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Temporal assessment of 
nanoparticle accumulation after 
experimental brain injury: Effect of 
particle size
Vimala N. Bharadwaj1, Jonathan Lifshitz2,3, P. David Adelson2,3, Vikram D. Kodibagkar1 & 

Sarah E. Stabenfeldt1

Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, 

yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain 

injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus 

opening a window for NP delivery to the injured brain tissue. This study focused on investigating the 

spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining 
a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 
40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after 
injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy 
demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship 
was found between NP size and their continued accumulation within the penumbra. NP accumulation 

preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as 

compared to the parietal association and visual area. Thus, we characterized the accumulation of 

particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI 
theranostics in the acute period after injury.

Traumatic brain injury (TBI) is a leading cause of disability worldwide1 with 1.7 million TBIs reported annually 
in the United States2. �e pathology of TBI occurs from both immediate and delayed mechanisms resulting in 
highly heterogeneous tissue damage3. �is pathology may include substantial blood-brain-barrier (BBB) dysfunc-
tion due to alterations in the capillary endothelial cells, speci�cally deregulation of tight junctions and/or vesic-
ular transport4. As the BBB breaks down, normally impermeable blood constituents may now freely extravasate 
into the brain parenchymal space5. �is transient, increased permeability within the injury penumbra may o�er a 
unique opportunity to deliver drugs that are normally excluded from the brain. In order to exploit this potential 
avenue for delivery a�er TBI, further characterization of the temporal pro�le of the “permeability window” as 
well as the size range for molecule/particle extravasation is necessary.

In laboratory settings, experimental animal brain trauma models provide insights into the events that 
occur during and after injury. One of the most commonly used models is the controlled cortical impact (CCI) 
model in the rodent; this model produces focal damage leading to major cortical damage directly in the zone 
of impact6. Previous CCI model studies with rats established the presence of a compromised BBB as indi-
cated by the extravasation of horseradish peroxidase (HRP)6 or Evans Blue (EB)7,8 post-injury. Specifically, 
the BBB was compromised immediately after injury and remained significantly permeable for 5–7 days 
post-injury within the injury penumbra (with a second peak at ~3 days)6,7. Furthermore, Habgood et al. 
used weight-drop injury model to demonstrate that large molecular weight (MW) markers (HRP ~40 kDa) 
were permeable up to 24 h post-injury, as compared to smaller MW markers (biotin-dextran-amine, < 
10 kDa) that remain permeable as late as 4 days post-trauma9. Therefore, the BBB, post-injury, displays 
variable permeability based on the MW, with equivalent hydrodynamic diameter of about 3–6 nm10,11. These 
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seminal studies provided evidence of BBB dysfunction after TBI6,7,9; however, the dynamic size range for 
particle extravasation greater than ~10 nm has not been previously elucidated.

Nanoparticles (NPs), particles ranging from 10–1000 nm in diameter12, are utilized for various biomedical 
applications due to their pharmacological attributes. �e unique physicochemical properties of NPs have shown 
promise in delivering a range of molecules, including water-insoluble drugs and large payloads, to desired sites 
in the body13–16. Speci�cally, surface modi�ed NPs have been designed to achieve greater e�cacy of therapeutic 
agents, prolonged pharmacological e�ects by improved drug protection, and reduced renal clearance compared to 
standard drug administration17–19. Moreover, contrast agents may be incorporated into NPs enabling visualization 
of the diseased site to diagnose and/or monitor the in vivo e�cacy of the therapeutics13,20. However, these remark-
able attributes of NPs are commonly unattainable for neural applications due to BBB permeability limitations. 
We postulate that the BBB disruption a�er TBI may a�ord a unique opportunity for NP delivery. Our hypothesis 
was recently supported by two independent studies demonstrating the feasibility and utility for intravenous NP 
delivery a�er TBI21,22. Yet, a systematic evaluation of the temporal window and the NP size range for NP delivery 
a�er TBI has not been previously performed. �erefore, the focus of this study was to establish the e�ect of NP 
size and time of NP injection a�er experimental TBI while maintaining a constant circulation time. As such, we 
investigated the accumulation of four di�erent sized (20, 40, 100, and 500 nm) �uorescent polystyrene NPs at �ve 
time points acutely (up to 24 h) a�er TBI using the murine CCI model.

Results
Nanoparticle characterization. Four sizes of carboxylated polystyrene NPs (20 nm, 40 nm, 100 nm and 
500 nm), each internally loaded with a distinct �uorescent dye with negligible overlap in signal were employed 
in the study (Fig. 1). �e surface of carboxylated NPs was modi�ed with amine-polyethylene glycol (PEG)23,24 
to reduce their zeta potential for improved NP stability and to prolong blood circulation time. �e NPs were 
characterized via transmission electron microscopy (TEM) and dynamic light scattering (DLS). PEGylation of 
NPs via amine/carboxyl EDC/NHS chemistry was con�rmed through DLS based on a decrease in zeta potential 
and modest increase (~10 nm) in hydrodynamic diameter of the NPs (Fig. 1d,c, Table 1; n =  3). A statistically 
signi�cant decrease in zeta potential was observed for each NP a�er PEGylation (p <  0.05; Table 1, Fig. 1d). 
TEM images of NPs show monodispersed, spherical shaped particles for each population (Fig. 1b). To simplify 
nomenclature, the four NP groups employed in this study will be addressed by their nominal diameters, 20 nm, 
40 nm, 100 nm, and 500 nm.

In vivo study: Horseradish peroxidase (HRP) extravasation. A lateral CCI was imparted on the fron-
toparietal cortex generating a cortical lesion ipsilateral to the impact and leaving the contralateral hemisphere 
uninjured. An intravenous retro-orbital25 HRP injection 10 min prior to sacri�ce was included as a positive con-
trol to evaluate the BBB integrity, as extravasation of HRP is a well-accepted indicator of breached BBB6,9,26,27 
(Supplementary Fig. 1). Speci�cally, we observed extravasation of HRP in the primary and the adjacent injury 

Figure 1. Nanoparticle characterization (a) Schematic of nanoparticle PEG conjugation using EDC/NHS 
chemistry. (b) TEM images of monodispersed nanoparticles (PEGylated). (c) Hydrodynamic diameter of non-
PEGylated and PEGylated nanoparticles. (d) Zeta potential of non-PEGylated and PEGylated nanoparticles, 
*p < 0.05, t-test. Error bars represent standard error of mean with n = 3 per group.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:29988 | DOI: 10.1038/srep29988

region at 1 h post injury. However, the HRP extravasation was only localized to the primary injury site at and 
a�er 3 h post injury. �erefore, the quanti�cation of HRP staining for 1 h cohort included both the primary and 
adjacent tissue region; analysis for the remaining cohorts focused only the primary injury site. Quanti�cation 
of HRP extravasation to obtain the number of positive pixels using ImageJ so�ware, demonstrated signi�cant 
di�erences between ipsilateral and contralateral locations (p =  0.0002) while a time dependent e�ect was not 
observed (p =  0.038) using two-way ANOVA. Pair-wise analysis of extravasation of HRP speci�cally for each 
time point revealed a signi�cant increase in HRP extravasation in the injury penumbra compared to contralateral 
tissue at all investigated time points (1 h, 3 h, 6 h, 13 h and 24 h) post injury (p <  0.05; Fig. 2b). Comparing the 
ipsilateral HRP staining over time revealed a nearly 35% reduction in HRP staining at the 3 h, 6 h, 13 h, and 24 h 
time points compared to the maximal HRP staining at 1 h post-injury. �is reduction was statistically signi�cant 
for 13 h and 24 h cohorts (p <  0.05) compared to 1 h cohort, thus demonstrating potential resolution of the BBB 
over time. �erefore, HRP extravasation con�rmed the BBB dysfunction up to 24 h post-injury corroborating 
previous studies6 (Fig. 2).

In vivo study: Accumulation of nanoparticles within injury penumbra. We used a NP cocktail 
containing particles with diameters ranging from 20 nm to 500 nm, to determine the extent of NP accumula-
tion acutely (up to 24 h) a�er brain injury with a constant 1 h circulation time. Speci�cally, we quanti�ed the 
accumulation of each �uorescent NP within processed brain tissue sections spanning across the injury lesion 
(~− 0.18 mm bregma to ~− 3.28 mm bregma) via confocal microscopy (Fig. 3). Interestingly, we observed maxi-
mum accumulation of all NPs 1 h a�er injury, including the 500 nm particles. Additionally, the results indicated 
prolonged NP accumulation of 20 nm and 40 nm up to 13 h post injury within the injury penumbra where as 
signi�cant accumulation of 100 nm and 500 nm NPs was found up to 6 h.

Two-way ANOVA results from our study revealed a signi�cant di�erence between the ipsilateral and con-
tralateral location for 20 nm (p <  0.0001), 40 nm (p <  0.0001), 100 nm (p =  0.0392) and 500 nm (p <  0.0001), 
(Fig. 4a–d). Moreover, the analysis demonstrated a signi�cant time dependent e�ect for 20 nm, 40 nm, 100 nm 
and 500 nm (p =  0.0001), (p <  0.0001), (p =  0.043), (p =  0.0364) (Fig. 4a–d), respectively. To take a closer look at 
the e�ect of each of these variables individually, post-hoc pair-wise analyses of critical comparisons are described 
below.

Analysis of the BBB breach in injured and uninjured brain tissue. �e �rst pairwise analysis focused on com-
paring NP accumulation within the ipsilateral injury penumbra to contralateral tissue at di�erent time points 
(Fig. 4). Speci�cally, for 20 nm and 40 nm, ipsilateral accumulation markedly increased for all time points com-
pared to contralateral tissue, except 24 h cohort (Fig. 4a,b; p <  0.05). For 100 nm, statistically signi�cant increase 
in NP accumulation on the ipsilateral side was only observed at 3 h and 6 h post-injury (Fig. 4c; p <  0.05). Finally, 
the 500 nm NP accumulation was signi�cantly greater for ipsilateral versus contralateral up to 6 h. Overall, 20 and 
40 nm NPs signi�cantly accumulated in the injury penumbra compared to the contralateral tissue up to 13 h a�er 
injury while the time window was reduced by nearly half (6 h) for the 100 and 500 nm.

Analysis of the BBB breach within injured region across di�erent time points. �e second critical pairwise analysis 
focused on comparing the temporal changes in NP accumulation within the ipsilateral injury penumbra across 
time points. For 20, 40 and 100 nm, there was a signi�cant reduction in accumulation for 3 h, 6 h, 13 h and 24 h 
time points as compared to 1 h post injury (p <  0.05); less than 35% of 1 h NP accumulation was observed for 
other time points (Fig. 4a–c). Accumulation of the 500 nm NP was nearly 25% of 1 h cohort for 3 h, 6 h, and 13 h 
post-injury and was signi�cantly reduced (p <  0.05; Fig. 4d). Interestingly, the mean NP accumulation for the 
500 nm NP at 24 h exhibited similar accumulation as compared to the 1 h post injury; we noted that variance 
within this group was quite large as two of the four animals displayed high NP accumulation whereas the other 
two animals had modest NP accumulation. �e overall trend for di�erent sized NPs demonstrated maximum 
accumulation at 1 h post-injury compared to other time points.

In vivo study: Spatial distribution of HRP and nanoparticles. �e CCI impact to the frontoparietal 
cortex (− 1.5 mm bregma, 1.5 mm lateral from midline) generates an injury lesion mainly to the cortex, which 
includes damage to the primary motor area (M1), primary somatosensory area, posterior parietal association 
area and anteriomedial visual cortex (V1). Interestingly, we observed selective distribution of HRP and NP accu-
mulation based on the cortical region, a trend that held consistent with all post-injury time point cohorts. In this 

Nominal NP size (nm)

Hydrodynamic Diameter 
(nm) of NP Zeta Potential (mV) of NP

non-PEGylated PEGylated non-PEGylated PEGylated

20 19.6 ±  2.0 24.7 ±  2.0 − 44.1 ±  3.3 − 28.4 ±  3.2* 

40 50.1 ±  3.5 58.4 ±  4.0 − 46.0 ±  3.5 − 9.2 ±  4.0* 

100 91.5 ±  5.4 101.9 ±  6.0 − 55.3 ±  3.1 − 22.4 ±  3.5* 

500 507.0 ±  27.5 517.6 ±  34.8 − 57.9 ±  1.5 − 26.5 ±  2.0* 

Table 1.  Nanoparticle characterization: Hydrodynamic diameter and zeta potential of non-PEGylated NP 
and PEGylated NP, mean ± standard error of mean (n = 3). * p <  0.05, t-test. Measurements in 20 mM HEPES 
(pH 7.4).
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Figure 2. HRP Extravasation a�er TBI: (a) Representative images of extravasation of HRP injured region a�er 
1 h, 3 h, 6 h, 13 h and 24 h post injury (a–e); contralateral region 1 h post injury (f). (b) Quantitative analysis 
of HRP extravasation over time. * p <  0.05 compared to their respective contralateral ROI, Student’s t-test. 
†p <  0.05 compared to 13 h and 24 h ipsilateral ROI, Tukey’s post-hoc test. Error bars represents standard error of 
mean with n =  4 per group. Scale bar =  500 µ m.
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regard, we examined a series of coronal sections across the injury lesion from anterior to posterior. We binned the 
tissue sections into three spatial sub-groups: anterior (~− 0.18 mm bregma), middle (~− 1.65 mm bregma) and 
posterior (~− 3.28 mm bregma) (Fig. 5a). Our results demonstrated maximal accumulation of the NPs and HRP 
within the anterior and middle regions of the injury penumbra (statistically signi�cant only at 1 h), as compared 
to that of posterior and contralateral regions (Figs 5 and 6). Strikingly, the accumulation in the posterior region 
was similar to that of the contralateral region.

HRP extravasation signi�cantly varied across the injury penumbra (p =  0.0003) (Fig. 5b). Further pairwise 
post-hoc analysis revealed a signi�cant increase in extravasation for 1 h post-injury within the anterior and mid-
dle injury penumbra regions, compared to both posterior injury penumbra, and contralateral tissue. Furthermore, 
HRP extravasation within the posterior injury penumbra was not signi�cantly di�erent than contralateral tissue.

Signi�cant di�erence in accumulation was observed across the di�erent regions of the brain for 20 nm, 40 nm, 
and 500 nm (p =  0.0002), (p <  0.0001), (p =  0.02), respectively yet not signi�cant for 100 nm (p =  0.10), (Fig. 6). 
Tukey’s post-hoc analysis of the 20 nm and 40 nm NPs demonstrated a signi�cant increase in accumulation for 
the anterior injury region at 1 h compared to both the posterior injury region, and contralateral tissue (p <  0.05) 
(Fig. 6a,b). �e accumulation of 20 nm, 40 nm, 100 nm and 500 nm NP within the core of the injury penumbra 
was signi�cantly more than the posterior injury penumbra, and contralateral tissue at 1 h post injury (p <  0.05) 
(Fig. 6a–d). Interestingly, no signi�cance was observed in NP accumulation between the posterior injury penum-
bra and the contralateral tissue regardless of the NP size.

Discussion and Conclusion
�eranostic delivery for the brain has been largely hindered by limitations of BBB permeability. However, short 
windows of BBB dysfunction or damage as a result of disease or injury pathology may provide an opportunity for 
delivery of contrast agents and poorly soluble drugs via NPs. To fully utilize the window of opportunity of BBB 
opening that occurs a�er TBI, we need to further assess the spatiotemporal accumulation of NPs a�er injury. 
�e study presented here directly addresses the critical knowledge gap to determine to e�ect of di�erent size NP 
accumulation and the injection time points a�er experimental TBI, where the results provide key insights into NP 
behavior a�er TBI. Speci�cally, three key �ndings include: 1. NPs up to 500 nm may be delivered to TBI injured 
brain, 2. Maximal NP accumulation occurs 1 h a�er TBI, 3. NP accumulation of 20 nm and 40 nm NPs occurred 
out to 13 h post-injury.

Figure 3. Accumulation of di�erent size nanoparticles over time a�er injury. (a) Representative images of 
injured brain section (~− 1.655 mm bregma, 25 µ m thick). (b) Panel of 20X confocal images near the injury 
region on ipsilateral hemisphere (shown in (a)). Rows of the panel show time course and the columns show the 
di�erent nanoparticle size. (c) Panel of 20X confocal images on contralateral hemisphere (shown in (a)), for 
each nanoparticle at 1 h post injury. Scale bar =  250 µ m.
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Systemic NP delivery depends on many parameters to ensure stability, prolonged blood circulation, and e�-
cient delivery to the target tissue/organ. Speci�cally NP surface charge in�uences the physiochemical stability 
of NPs and the rate of particle elimination from circulation; previous studies have shown near neutral/slightly 
anionic NPs have reduced clearance by the reticuloendothelial system28–30. Functionalizing the surface of the NP 
with polymer polyethylene glycol (PEG) is most commonly used to minimize opsonization not only through 
steric hindrance but also charge shielding23,24. Since this study focused on evaluating size and time dependent 
NP accumulation a�er brain injury, we aimed to minimize the in�uence of NP parameters outside of size by 
PEGylating all of our NPs and obtained slightly anionic NPs for e�cient systemic delivery.

Passive systemic NP delivery to the injured brain hinges on a damaged BBB and con�rmation of a dysfunc-
tional BBB was obtained with the HRP marker (~44 kDa with an estimated diameter of ~3 nm10). We observed 
extravasation of HRP in the primary and the adjacent injury region at 1 h post-injury. However, for all subsequent 
cohorts, the HRP staining was localized to the primary injury site. A survey of the literature indicates some 
disagreement in utilizing HRP to classify the underlying mechanisms for BBB breakdown (i.e., injury induced 
rupture and/or paracellular permeability)6,9,31. As stated previously, the current study focused on evaluating NP 
accumulation ultimately for acute TBI theranostics. �erefore, it was necessary to correlate NP accumulation 
with BBB damage through HRP staining. One important observation is that while the incidence of HRP staining 
reduced over 24 h post injury, signi�cant positive staining was observed out to 24 h a�er injury indicating the 
persistence of localized dysfunctional BBB and opportunity for localized NP accumulation. �ese �ndings are 
critical in elucidating the optimal temporal delivery window for NPs (10–1000 nm) as the interest in using NPs 
for TBI has gained traction recently21,22. Speci�cally, two previous studies employed systemic NP delivery a�er 
TBI where the NPs ranged from 60 nm to 300 nm in diameter. �ese studies demonstrated feasibility for NPs to 
preferentially localize within the injury penumbra when delivered within 4 h post injury21,22. Yet, little is known 
about the impact of NP size and injection time to achieve e�ective delivery a�er TBI. We directly addressed this 

Figure 4. Nanoparticle accumulation a�er TBI. Accumulation of (a) 20 nm, (b) 40 nm, (c) 100 nm, (d) 
500 nm nanoparticles at di�erent time points a�er traumatic brain injury in mice. * p <  0.05 compared to their 
respective contralateral ROI, Student’s t-test. ✪p <  0.05 compared to 3 h, 6 h, 13 h, and 24 h ipsilateral ROI, 
☉p <  0.05 compared to 3 h, 6 h, and 13 h ipsilateral ROI; Tukey’s post-hoc test. Error bars represents standard 
error of mean with n =  4 per group.
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critical gap by evaluating a cocktail injection of di�erent sized PEGylated NPs at di�erent time points a�er injury 
while maintaining a consistent circulation time (1 h). �e peak accumulation for all sized NPs was observed with 
injections immediately a�er injury (+ 1 h circulation time) mirroring the HRP extravasation results. Not sur-
prisingly, we observed prolonged accumulation for two smallest NPs (20 nm and 40 nm) out to 13 h post injury, 
whereas signi�cant accumulation for the two largest NPs (100 nm and 500 nm) was seen only out to 6 h. Our 
report is the �rst to show the evidence of accumulation of up to 500 nm sized PEGylated NPs within the injury 
penumbra acutely a�er brain injury. �is �nding is supported by a NP study on cortical implants in mice where 
accumulation of up to 500 nm NPs near the implant region was observed at 4 weeks post-implant32. Overall, it is 
evident that our study not only corroborates previous reports, but more importantly expands our current knowl-
edge regarding time and size dependent NP delivery a�er TBI.

We postulate that TBI pathology directly contributes to NP accumulation within the injury penumbra. TBI, 
particularly the CCI model, leads to physical rupture of the blood vessels, dysfunction of the BBB and permeable 
blood vasculature within the injury region33,34. A similar leaky vasculature phenomenon has been de�ned as 
the enhanced permeability and retention (EPR) e�ect in oncology literature35–39. Poorly structured and highly 
permeable vasculature contributes to increased passive accumulation of NPs within solid tumors36,39,40. �us, the 
unique pathophysiological nature of the dysfunctional BBB and leaky vasculature a�er TBI, may lead to localized 
accumulation of NPs at the injured area due to a similar EPR e�ect. In the present study we observed localized 
areas of brain tissue containing multiple sizes of NPs. In contrast, we did not observe signi�cant NP accumulation 
in uninjured brain tissue as compared to injured tissue, suggesting localized leaky vessels near the injury site. 
Although the exact mechanism for the NP accumulation at the injury location was not probed, potential mecha-
nisms include accumulation via mechanically-induced ruptured vessels or paracellular di�usion5. Future studies 
are warranted to better understand such mechanisms. Overall, the accumulation of di�erent sized NPs occurred 
speci�cally within the primary injury site.

One interesting �nding was preferential spatial accumulation within speci�c cortical regions within the injury 
penumbra. �e CCI injury generated a cortical lesion encompassing the primary motor area (M1), somatosen-
sory area, posterior parietal association area and anteriomedial visual cortex (V1) (from anterior to posterior). 
Remarkably, at 1 h post-injury signi�cantly higher levels of both HRP and NPs were found within the more ante-
riorly located primary motor (M1), and somatosensory area compared to posteriorly located parietal association 
and visual area (V1) of the brain. �e speci�c mechanism that leads to lower accumulation of NPs in the posterior 
area is not clear. However, we postulate that the heterogeneous nature of the inherent cortical cerebral blood �ow 
and injury-induced alterations in blood �ow play key roles. Speci�cally, regional neural cellular density has been 
directly correlated with microvessel densities in murine models41. Such variations in microvascular density is 
directly linked to cortical blood �ow42,43. Comparing the cortical regions encompassed in the injury penumbra, 
we found reports of reduced neural cell density within the parietal cortex44. �erefore, the inherently reduced 

Figure 5. Spatial distribution analysis. (a) Representative brain images showing anterior, middle and 
posterior regions of the brain w.r.t. bregma. (b) Quantitative analysis of HRP extravasation at di�erent 
anatomical regions and di�erent time points a�er TBI. * p <  0.05 compared to contralateral ROI (Contra),  

p <  0.05 compared to posterior ROI (Posterior); Tukey’s post-hoc test. Error bars represents standard error of 
mean with n =  4 per group.
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cortical blood �ow/microvascular density within the parietal cortex area may largely contribute to a low level of 
NP accumulation a�er TBI. Secondarily, TBI promotes localized alterations in the cerebral blood �ow, depending 
on the size and location of contusions and hematomas45 leading to abnormal blood supply to injured tissue. �e 
blood supply to the motor, sensory and parietal cortex is supplied by the middle cerebral artery (MCA)46. �e CCI 
injury imparted over this region may damage the MCA or its branches resulting in rupture of anteriorly located 
blood vessels. �is type of vascular damage may lead to two phenomena potentially contributing to the regional 
distribution of NPs, 1. enhanced NP accumulation in anteriorly located blood vessels, and 2. hypoperfusion in 
downstream posteriorly located regions leading to reduced NP accumulation. Collectively, inherent variations 
in capillaries combined with injury-induced blood �ow alterations may contribute to anteriorly dominate NP 
accumulation a�er CCI.

To maximize the NP size spectrum, each animal received an intravenous delivery of a NP cocktail containing 
four di�erent sized NPs. Our analysis focused on direct comparison within each NP size and did not include 
cross NP size comparisons. Each NP injection contained an equal mass concentration yet varying number of 
NPs for each size group, thereby preventing direct comparison across NPs with high �delity. Each NP group 
was loaded with a unique �uorophore with discrete �uorescent spectra. �erefore, accumulation of each NP 
within brain tissue at di�erent time points post-injury was determined through an empirical conversion of total 
�uorescent intensity speci�c to each �uorophore to the total number of NPs (Supplemental Fig. 2). Nonetheless, 
these limitations did not constrain the critical analysis within each NP size group where we revealed never before 
presented data on the dynamic size NP range delivery a�er TBI. �e results of our study are integral for develop-
ing NP-based contrast agents or drug delivery. NPs for brain delivery applications47 vary widely in composition 
ranging from amphiphilic monomers to lipids to more rigid polymer-based48,49. Smaller NPs (< 100 nm) have 
shown to have slower clearance, higher amount of encapsulated drug accumulation, e�cient cellular uptake, and 

Figure 6. Spatial distribution of nanoparticle accumulation. Quantitative analysis of (a) 20 nm, (b) 40 nm, 
(c) 100 nm, (d) 500 nm nanoparticles at di�erent anatomical regions and di�erent time points. * p <  0.05 
compared to contralateral ROI (contra), p <  0.05 compared to posterior ROI (posterior); Tukey’s post-hoc test. 
Error bars represents standard error of mean with n =  4 per group.
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enhanced penetration of poorly permeable tissue, as compared to larger NPs (> 200 nm)40,50,51. Previous studies 
have successfully used NPs (20–60 nm) as indicators of BBB damage in experimental stroke models52,53 and as 
theranostic tools for imaging and drug delivery40,51. Results of our study can potentially be applied to devise 
multifunctional NPs with therapeutic drugs for brain injury such as superoxide dismutase54, erythropoietin55, 
statins55 to be loaded into these NPs.

In conclusion, we established that PEGylated polystyrene nanoparticles of di�erent sizes (20 nm, 40 nm, 
100 nm and 500 nm) accumulate predominately near the injury region a�er CCI injury in mice. Furthermore, 
maximal accumulation for all NP sizes was observed at 1 h post-injury. With a constant circulation time of 1 h 
across all cohorts, we identi�ed an inverse relationship between the NP size and their accumulation at di�erent 
time points post injury. �e accumulation of NPs was not only in�uenced by the NP size and time a�er injury 
but also varied spatially within the brain tissue cortex. �e anterior and middle regions of the injured tissue had 
maximal accumulation of NPs compared to the posterior region 1 h a�er brain injury. Detailed studies on biodis-
tribution of each NP and their total accumulation per brain tissue are yet to be addressed. However, our current 
study provides the groundwork for NP delivery a�er TBI. Potential application of our study ranges from delivery 
of targeted contrast agents to therapeutics a�er TBI. �erefore, better understanding of NP accumulation will 
facilitate e�ective utilization of the BBB breakdown for TBI theranostics.

Materials and Methods
Materials. Carboxylated polystyrene NPs of di�erent sizes were purchased from Life technologies (Carlsbad, 
CA, USA). Speci�cally, 20 nm (F8783), 40 nm (F8793), 100 nm (F8797) and 500 nm (F8813) NPs with dark red 
(λ ex/λ em =  660/680), red (λ ex/λ em =  580/605), blue (λ ex/λ em =  350/440) and yellow-green (λ ex/λ em =  505/515) 
�uorescence, respectively, were used. Methoxypolyethylene glycol amine 2000 (mPEGamine 2 KDa) (06676), 
methoxypolyethylene glycol amine 750 (mPEGamine 750 Da) (07966), n-[3-dimethylaminopropyl]-n-ethyl, 
n-[3-dimethylaminopropyl]-n-ethyl [EDC] (E1769), MES hemisodium bu�er (M8902), N-Hydroxysuccinimide 
(NHS) (56405), and Peroxidase type II from horseradish (P8250-50KU) were purchased from Sigma Aldrich 
(St. Louis, MO, USA). ImmPACT DAB peroxidase (HRP) substrate (SK-4105) was purchased from Vector lab-
oratories (Burlingame, CA, USA). Slide-A-Lyzer Cassettes (20 K) (66003) were purchased from �ermoFisher 
scienti�c (Waltham, MA, USA). Fluorescent mounting media (Vectashield, Vector Labs, Burlingame, Ca, USA)

Nanoparticle PEG conjugation. Carboxylated NPs were PEGylated using EDC/NHS chemistry. Brie�y, 
mPEGamine 750 Da was mixed with 20 nm NPs (NH2:COOH at 2:1 mole excess) whereas mPEGamine 2 kDa 
was mixed with 40 nm, 100 nm and 500 nm NPs; (NH2:COOH at 5:1 mole excess). EDC/NHS (in MES bu�er) was 
added to NP/PEG mixture (8 mM/4 mM for 20 nm and 200 mM/100 mM for other NPs) and HEPES bu�er was 
added to obtain a �nal pH of 7.8 before incubating for 3 h at room temperature. Glycine (100 mM) was added to 
quench the reaction. Unbound PEG was removed via dialysis (20 kDa MW). PEGylated NPs were suspended in a 
20 mM HEPES (pH 7.4). �e concentration of each NP solution was determined with �uorescent standard curves 
generated from known concentrations of as-received Fluorospheres (FLUOstrar Omega �uorescence plate reader; 
BMG Labtech, Ortenberg, Germany). Yields of NPs ranged between 40–60%. A concentration of 13.3 mg/ml  
for each NP was used for all in vivo studies.

Nanoparticle characterization. PEGylated NPs were visualized using transmission electron microscopy 
(TEM). NPs in water were applied to 300-mesh, carbon coated copper grids for 60 s. A�er this, excess water was 
removed by blotting with �lter paper before imaging using JEOL 1200EX TEM (Peabody, MA, USA), operated 
at 80 kV and images were collected with a CCD camera (Scienti�c Instruments and Accessories; Duluth, GA, 
USA). �e hydrodynamic diameter and zeta potential of NPs in 20 mM HEPES (pH 7.4) were measured pre and 
post-PEGylation with a dynamic light scattering (DLS) device (Zetasizer Nano Malvern; Malvern, UK). For each 
NP, three measurements were made and the mean ±  standard error of mean (s.e.m.) was reported.

Controlled cortical impact model. All animal studies were approved by Arizona State University’s 
Institute of Animal Use and Care Committee (IACUC) and were performed in accordance with the relevant 
guidelines. Traumatic brain injury (TBI) was modeled using the well-established controlled cortical impact (CCI) 
injury model56. Brie�y, adult C57Bl/6 mice (9–10 weeks old) were anesthetized with iso�urane (3% induction, 
1.5% maintenance) and placed in stereotaxic frame. �e frontoparietal cortex was exposed via 3 mm craniotomy 
and the impact tip was centered at − 1.5 mm bregma and 1.5 mm lateral from midline. �e impactor tip diameter 
was 2 mm, the impact velocity was 6.0 m/s and the depth of cortical deformation was 2 mm and 100 ms impact 
duration (Impact ONE; Leica Microsystems). �e skin was sutured and the animals were placed in a 37 °C incu-
bator until consciousness was regained. �e naïve group did not undergo surgery.

Nanoparticle and horseradish peroxidase (HRP) injection. Retro-orbital injections of the venous 
sinus in the mouse were performed for intravenous delivery of the particles; this technique is an alternative to 
tail-vein injection25. Animals were anesthetized with iso�urane (3%) and the NP cocktail (75 µ l) of di�erent sized 
NPs (50 mg/kg b.w.) was injected to the right eye, one hour before perfusion and sacri�ce. HRP (83 mg/kg b.w.in 
25 µ l) was injected to the le� eye ten mins before perfusion and sacri�ce. Depending on the injury group, animals 
were sacri�ced at 1 h, 3 h, 6 h, 13 h, and 24 h post injury. �e NP circulation time of 1 h was held constant for each 
of the cohorts.

Tissue collection. According to the experimental groups –1 h, 3 h, 6 h, 13 h and 24 h post-injury, animals 
were deeply anesthetized with lethal dose of sodium pentobarbital solution until a tail pinch produced no re�ex 
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movement. Animals were transcardially perfused with cold phosphate-bu�ered saline (PBS), followed by 4% 
bu�ered paraformaldehyde solution. Brain tissue were collected and �xed overnight in 4% bu�ered paraform-
aldehyde followed by immersion in 30% sucrose solutions in 1X PBS for cryoprotection for 24 h. Samples were 
embedded within optimal cutting temperature (OCT) medium and frozen on dry ice. Samples were stored at 
− 80 °C until sectioned coronally at a 25 µ m thickness with a cryostat.

Quantification of nanoparticle accumulation. Slides containing the frozen sections were incubated 
at room temperature for 20 mins in 1X PBS to rehydrate the tissue and remove OCT compound. Coverslips 
were mounted on the section a�er adding one drop of �uorescent mounting media (Vectashield). �ese sections 
were imaged using confocal microscopy (Leica TCS SP5 AOBS Spectral Confocal System, 20X magni�cation). 
Four region of interest (ROI) of the dimension 775 µ m X 775 µ m, were selected surrounding the injury penum-
bra (eight sections per animal, four animals per cohort) and two ROIs at contralateral region (two sections per 
animal, four animals per cohort). Scanning settings for each NP: 20 nm, 40 nm, 100 nm and 500 nm were λ ex/ 
λ em =  633/700–758 nm (800 V gain); λ ex/λ em =  561 nm/572–619 nm (645 V gain); λ ex/λ em =  405 nm/420–465 nm 
(585 V gain), and λ ex/λ em =  488 nm/507–535 nm (725 V gain), respectively. Con�guration settings were main-
tained constant for all the images collected. For each ROI, Z stacking was performed and total Z width ranged 
from 20–25 µ m with a slice thickness of 1 µ m. �e Z stacks images were converted to a single image by maximum 
projection tool using Leica so�ware (LAS AF, Leica microsystems). �e sum of four ipsilateral ROI for each 
section (eight sections per animal, four animals per cohort) were averaged and compared to the sum of the 
two contralateral ROI (two sections per animal, four animals per cohort). �e maximum projected images were 
thresholded to remove background �uorescence using tissue sections from NP injected naïve brain and total 
intensity was calculated, using ImageJ so�ware. �e �uorescent intensity values were then converted to number 
of NPs based on an empirical method (See Supplementary Fig. 2).

Quantification of HRP extravasation. �e same tissue section used for NP analysis or their adjacent sec-
tions were incubated in PBS bu�er for 20 mins. Freshly prepared DAB substrate solution (200 µ l) was added and 
incubated for ten mins at room temperature. Slides were then washed in PBS bu�er three times (two mins each) 
and coverslips were mounted a�er adding a drop of aqueous mounting media. Sections were imaged using color 
camera mounted microscope (Leica microscope) at 5X magni�cation and ROI dimension of 1.50 mm ×  2.50 mm 
were used. ROI were selected surrounding the injury penumbra (eight sections per animal, four animals per 
cohort) and at contralateral region (two sections per animal, four animals per cohort). �e ROI images were 
then analyzed using ImageJ so�ware (National institute of health, Bethesda, MD, USA) to obtain total number 
of positive pixels.

Statistics. Statistical analyses were conducted in GraphPad Prism 5.0 (GraphPad So�ware, Inc., La Jolla CA). 
Comparison between zeta potential change of NPs post-PEGylation was done using student’s t-test. Analysis of 
total positive pixels in ipsilateral and contralateral region of interest for HRP and number of accumulated NP 
at di�erent time points was conducted using ordinary two-way ANOVA. For HRP and each NP, comparison 
between ipsilateral ROI and its contralateral ROI was done by student’s t-test. Comparison between ipsilateral 
ROI for HRP, and individual NPs, over time was conducted using Tukey’s post hoc test. Spatial distribution of 
HRP extravasation and NP accumulation was done using ordinary two-way ANOVA, followed by Tukey’s post 
hoc tests.
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