
Temporal Assertions with Parametrised
Propositions

Volker Stolz <vs@iist.unu.edu>
United Nations University

Institute for Software Technology (UNU-IIST)

January 26, 2007

In this work, we present an extension to our previous approach to runtime
verification of a single finite path against a formula in Next-free Linear-Time
Logic (LTL) with free variables and quantification.

We introduce parametrised propositions that consist of a proposition name
(p, q, . . .) with arity. The payload of such a proposition occurring on a trace
contains values from some object domain according to its arity. In a formula, a
proposition contains the appropriate amount of variables, e.g. p(X, Y ) or q(Z).

Variables get instantiated if a proposition matches during evaluation of a
trace. Multiple occurrences of the same variable are permitted and work similar
to Prolog: if a variable is already bound when a proposition is evaluated, both
the proposition occurring in the current state and the bound variables must
match.

From our experience with J-LO, the Java Logical Observer [2, 1], we
found it necessary to distinguish between read and write accesses to variables,
based on a static analysis of the formula. Furthermore, evaluation of uninstanti-
ated propositions had to be considered. As interpretation (through a human) of
those formulae resulted difficult and error prone due to the binding semantics,
in this article we introduce a special binary binding operator ·→ that simplifies
our design in the following aspects:

• simpler binding semantics

• no static analysis necessary

• more general through quantification.

The left-hand side contains a single parameterised proposition, the right-hand
side a temporal parametrised formula that may refer to the variables bound in
the proposition, e.g.

ψ := p(X) ·→ ϕ(X).

Negation is only permitted in propositional subformulae, We call the entire
construct a binding expression.

Furthermore, we require that every variable occurring in a parametrised
formula has previously been bound through the left-hand side of a binding op-
erator. We can thus ensure by construction that evaluation will only encounter
completely instantiated propositions, i.e. propositions, where a value for every

1



variable is known. If the left-hand side does not match the current state during
evaluation, the overall expression is evaluated to false.

Quantification plays a role when more than one matching proposition holds
in the current state. Matching the proposition p(X) against the state {p(1), p(3)}
yields two distinct bindings for variable X : X/1 and X/3. Quantifiers may only
occur together with a parametrised proposition on the left-hand side of the bind-
ing operator. In a binding expression, all newly introduced variables through a
proposition must also be quantified.

Additionally to the usual notion of LTL formulae augmented by quantified
variables and bindings, we also permit predicates and functions over bound
variables that can be used, for example, to compare values for inequality.

As an example, we consider the Lock-Order Reversal pattern [3], which
captures a common error pattern where two processes repeatedly compete for
two resources (locks), albeit in different order. This behaviour has the potential
for a dead lock which can be detected by monitoring the order in which each
process locks/unlocks the resources.

Ψ = G [∀ti∀lx : lock(ti, lx) ·→ ([¬unlock(ti, lx) U ∃lz′ : lock(ti, lz′) ·→ lz′ $= lx]
→ ¬unlock(ti, lx) U ∃lz : lock(ti, lz)

·→ [lz $= lx
∧ ∀ly : lock(ti, ly)

·→ (ly $= lx ∧ G ¬(∃tj : lock(tj , ly)
·→ [ti $= tj

∧ (¬unlock(tj , ly) U lock(tj , lx))]))])]

lock and unlock are binary propositions, binding a thread- and a lock-id, $= is
a predicate.

A declarative semantics is given by expanding quantified variables through
values from the finite object domain and combining them through conjunction
or disjunction according to the quantifier. Operationally, evaluation of such
a Temporal Assertion proceeds by means of a variant of Alternating Finite
Automata, augemented with a dictionary to maintain the current bindings for
each subformula. For runtime verification, we give an algorithm based on sets in
disjunctive normal form that traverses the automaton in a breadth-first fashion
which requires processing each state in a path exactly once and in order. It is
thus suitable for online checking where an error should be detected immediately.

References

[1] E. Bodden and V. Stolz. Tracechecks: Defining semantic interfaces with
temporal logic. In W. Löwe and M. Südholt, editors, 5th International
Symposium on Software Composition (SC’06). To be published in Lecture
Notes in Computer Science, Springer, 2006.

[2] V. Stolz and E. Bodden. Temporal Assertions using AspectJ. In H. Bar-
ringer, B. Finkbeiner, Y. Gurevich, and H. Sipma, editors, Fifth Workshop
on Runtime Verification (RV’05), volume 144 of Electr. Notes in Theor.
Comput. Sci. Elsevier, 2005.

[3] V. Stolz and F. Huch. Runtime Verification of Concurrent Haskell Pro-
gramms. In K. Havelund and G. Roşu, editors, Proceedings of the Fourth
Workshop on Runtime Verification (RV’04), volume 113 of Electr. Notes in
Theor. Comput. Sci., pages 201–216. Elsevier, 2005.

2


