significant difference.

Parameters Genotype Age Genotype × Age

F p F p F p

Distance 42.844 0.000 7.446 0.000 2.098 0.057

Not moving (s) 29.025 0.000 2.618 0.019 1.784 0.107

Approach duration 5.047 0.026 4.425 0.004 0.396 0.880

Corrected approach duration 1.431 0.233 2.598 0.020 0.559 0.762

Approach frequency 23.080 0.000 2.662 0.018 1.051 0.395

Avoidance duration 3.594 0.060 4.289 0.000 1.102 0.364

Corrected duration avoidance 19.306 0.000 6.812 0.000 1.750 0.114

Avoidance frequency 42.238 0.000 16.709 0.000 2.604 0.020

In 15-month-old animals, in accordance with previous results, the 3xTg-AD animals
moved less both horizontally and vertically (p < 0.01). They also approach the fox odor
container less (p < 0.05, Figure 3E) and spent more time far from it (p < 0.05, Figure 3G).
Moreover, the 3xTg-AD animals sniffed the 2MT container less (p < 0.01) and for shorter
periods (p < 0.05, Figure 3C) and spent more time freezing (p < 0.05, Figure 3B) than their
controls. At this age, the sex difference was more pronounced. The females moved less
(both horizontally (p < 0.01, Figure 3A) and vertically (p < 0.05, Figure 3F)) and spent more
time near the 2MT container compared to males (p < 0.05, Figure 3D), irrespective of their
genotype (Table 3). However, during post-hoc comparisons, 3xTg-AD females showed
more significant changes than respective males.
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Figure 2. Fox odor avoidance behavior in 2-month-old male and female animals. (A) Distance
traveled in centimeters during 10 min. The 3xTg-AD moved significantly less than the controls
(p < 0.01) without sex difference. (B) Time spent freezing in percentage of 10 min observation period.
The 3xTg-AD animals displayed increased freezing time (p < 0.01). (C) Time spent sniffing on the fox
odor container. No statistical significance was observed in genotype or sex. (D) Corrected approach
time to fox odor zone. No statistical significance was observed in genotype or sex. (E) Frequency
in which the animals approached the odor zone. The 3xTg-AD group displayed lower frequency
than the control group (p < 0.05). (F) Time spent rearing in percentage of 10 min observation period.
No statistical significance was observed in genotype or sex. (G) Corrected avoidance duration. The
3xTg-AD animals spent more time in the avoidance zone than their age matched controls (p < 0.01).
(H) Number of entries into the avoidance zone. As 3xTg-AD animals spent more time in the avoidance
zone, they entered less often (p < 0.01). No main sex effect or genotype x sex interaction were observed
in any of the presented parameters. (I) Schematic representation of the fox odor test. Data are shown
as the mean ± SEM. The individual raw data points are represented as triangles. * p < 0.05, ** p < 0.01
vs. Control. # = amount of approach and/or avoidance frequency.
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Table 2. Statistical data (results of factorial ANOVA) of fox odor test (Experiment 1). The correspond-
ing data are presented on Figure 2. Parameters were analyzed by Solomon Coder by an experimenter
blind to the treatment groups. Male and female control and 3xTg-AD mice age at 2-month. Degree
of freedom was 1,35. Significant main effects are highlighted in red, while blue colour represents
marginally significant difference.

Parameters Genotype Sex Genotype x Sex

F p F p F p

Distance 20.596 0.000 1.041 0.314 0.743 0.394

Not moving (s) 0.716 0.403 0.685 0.413 3.258 0.079

Approach duration 0.490 0.488 0.031 0.859 1.721 0.197

Corrected approach duration 0.004 0.945 0.271 0.605 1.267 0.267

Approach frequency 3.930 0.055 0.153 0.697 0.682 0.414

Avoidance duration 0.112 0.738 0.143 0.706 2.048 0.161

Corrected duration avoidance 6.061 0.018 0.178 0.675 1.707 0.199

Avoidance frequency 9.338 0.004 2.076 0.158 0.202 0.655

Freezing duration 7.464 0.009 0.090 0.765 0.866 0.358

Freezing frequency 4.116 0.050 14.862 0.000 0.882 0.354

Sniffing duration 2.004 0.165 0.354 0.555 3.181 0.083

Sniffing frequency 5.349 0.027 1.036 0.316 3.221 0.081

Rearing duration 1.342 0.254 0.414 0.523 3.971 0.054

Rearing frequency 3.408 0.073 0.324 0.573 2.704 0.109

Table 3. Statistical data (results of factorial ANOVA) of fox odor test (Experiment 1). The correspond-
ing data are presented on Figure 3. Parameters were analyzed by Solomon Coder by an experimenter
blind to the treatment groups. Male and female control and 3xTg-AD mice age at 15-month. Degree
of freedom was 1,28. Significant main effects are highlighted in red, while blue colour represents
marginally significant difference.

Parameters Genotype Sex Genotype × Sex

F p F p F p

Distance 14.351 0.000 18.199 0.000 1.890 0.180

Not moving (s) 17.604 0.000 17.633 0.000 3.181 0.085

Approach duration 2.119 0.156 7.446 0.010 1.833 0.186

Corrected approach duration 0.427 0.518 6.033 0.020 0.392 0.535

Approach frequency 10.092 0.036 0.146 0.704 0.208 0.651

Avoidance duration 0.547 0.465 4.197 0.049 0.034 0.853

Corrected duration avoidance 6.479 0.016 0.944 0.339 2.995 0.094

Avoidance frequency 0.000 0.978 13.149 0.001 0.162 0.690

Freezing duration 6.091 0.019 0.007 0.977 0.030 0.861

Freezing frequency 0.743 0.396 7.030 0.013 3.189 0.085

Sniffing duration 10.068 0.003 5.476 0.026 0.001 0.972

Sniffing frequency 9.042 0.006 0.489 0.490 0.292 0.593

Rearing duration 5.803 0.022 0.118 0.733 1.433 0.241

Rearing frequency 10.068 0.004 5.476 0.027 0.001 0.972
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Figure 3. Fox odor avoidance behavior in 15-month-old male and female animals. (A) Distance
traveled in centimeters during 10 min. The 3xTg-AD moved significantly less than the control group
(p < 0.01). Additionally, the female moved less (p < 0.01) compared to males irrespective from their
genotype. (B) Time spent freezing in percentage of 10 min observation period. The 3xTg-AD animals
displayed increased freezing (p < 0.05). (C) Time spent sniffing on the fox odor container. The 3xTg-
AD animals spent less time sniffing (p < 0.01) without sex difference. (D) Corrected approach time to
fox odor zone. The female animals investigated the approached zone longer than males (p < 0.05).
(E) Number of approaches to the odor zone. The 3xTg-AD group displayed lower frequency than
the control group (p < 0.05). (F) Rearing activity. The 3xTg-AD reared less than controls (p < 0.05).
(G) Corrected time spent in the avoidance zone. The 3xTg-AD animals spent more time in the
avoidance zone than their age matched controls (p = 0.01). (H) Number of entries into the avoidance
zone. The female animals entered into the avoidance zone less often (p = 0.01). No significant genotype
x sex interaction was observed in any of the investigated parameters. (I) Schematic representation of
the fox odor test. Data are shown as the mean ± SEM. The individual raw data points are represented
as triangles. * p < 0.05, ** p < 0.01 vs. Control; + p < 0.05, ++ p < 0.01 vs. Male. # = amount of approach
and/or avoidance frequency.
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3.2. Open-Field Behavior

During repeated testing, the 3xTg-AD animals generally moved less (p < 0.01, Figure 4A,B;
Table 4). Although there was no overall difference between sexes, there was a tendency
with more pronounced difference between genotypes in females than in males (p = 0.07). In
females, all post-hoc comparisons between genotypes were significant, while nine-month-
old males did not show genotype difference.
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Figure 4. Open-field behavior during monthly testing between 2- and 11-month. (A,B) Distance
traveled in centimeters during 5 min observation period. There was no overall difference between
sexes, however the 3xTg-AD mice moved significantly less than age-matched controls (p < 0.01).
(C,D) Percent of time spent in the center of the open field during 5 min observation. The 3xTg-AD
animals spent less time in the center of the open field than the control group (p = 0.026). Data are
shown as the mean ± SEM. The individual raw data points are represented as triangles. * p < 0.05,
** p < 0.01 vs. Control. The blues represent male (normal blue: control group, pale blue: intervention
group), and the reds represent females ( normal red: control, pale red: intervention).
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Table 4. Statistical data (results of mixed ANOVA) of open-field test (Experiment 2) and corre-
sponding body weight in male and female, control and 3xTg-AD mice. The corresponding data are
presented on Figure 4. Repeated measurements were conducted from 2 to 11 month of age. Significant
main effects are highlighted in red, while blue colour represents marginally significant difference.

Degree of
Freedom F p

Distance travelled (cm)

Genotype 1, 23 53.972 0.000

Sex 1, 23 1.017 0.324

Genotype × Sex 1, 23 3.567 0.072

Time 9, 207 20.267 0.000

Genotype × Time 9, 207 7.736 0.000

Sex × Time 9, 207 0.451 0.905

Genotype × Sex × Time 9, 207 2.822 0.004

Time spent in centrum (%)

Genotype 1, 23 5.662 0.026

Sex 1, 23 7.561 0.011

Genotype × Sex 1, 23 4.317 0.049

Time 9, 207 13.458 0.000

Genotype × Time 9, 207 1.508 0.147

Sex × Time 9, 207 0.410 0.186

Genotype × Sex × Time 9, 207 1.382 0.198

Body weight (g)

Genotype 1,26 1.554 0.224

Sex 1,26 57.509 0.000

Genotype × Sex 1,26 27.872 0.000

Time 9234 120.606 0.000

Genotype × Time 9234 0.694 0.714

Sex × Time 9234 1.429 0.176

Genotype × Sex × Time 9234 5.782 0.000

The time spent in the center of the arena was generally less in 3xTg-AD than in control
animals (p = 0.026, Figure 4C,D; Table 4). However, females spent less time in the center
than males (p = 0.011), with a more pronounced difference between genotypes in females
than males (p = 0.049). In fact, post-hoc testing found genotype differences only in females.

Despite no clear correlation between body weight and emotionality [28], we cannot
rule out the possibility that changes in body weight influenced the above-mentioned pa-
rameters. In our hands, the initial body weight at two months was higher, as expected, in
males than in females (Male-Control: 24.300 ± 0.705 g; Male-3xTg-AD: 21.563 ± 0.457 g;
Female-Control: 19.463 ± 0.227 g; Female-3xTg-AD: 19.100 ± 0.293 g). The body weight
increase during the 10-month observation period was higher in female 3xTg-AD group com-
pared to all other groups (Male-Control: 43.860 ± 4.765%; Male-3xTg-AD: 39.628 ± 3.002%;
Female-Control: 33.091 ± 1.497%; Female-3xTg-AD: 57.188 ± 5.954%; Table 4). Multiple
regression analysis did not reveal any significant influence of body weight on locomotion.
However, 7–9-month old 3xTg-AD females might spend less time in the centrum parallel
with their higher body weight (F(10,16) = 5.485, p < 0.01).
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In 11-month-old animals, the 3xTgAD animals moved significantly less during the
whole 30 min observation period (p < 0.01, Figure 5A, Table 5). The sex as well as the time
had no influence on this parameter (i.e., no habituation was observed). Regarding the time
spent in the center (Figure 5B), the control animals spent more and more time in the center
as a sign of reduced anxiety over time (time as well as genotype × time: p < 0.01), while
the 3xTg-AD animals spent significantly less time in the center (p < 0.01). Females were
more anxious, spending less time in the central compartment (p = 0.01).
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Figure 5. Open-field behavior during a 30 min observation period in 11-month-old animals. (A) Distance
traveled in centimeters across 5 min time bins. The 3xTg-AD animals moved significantly less as
their respective controls during the whole 30 min (p < 0.01). There was no difference between sexes.
(B) Percent of time spent in the center in 5 min time bins. The control animals spent more and
more time in the center of the arena, suggesting a reduced anxiety over time (p < 0.01), whereas
the 3xTg-AD spent significantly less time in the center of the arena (p < 0.01) without habituation
over time (genotype × time: p < 0.01). Data are shown as the mean ± SEM. * p < 0.05, ** p < 0.01 vs.
respective control; # p < 0.05, ## p < 0.01 vs. respective male.
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Table 5. Statistical data (results of mixed ANOVA) of open-field test (Experiment 2) in male and
female, control and 3xTg-AD mice. The corresponding data are presented on Figure 5. Repeated
measurements were conducted in 11-month-old animals during 30 min open-field test. Significant
main effects are highlighted in red.

Degree of Freedom F p

Distance travelled (cm)

Genotype 1, 26 43.003 0.000

Sex 1, 26 1.940 0.175

Genotype × Sex 1, 26 0.030 0.865

Time 5, 130 0.963 0.443

Genotype × Time 5, 130 0.425 0.831

Sex × Time 5, 130 1.781 0.101

Genotype × Sex × Time 5, 130 1.031 0.402

Time spent in centrum (%)

Genotype 1, 26 8.939 0.007

Sex 1, 26 7.856 0.010

Genotype × Sex 1, 26 0.572 0.457

Time 5, 130 11.730 0.000

Genotype × Time 5, 130 5.880 0.000

Sex × Time 5, 130 1.753 0.129

Genotype × Sex × Time 5, 130 1.610 0.163

3.3. Immunohistochemical Confirmation of Temporal Appearance of the Histological Hallmarks

Using Ni-DAB immunohistochemistry, we were able to confirm the progressive ap-
pearance of the classical hallmark of AD (Aβ and pTau) in brain areas important for memory
formation (e.g., hippocampus; Figure 6F,G and Figure 7A–D) as well as in the amygdala,
an important center of emotions including anxiety (Figure 6H,I and Figure 7E,F). Moreover,
the deposits were detectable in the OB (Figure 6A–C) and piriform cortex (Figure 7E,F),
brain areas participating in olfaction [29]. Interestingly, Aβ was only minimally present in
two-month-old animals, while the signal intensity for pTau was already high in this age
group. Nevertheless, the number of positively stained cells (both for Aβ as well as pTau)
was higher in the brain of one-year-old animals than in two-month-old ones.
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Figure 6. Amyloid-β1–42 plaques stained with Ni-DAB immunohistochemistry in 2-month-old and
1-year-old 3xTg-AD mice. The images show different brain areas: the olfactory bulb (A–C), motor-
and somatosensory-cortex, (D,E), hippocampus (F,G), basolateral and basomedial amygdala (H,I).
Scale bar in (B,E,G) is 200 µm, and in (I) 100 µm.
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Figure 7. Phospho-Tau tangles stained with Ni-DAB immunohistochemistry in 2-month-old and
1-year-old 3xTg-AD mice. The images show different brain areas, like: pyramidal cell layer in the
CA1 region of the hippocampus (A,B), pyramidal cell layer in the CA3 region of the hippocampus
(C,D) and basolateral amygdaloid nucleus, amygdalopiriform area and entorhinal cortex (E,F). Scale
bar is 100 µm.
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4. Discussion

Increased innate anxiety was detected in 3xTg-AD animals from two months of age,
which is in line with human data indicating that anxiety may be a prodrome for symp-
tomatic AD. Furthermore, an early (already at two months of age) appearance of pTau was
also observed in emotionally relevant brain areas (i.e., amygdala, Figure 7E), which might
contribute to the early synaptic disturbances [30,31], leading to anxiety-like symptoms.
On the other hand, the early appearance of anxiety may enhance the development of AD
pathology. Indeed, in 12-month-old animals, more deposits (both Aβ and pTau) were de-
tectable than in two-month-old mice. These agglomerates may fatally destroy the synapsis,
leading to a vicious circle, i.e., enhanced anxiety. However, this connection between pTau
and anxiety needs further clarification.

In accordance with our hypothesis, around six months of age, there was a transient
period with less pronounced anxiety-like behavior. This might be explained by an early
increase in synaptic transmission of the 3xTg-AD mice [20–22] followed by a decrease in
old age [20,23] leading to a transient remission of the symptoms between the two periods.

It is quite obvious that fox-odor influences the behavior of a mouse through the
olfactory system, as the transient receptor potential ankyrin 1 knockout mice, lacking this
receptor in their olfactory system, did not avoid the fox odor [29]. Human studies suggested
that olfactory loss predicts the onset of subsequent dementia [32,33]. Furthermore, it may
aggravate the symptoms leading itself to cognitive decline [34]. A similar loss of smell has
been shown in several animal models of AD including 3xTg-AD [35,36]. However, six-
month-old 3xTg-AD mice did not show olfactory deficit to social and non-social (almond
and banana) odors [37]. The outcome of experiments evaluating olfaction by finding buried
food [35,38] can be deeply confounded by metabolic/motivational processes, known to
be altered in the 3xTg-AD mice [39]. In another case, sex-related olfactory function was
measured, which can be influenced by sexual drive [36]. Only 1.5-year-old 3xTg-AD
females, but not the one-year old ones, showed a deficit in discriminating strawberry
from cinnamon [36]. Similarly, there was an age-related decline in finding the buried food
only in females [35]. Interestingly, peanut butter was even more attractive to 3xTg-AD
animals than to their control, while olfaction of peppermint, a repellent, was unaltered [40].
Nevertheless, in one-year-old 3xTg-AD animals PET-scan detected hypometabolism on
brain areas relevant for olfaction (e.g., piriform cortex) [41]. Our immunohistochemical
data confirmed the presence of Aβ (Figure 6A–C) and pTau (Figure 7E,F) in these areas
(OB and piriform cortex). Moreover, in another model, the double transgenic AD mice,
the Aβ plaque burden in the OB was detectable already at four months of age, but the
behavioral alteration (less avoidance of the 2,4,5-trimethylthiazole (TMT) component of
fox odor) was detectable in eight- but not in four-month-old mice [42]. All in all, although
pathological morphological changes as well as altered olfactory behavior can be detected in
aged 3xTg-AD mice, smell loss was not equivocal, and could hardly explain the enhanced
avoidance of the predator odor (as in case of smell loss we could expect reduced avoidance)
detected even in 18-month-old animals.

We repeatedly found reduced mobility of 3xTg-AD mice both during the fox odor,
as well as in OF tests, independently from the sex. In a previous study, similarly to our
results, the 3xTg-AD mice moved significantly less at 3, 9, and 12 months of age, but not at
6 months of age [7]. Further studies confirmed the lack of genotype difference in 6-month-
old animals [4,43]. Again, a plausible explanation is the previously mentioned possible
transient quiescence in synaptic dysfunction in this age-group. Another model of AD, the
membrane protein seizure 6-like (SEZ6L) (a neuronal substrate of the AD protease BACE1)
conditional knockout [44], displayed similarly decreased motor coordination. Although
the loss of fine [45] (and even gross [46]) motoric might again be an early sign of AD, we
speculated that in our hands the reduced locomotion was due to enhanced innate anxiety
from bright, open spaces [26]. Enhanced novel environment-induced anxiety/freezing
could be rule out, as during the 30-min observation period only the controls started to
spend more time in the center, but not the 3xTg-AD mice, without temporal changes in
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locomotion in both genotypes (Figure 5). The drop of locomotion happens mostly during
the first minute of a prolonged OF test [47], which can be explained by various factors,
from new, surprising situations to an unknown experimenter. In our hands, the animals
were tested repeatedly by the same experimenter. Thus, the initial high discomfort of the
test might not have been present. Therefore, there was no drop in the distance travelled.
Nevertheless, the genotype difference was present during the whole 30-min observation
period, confirming the innate nature of anxiety induced by bright open spaces.

After the six-month transient period, the 3xTg-AD females were more afraid of both
the predator odor and open spaces than males. In humans, females are generally more
anxious [48], and their emotions highly influence their cognitive capability, too [49]. This
female prevalence was also reflected in our older animals. We might assume that at younger
age the sex hormonal system is immature, and therefore typical sex difference develops
over time.

5. Conclusions

In summary, similarly to AD patients, the 3xTg-AD mice recapitulate some but not
all (i.e., smell loss) behavioral and psychological symptoms of AD-like behaviors [50].
According to our present data, this mice strain might be a good model to examine the
mechanism as well as possible treatment options of early onset anxiety in AD using the
highly conservative avoidance of predator odor or considering anxiety caused by open
spaces. Unlike cognitive tests, here, already two-month-old animals can be used, although
the symptoms persist till at least 18 months.
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