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Temporal association between human upper
respiratory and gut bacterial microbiomes during
the course of COVID-19 in adults
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Zhigang Zhang4✉ & Chiyu Zhang 1,2✉

SARS-CoV-2 is the cause of COVID-19. It infects multiple organs including the respiratory

tract and gut. Dynamic changes of regional microbiomes in infected adults are largely

unknown. Here, we performed longitudinal analyses of throat and anal swabs from 35

COVID-19 and 19 healthy adult controls, as well as 10 non-COVID-19 patients with other

diseases, by 16 S rRNA gene sequencing. The results showed a partitioning of the patients

into 3-4 categories based on microbial community types (I-IV) in both sites. The bacterial

diversity was lower in COVID-19 patients than healthy controls and decreased gradually from

community type I to III/IV. Although the dynamic change of microbiome was complex during

COVID-19, a synchronous restoration of both the upper respiratory and gut microbiomes

from early dysbiosis towards late more diverse status was observed in 6/8 mild COVID-19

adult patients. These findings reveal previously unknown interactions between upper

respiratory and gut microbiomes during COVID-19.
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C
OVID-19, a severe respiratory disease caused by a novel
virus SARS-CoV-21,2, has led to a devastating global
pandemic. It typically presents as an asymptomatic

infection or manifests mild respiratory symptoms, but more likely
develops into severe pneumonia and cause death in elderly over
60 years of age or those having comorbidities3,4. The biological
mechanisms behind the varied clinical presentations are not fully
understood.

The microbiota plays a major role in modulating human health
status by shaping the immune system and maintaining home-
ostasis5. In several respiratory viral infections (RVs), the micro-
bial composition in the respiratory tract and the gut have been
linked to the occurrence and severity of disease and affect sub-
sequent respiratory health6,7, through increasing airway sus-
ceptibility to infection by other RVs and/or the colonization of
pathogenic bacteria8–10. It is therefore reasonable to posit that the
new respiratory infection COVID-19 may also interact with
microbiota.

Indeed, some recent studies have shown that SARS-CoV-2
infects human gut enterocytes and causes diarrhea11,12. Altered
gut microbiota has been observed in COVID-19 patients leading
to an enrichment of opportunistic pathogens and a depletion of
beneficial bacteria13,14. However, changes in the respiratory
microbiome have not been evaluated in COVID-19. Furthermore,
despite persistent alterations in the gut microbiota has been
reported using longitudinal stool samples collected in COVID-19
patients13, no study has examined whether there is any associa-
tion between the respiratory and gut microbiota during the cause
of disease. In this study, we investigated for the first time the
dynamics of both the upper respiratory and gut microbiomes in a
cohort of COVID-19 patients and controls, and discovered a
pattern of synchronous changes in these two microbiomes.

Results
Study cohort. The study subjects included 35 adult COVID-19
patients from 17 to 68 years of age, 19 healthy adults, and 10 non-
COVID-19 patients (NP) with other diseases. Except patient p09
who had severe clinical symptoms, all other 34 COVID-19
patients had mild clinical symptoms. All confirmed COVID-19
cases were hospitalized in China, even if they had no symptoms.
A total of 146 specimens including 37 pairs of both throat and
anal swabs were collected from these COVID-19 patients (Sup-
plementary Fig. S1). High-throughput sequencing of the V4-
region of bacterial 16 S rRNA gene was performed for all samples.

Respiratory microbiome dynamics in COVID-19. The 16S-
rRNA gene sequences of all throat swabs were resolved into 3126
amplicon sequence variants (ASVs) representing 17 known phyla
including 209 known genera (Supplementary Data 1). Six throat
microbial community types (or clusters) were identified using the
Dirichlet Multinomial Mixtures (DMM) modelling based on the
lowest Laplace approximation (Fig. 1a) and visualized by Non-
metric Multidimensional Scaling (NMDS) based on Bray–Curtis
distance (Fig. 1b). Thirteen of 19 specimens of healthy adults (H)
formed an independent cluster defined as community type H.
The vast majority of the specimens of COVID-19 patients were
divided into four clusters, herein named community types I–IV
(Fig. 1a). Other specimens from six COVID-19 patients were
clustered with those from 10 non-COVID-19 patients and two
healthy controls. Because this cluster has a significantly higher
proportion of NP patients (55.6%, P < 0.01) than COVID-19
patients (33.3%) and healthy controls (11.1%) (Supplementary
Fig. S2), it was designated as community type NP. All COVID-
19-related community types, as well as the NP type, were sig-
nificantly distant from the H type. Community types III and IV

were not only separated from the types I and II, but also from
each other (Fig. 1b). A decrease in alpha-diversity of the micro-
biome was observed from type I to IV, and significantly lower
richness and evenness were observed in community types III and
IV, compared with the H type (Fig. 1c). Similar decreasing trends
of alpha-diversity were also observed when the Margalef’s indexes
were used to control the effect of sample size (Supplementary
Fig. S3)15. To more directly demonstrate that the variation of
throat microbial composition is an indicator of COVID-19 dis-
ease stages, the community type-specific indicator taxa were
identified based on the top 30 microbial genera (Fig. 1d). The type
H was characterized by bacterial genus Bacteroides (predominant
taxa in the lung of healthy individuals) and unclassified Coma-
monadaceae, whereas the NP type was marked by proin-
flammatory Enterobacteriaceae members. In contrast, the
indicator bacteria of four COVID-19-related community types
were Alloprevotella in type I, Porphyromonas, Neisseria, Fuso-
bacterium and unclassified Bacteroidales in type II, Pseudomonas
in type III, and Saccharibacteria incertae sedis, Rothia and
unclassified Actinomycetales in type IV (Fig. 1d). Community
type I contained Alloprevotella genus, as well as abundant Bac-
teroides and Prevotella that typically present in the H type (Fig.
1a). Some indicator bacteria substantially enriched in types II and
IV belong to opportunistic pathogenic bacteria that may be
associated with human diseases such as pneumonia, chronic
periodontitis, and bacteremia16–21. For example, the identified
Rothia species in type IV have the highest sequence similarity
with Rothia mucilaginosa that is often associated with cancer and
bacteremia22. Porphyromonas, Fusobacterium, and Neisseria
enriched in type II typically exist in the nasopharynx, and they
are associated with pneumonia or chronic periodontitis. Besides
opportunistic pathogenic bacteria, commensals (e.g., Bacteroi-
dales) were also enriched in type II. In type III, the identified
Pseudomonas sequences have the highest sequence similarity
(100%) with multiple known nonpathogenic species such as P.
lactis, P. paralactis, P. canadensis, P. tolaasii, and P. fluorescens.
For example, P. lactis was initially isolated from bovine raw milk,
and rarely found in human23. Compared with the community
type H, a decreased alpha-diversity with high abundance of
opportunistic pathogenic and environmental bacteria (non-
pathogenic Pseudomonas species) in community types II–IV
might imply a disruption of microbiome homeostasis (dysbiosis)
in the respiratory tract (Supplementary Data 1 and Fig. S4).
Lower alpha-diversity with enrichment of proinflammatory
Enterobacteriaceae indicates that the type NP represents another
status of microbial dysbiosis.

According to indicator bacteria and alpha-diversity character-
istics, the microbial community types from I to IV may represent a
progressive imbalance of the respiratory microbiome (Fig. 1c-d).
Among all throat specimens from COVID-19 patients, 47 (56.6%)
belong to community type II (Supplementary Fig. S2), indicating
that altered upper respiratory microbiome by COVID-19 was
mainly characterized by community type II. Longitudinal analysis
showed that community types with relatively lower alpha-diversity
are more likely to have appeared in early specimens (Fig. 1e), but
the diversity did not significantly correlate with the time after
symptom onset regardless of being analyzed at the overall and
individual levels (Supplementary Fig. S5-S6). Among 22 COVID-
19 adults who had specimens at two or more timepoints, over half
(12, 54.5%) maintained a relatively stable microbiome community
types, and the others had community types altered over time. An
obvious throat microbiome recovery from types IV or II in early
specimens to type I in late specimens was observed in five patients
(p17, p25, p13, p11, and p05) with four or more consecutive
specimens (Fig. 1e), accompanied with the restoration of throat
microbiota, appearance of beneficial commensals, and increased

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01796-w

2 COMMUNICATIONS BIOLOGY |           (2021) 4:240 | https://doi.org/10.1038/s42003-021-01796-w |www.nature.com/commsbio

www.nature.com/commsbio


Fig. 1 DMM clustering of 16 S rRNA gene-sequencing data of throat microbiota (N= 112). Dirichlet multinomial mixtures (DMM) modelling was applied

to 16 S rRNA gene sequencing. The entire dataset formed six distinct clusters based on lowest Laplace approximation. Bacterial taxa marked by the stars

represent unclassified bacteria genera. a Heatmap showing the relative abundance of the 30 most dominant bacterial genera per DMM cluster. The stars

represent unclassified genera. NP, enriched in Non-COVID-19 patients. H, enriched in Healthy individuals. I–IV enriched in COVID-19 patients. b Nonmetric

multidimensional scaling (NMDS) visualization of DMM clusters using Bray–Curtis distance of throat bacterial genera. The ANOSIM statistic R closer to 1

with <0.05 P-value suggest significant separation of microbial community structures. The stress value that was lower than 0.2 provides a good

representation in reduced dimensions. c Boxplots showing the alpha-diversity (richness and evenness) per each DMM cluster. d Indicators of airway

microbial community types (DMM clusters) identified from top 30 genus contributing to throat microbial community typing (DMM clustering) in a. The

length of lines represents the indicator value. *P < 0.05, **P < 0.01, and ***P < 0.001. e Dynamic shift of four throat microbial community types (DMM

clusters) in different COVID-19 stages. Empty boxes indicate samples were unavailable in COVID-19 patients. Ages (years) were shown in parenthesis. NA

unavailable.
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bacterial diversity (Supplementary Fig. S4). An opposite pattern
was observed in four patients who had microbiome composition
shift from early higher-diversity types (I or II) to later lower-
diversity type (II–IV), implying a worsening of the throat
microbiome. In particular, the only one severe case (p09)
experienced a community type shift from type I on day 10 to
type IV on day 27, and sustained type IV to at least day 33 after
symptom onset (Fig. 1e). Accompanied with this shift, opportu-
nistic pathogenic bacteria Saccharibacteria incertae sedis and
Rothia were substantially enriched at late stage (Supplementary
Fig. S4). These indicate that the dynamic changes of upper
respiratory microbiome caused by COVID-19 was heterogenous
among different individuals.

Gut microbiome dynamics in COVID-19. To expand the scope
of this research, a total of 1,940 ASVs were recovered from the
16S-rRNA gene sequences of all anal swabs, representing 13
known phyla including 182 known genera (Supplementary
Data 1). The gut microbial communities of COVID-19 patients
formed three distinct community types I–III (Fig. 2a-b). The
richness and evenness of the gut microbiome decreased from type
I to III (Fig. 2c). Indicator analyses showed that type I was pri-
marily characterized by healthy gut genera including Bacteroides
genus and several known butyrate-producing bacteria (e.g., Fae-
calibacterium, Roseburia, Blautia, and Coprococcus) and one
opportunistic pathogenic bacterium (Finegoldia) (Fig. 2d)24–29.
The indicators of type II mainly contain various pathogenic or
opportunistic pathogenic bacteria (e.g., Neisseria and Actino-
myces). In community type III, the gut microbiota was dominated
by Pseudomonas, implying a severe dysbiosis. We also used the
community types I–III to examine the dysbiosis status of the gut
microbiome.

A shift of the gut microbiome from the lower-diversity
community type (II or III) towards a higher-diversity type (I or
II) was observed over time in 7/10 patients who had anal swabs at
different timepoints (Fig. 2e). Accompanied with the shift, a clear
trend of increased bacterial diversity and the relative abundance
of beneficial commensals (e.g., Bacteroides and Faecalibacterium)
was observed in the gut microbiota from early to late stages of
COVID-19 (Supplementary Fig. S7), suggesting a restoration of
gut microbiota. Two patients maintained a stable microbiome
community types, and only one patient had an opposite shift of
community type from higher-diversity type II to lower-diversity
community type III.

Association between the respiratory and gut microbiomes in
COVID-19. Most paired throat and anal swabs showed the same
or similar community type levels (Fig. 3). In particular, the shift
of microbiome community types over time appeared to match
between the throat and the gut in 6/8 patients who had two or
more paired specimens at different timepoints (Fig. 3). Syn-
chronous improvement of both the respiratory and gut micro-
biomes from early lower-diversity community type towards late
higher-diversity type occurred in six patients (p05, p17, p13, p11,
p25, and p29). One patient (p33) experienced an improved
respiratory microbiome but maintained an unchanged gut com-
munity type up to day 24. One case (p07) had a worsen gut
microbiome from day 24 to day 35 but maintained an unchanged
respiratory community type. Because of no available anal speci-
mens, we were unable to assess whether the gut microbiota, like
the respiratory microbiota, shifted from higher-diversity type to
lower-diversity type over time in the severe case (p09) (Fig. 1e).
Except for the duration of COVID-19, the upper respiratory and
gut microbial community divergence seemed not to be sig-
nificantly associated with age, gender, antibiotics use, and

detection of SARS-CoV-2 RNA (Supplementary Figs. S8-S9). The
alpha-diversity of the microbiome was also not significantly
associated with the time after symptom onset (Supplementary
Fig. S5-S6), and clinical parameters, except for a weak association
between the upper respiratory microbiome richness and NK cell
counts (Supplementary Fig. S10). Furthermore, the richness of
both upper respiratory and gut microbiome appeared to be
negatively correlated with the serum levels of lipopolysaccharides
(LPS) (Supplementary Fig. S11 and Table S1).

We further selected the top indicator bacteria with >0.5
indicator values from each community type (Figs. 1d and 2d) and
several major core functional bacteria (e.g., Faecalibacterium,
Lactobacillus, and Bifidobacterium) in gut as the representative
bacteria to assess their dynamic changes in relative abundance
over time (Fig. 4). In general, the relative abundance of
Bifidobacterium, Lactobacillus and/or Faecalibacterium appeared
to be negatively associated with the relative abundance of the
opportunistic pathogens (e.g., Rothia and Neisseria), especially in
the gut microbiome. An obvious decrease in the relative
abundance of opportunistic pathogenic bacteria was accompanied
by an increase in the relative abundance of resident commensals
Bacteroides in gut microbiome over time in five patients having
three or more longitudinal samples (Fig. 4 and Supplementary
Figs. S4 and S7). Moreover, a substantially decreased abundance
of Pseudomonas was observed in both organs in another two
patients (p23 and p29). The relative abundance of Pseudomonas
increased only in the gut of patient p07 accompanied by a
decreasing bacterial diversity (Fig. 4 and Supplementary Fig. S6).

Bacteria–bacteria co-occurrence networks. There were four
indicator bacteria genera (Porphyromonas, Neisseria, and Fuso-
bacterium in type II and Pseudomonas in type III) in the throat
microbiome that had been identified as the indicators of gut
microbial community types II and III in COVID-19 patients
(Supplementary Fig. S12). Apart from the shared indicators,
oropharyngeal pathogenic bacteria Capnocytophaga and Actino-
myces were also identified as indicators of the gut microbial
community type II (Figs. 1d and 2d)30,31. Because community
types II and III often appeared in the early stage of COVID-19
(Figs. 1e and 2e), the appearance of these oropharyngeal bacteria
in the gut suggested that a crosstalk between the respiratory and
gut microbiomes occurred by frequent bacterial translocation
during the early stage. High-serum LPS is due to microbial
translocation, and was often associated with virus infection. High-
serum LPS levels were also detected in some COVID-19 patients
(Supplementary Table S1), suggesting that bacteria translocation
might play a role in the crosstalk between the respiratory and gut
microbiomes.

To further investigate the association between the respiratory and
gut microbiomes, we performed co-occurrence network analysis
using paired specimens from 13 patients. We constructed a co-
occurrence network consisting of a total of 153 co-occurred pairs
with Pearson correlation |r | > 0.7 under FDR-adjusted P < 0.05
(Fig. 5). Bacteria in the same niche tended to have close co-
occurrence relationship, and the cross-talks of microbial composi-
tions between the upper respiratory tract and the gut were also
observed. In particular, a competitive relationship between Gut-
type-II and Gut-type-I was mediated by a significantly negative
interaction between gut bacterial genera Neisseria and Bacteroides
(Fig. 5), which might determine the microbiome shift from Gut-
type-II to Gut-type-I during the COVID-19 disease progression.
Furthermore, core resident commensals Bacteroides appeared to
mediate the crosstalk between Throat-type H and Gut-type-I, which
might modulate the restoration of throat and gut microbiota during
course of COVID-19.
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Fig. 2 DMM clustering of 16 S rRNA gene-sequencing data of gut microbiota (N= 45). Dirichlet multinomial mixtures (DMM) modelling was applied to

16 S rRNA gene sequencing. The entire dataset formed three distinct clusters based on lowest Laplace approximation. All samples were collected from

COVID-19 patients. Bacterial taxa marked by the stars represent unclassified bacteria genera. a Heatmap showing the relative abundance of the 30 most

dominant bacterial genera per DMM cluster. b Nonmetric multidimensional scaling (NMDS) visualization of DMM clusters using Bray–Curtis distance of

gut bacterial genera. The ANOSIM statistic R closer to 1 with <0.05 P-value suggest significant separation of microbial community structures. The stress

value that was lower than 0.2 provides a good representation in reduced dimensions. c Boxplots showing the alpha-diversity (richness and evenness) per

each DMM cluster. d Indicators of gut microbial community types (DMM clusters) identified from top 30 genus contributing to gut microbial community

typing (DMM clustering) in a. *P < 0.05, **P < 0.01, and ***P < 0.001. e Dynamic shift of gut microbial community types (DMM clusters) in different

COVID-19 stages. Empty boxes indicate samples were unavailable in COVID-19 patients. Ages (years) were shown in parenthesis.
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Discussion
Whether SARS-CoV-2 infection alters microbiota to affect
COVID-19 disease progression is an important question that
needs answers. In this study, we made three major observations.
First, the upper respiratory and gut microbiota compositions of
COVID-19 adults can be characterized by four (I–IV) and three
(I–III) community types, respectively, and these types possibly
reflect different levels of balance between the more diverse
microbiota (type I) and dysbiosis (type II–IV). Second, the
microbiome community types with lower alpha-diversity more
likely appears in the early phase of COVID-19, and upper
respiratory and gut microbiomes altered by COVID-19 are
mainly characterized by community type II with predominance of
Bacteroidales, Fusobacterium, Porphyromonas, Prevotella, Neis-
seria and some opportunistic pathogens in the former, and
Neisseria in the latter. Third, the dynamic change of community
types is synchronous in the upper respiratory tract and gut.

SARS-CoV-2 infects cells through ACE2 receptor2, which is
highly expressed in respiratory and intestinal epithelial cells32.
The infection can trigger the cytokine storm to cause local
pathological damage33,34. As an open system with direct contact
with environment and the primary site for respiratory infections,
the upper respiratory tract microbiota is more easily affected by
respiratory virus infections, but the effect of SARS-CoV-2 infec-
tion has not been examined yet. In this study, we observed
alterations of the upper respiratory microbiota in COVID-19
adults, and presented data on the dynamic change of the
respiratory microbiome composition over time. The upper
respiratory microbiome of the COVID-19 adults was character-
ized by four bacterial community types I–IV, which reflect the
different levels of the normal microbiome to dysbiosis. The
community types with lower alpha-diversity and high enrichment
of opportunistic pathogenic bacteria and Pseudomonas often
appeared in early throat specimens (e.g., first several days after
symptom onset), indicating that SARS-CoV-2 infection results in

a very rapid dysbiosis in upper respiratory tract. A restoration of
the upper respiratory microbiome from dysbiosis towards more
diverse types was observed over time in some with mild disease,
whereas prolonged or worsening microbiome appeared in a few
others including the only one severe case (p09).

Intestinal enterocytes that express ACE2 are also the target of
SARS-CoV-2, which further upregulates the expression of ACE2,
leading to a longer viral RNA shedding time in the gut than
respiratory tract11,32. The early infection microbiome composi-
tion with abundant pathogenic bacteria (e.g., Coprobacillus,
Clostridium ramoaum, and Clostridium hathewayi) had been
associated with the fecal levels of SARS-CoV-2 and COVID-19
severity in a previous study32. However, the sampling time was
relatively late in that study (about 14 days after symptom onset),
therefore unable to determine whether the microbiome status is a
consequence of early SARS-CoV-2 infection, or a cause of disease
severity. We also observed alterations of the gut microbiota
during COVID-19 in adults, and found some opportunistic
pathogenic bacteria (e.g. Streptococcus, Rothia, Veillonella, Acti-
nomyces and Actinomyces) reported in the previous
observations13,14. However, distinct from the previous studies, we
identified three community types (I–III) that can characterize the
changes of gut microbiome over time. Similar to the observation
in the upper respiratory microbiome, community types (i.e., II
and III) with lower alpha-diversity often appeared in early spe-
cimens, supporting the early effect of SARS-CoV-2 on the
gut microbiome. A restoration with the community type shifted
from low-diversity type II to high-diversity type I over time
was observed in at least four patients. However, Pseudomonas-
dominated community type III showed a slow improvement
towards community type II in three patients. In particular, the
temporal dynamic changes of the microbiomes matched between
the upper respiratory tract and the gut, indicating a close asso-
ciation in microbiota between both body sites, possibly via the
“airway-gut axis”35.

Fig. 3 Dynamic change of bacterial community types (DMM clusters) in respiratory tract and gut of patients with mild COVID-19. Covariation

dynamics of throat and gut microbial communities of 13 COVID-19 patients. Filled circles indicate the presence of microbial community types. Positive or

Negative detections of SARS–CoV-2 in gut or throat are implicated by + or − symbols, respectively. Age (years) of each COVID-19 adult was shown in

brackets.
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The reason for the fast dysbiosis in both the upper respiratory
tract and the gut of COVID-19 patients might be associated with
the early-stage inflammation induced by SARS-CoV-2 infection,
which leads to a fast loss of beneficial commensals and the
colonization and growth of opportunistic pathogenic bacteria
(Supplementary Fig. S13). The use of empirical antibiotics in
some patient during the early stages of the pandemic may
exacerbate the dysbiosis in the upper respiratory tract and gut.
Therefore, the microbiome composition with enrichment of
opportunistic pathogenic bacteria (e.g., Rothia and Neisseria) was
observed in both throat and gut microbiomes during the first

several days after symptom onsets. Because the upper respiratory
tract is more receptive to both exogenous and indigenous
microbes than the gut7,36, the dysbiosis of upper respiratory
microbiome appeared to be worse and occurred earlier than that
of the gut microbiota, as manifested by lower diversity and
richness and more indicators of opportunistic pathogenic bacteria
in the former than in the latter. The damaged upper respiratory
tract mucosa enables some oral taxa to be translocated to the gut,
worsening the gut bacterial community (Supplementary Fig. S13).
There are several possible mechanisms to explain the orophar-
yngeal bacterial translocation to the gut. First, inflammation

Fig. 4 Dynamic change of 12 key taxa in respiratory tract and gut of patients with mild COVID-19. Key taxa of DMM clusters and several core functional

gut bacteria were shown in nine mild COVID-19 adults with at least two timepoints of sampling. Linked to Fig. 1a, Fig.2a, and Supplementary Figs. S4 and S7.
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induced by SARS-CoV-2 infection damaged the mucosal tissues
and increased mucosal permeability of the airway, lung, and
gut7,37, which then enables bacterial translocation. Second, bac-
teria migrated from the oropharyngeal site to the gut via swal-
lowing and passage through the gastrointestinal tract. Third,
immune responses induced by infection applied similar selective
pressures to the microbiota at both sites.

Gut microbiota plays an important role in human health by
shaping local immunity and remodeling mucosal tissues38. It is
relatively more stable and resilient than the respiratory micro-
biota, and it may affect the latter by crosstalk between these two
organs along the airway-gut axis35,36. In spite of longer duration
of SARS-CoV-2 shedding in the gut than in the respiratory tract,
gut microbiota appeared to have a synchronous change with the
respiratory microbiota (Fig. 3). Although the dynamic change of
the microbiome was relatively divergent and independent of early
microbiome community types, synchronous restoration of both
the respiratory and gut microbiomes from early low diverse status
towards late more diverse status was observed in six (75%) mild
COVID-19 adult patients who had two or more paired specimens
at different timepoints. Age, gender and antibiotics use seemed
not to be linked to restoration of the microbiome, implying
potential contributions from other factors such as diet and genetic
background. The identification of some opportunistic pathogenic
bacteria (Neisseria, Porphyromonas, Rothia, Actinomycetales, and
Saccharibacteria) in more dysbiosis community types II and IV
might imply a need for microbiota-based personalized antibiotics
treatment against these specific pathogens. As the most common

microbiome status in COVID-19 patients, the community type II
represents a crucial intermediate stage during the restoration of
the microbiome from dysbiosis towards more diverse micro-
biome. It was characterized by Neisseria, Fusobacterium, and
Porphyromonas. Fusobacterium and Porphyromonas are the
common commensals in the oropharynx and the gut19,21, while
Neisseria generally presents in the lung. The appearance of lung
Neisseria in both the upper respiratory tract and the gut, implying
bacteria translocations along the “airway-lung-gut axis”39. The
bacteria translocations may be the consequence of increased
permeability among these organs caused by local inflammation40,
as evidenced by high levels of serum LPS. The Bifidobacterium
and some butyrate-producing bacteria (e.g., Faecalibacterium)
can improve the inflammatory conditions and regulate innate
immunity by down-regulating ACE2 expression, and activating
the corresponding signaling pathways27,41. During the restoration
of the microbiota, these beneficial bacteria gradually occupied the
ecological niches in the gut and respiratory tract, and governed
the microbial communities in both organs by replacement of
opportunistic pathogenic bacteria (e.g., Rothia and Neisseria) over
time. However, a progressively worsening in the upper respiratory
and gut microbiome might be associated with severe cases of
COVID-19.

One noted limitation of this study is the relatively small patient
number. Our results may not be representative of all patient
groups, and the observed dynamic changes of the microbiome in
both the upper respiratory tract and gut may be further validated
in a larger cohort. Another limitation of the study is that the

Fig. 5 Co-occurrence networks of gut and throat microbiota within 13 COVID-19 patients. Pearson correlation was employed to calculate correlation

coefficient (r) between bacterial genus pairs based on their relative abundances. Co-occurred pairs with r > 0.7 under FDR-adjusted P < 0.05 were shown

and visualized by Cytoscape version 3.8.0. Edges were sized based on r values. The bigger squares or circles were indicators in Figs. 1d and 2d.
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dynamic changes of the microbiome were only followed up to
35 days after symptom onset. Whether COVID-19 exerts long-
term effect of on the microbiomes is an interesting question for
further investigation. Technically, the use of only 16 S data may
restrict our ability to identify specific bacteria species and infer
their functions.

In summary, we revealed for the first time an association
between the upper respiratory and gut microbiota during
COVID-19 disease progression, and observed synchronous
changes of microbiota in both organs mainly from early dysbiosis
towards later more diverse status in a proportion of adults with
mild COVID-19 (Supplementary Fig. S13). In the absence of
specific antiviral drugs and vaccines for COVID-19, our findings
may have clinical implications. For instance, some indicator
bacteria (e.g., opportunistic pathogenic and beneficial butyrate-
producing bacteria) may potentially be crucial biomarkers for
clinical treatment decision making and prognostic evaluation.
The measurement of predominant short-chain fatty acid (espe-
cially butyrate) concentration in fecal samples may be useful in
early clinical diagnosis. Apart from the routine treatment efforts
(e.g., nonspecific antiviral and supportive treatments)42, precision
intervention and modulation of the gut and respiratory micro-
biota may offer novel therapeutic alternatives, such as persona-
lized antibiotics therapy to inhibit certain opportunistic
pathogenic bacteria. Moreover, COVID-19 tailored probiotics
(e.g., Bifidobacterium and Faecalibacterium), prebiotics (e.g.,
xylooligosaccharide) treatment, or symbiotic treatments might be
applied to modulate the gut and respiratory microbiota to facil-
itate the recovery of COVID-19 patients.

Methods
Study population. A total of 64 subjects, including 35 laboratory-confirmed
COVID-19 patients, 10 SARS-CoV-2 negative patients with various diseases (non-
COVID-19) and 19 healthy adults were enrolled in this study. COVID-19 was
diagnosed in adult patients according to the National Guidelines for Diagnosis and
Treatment of COVID-19. The virus RNA was extracted from all samples using a
Mag-Bind RNA Extraction Kit (MACCURA, Sichuan, China) according to the
manufacturer’s instructions. Then the ORFlab and N genes of SARS-CoV-2 was
detected using a Novel Coronavirus (2019-nCoV) Real Time RT-PCR Kit (Life-
river, Shanghai, China) according to the manufacturer’s instructions. Only the
individuals who had at least two consecutive throat swabs been positive for both
ORFlab and N genes of SARS-CoV-2 were defined as COVID-19 patients. All
positive specimens of COVID-19 patients were confirmed by Nantong Center for
Disease Control and Prevention (CDC) using recommended real-time RT-PCR
assay by China CDC. Mild and moderate cases are defined as having clinical
symptoms (e.g., fever, cough, etc.) with and without the pneumonia on lung
imaging. Severe COVID-19 (adult) is defined as the presence of any one of the
following: respiratory rate ≥30 breaths/minute, arterial oxygen saturation ≤93% at
rest; PaO2/FiO2 ≤ 300 mm Hg. The COVID-19 patients were hospitalized at
Nantong Third Hospital Affiliated to Nantong University. Among 35 COVID-19
patients, 34 were mild or moderate cases, and only one (P09) was severe case.

Demographic and clinical characteristics of the COVID-19 patients were
provided in Supplementary Data 2 and 343. Specimens including throat swabs and
anal swabs were collected from the COVID-19 patients at different timepoints
during their hospitalization (10–40 days). Sampling was performed using flexible,
sterile, dry swabs, which can reach the posterior oropharynx and anus easily (~2
inches) by the professionals at the hospital. At least two throat swabs at different
days were available for 32 of 35 COVID-19 patients (Supplementary Fig S1).

Non-COVID-19 control patients were selected from patients hospitalized at the
same hospital during the COVID-19 pandemic due to other diseases, and healthy
controls were selected from adults who came for routine physical examination and
showed no symptoms. Throat swabs of non-COVID-19 patients and healthy
controls were collected during their hospital visit.

The study was approved by Nantong Third Hospital Ethics Committee
(EL2020006: 28 February 2020). Written informed consents were obtained from
each of the involved individuals. All experiments were performed in accordance
with relevant guidelines and regulations.

16S-rRNA gene sequencing. Bacterial DNA was extracted from the swabs using a
QIAamp DNA Microbiome Kit (QIAGEN, Düsseldorf, Germany) according to the
manufacturer’s instructions, and eluted with Nuclease-free water and stored at
−80 °C until use. The V4 hypervariable region (515–806 nt) of the 16 S rRNA gene
was amplified universal bacterial primers44. To pool and sort multiple samples in a

single tube of reactions, two rounds of PCR amplifications were performed using a
novel triple-index amplicon sequencing strategy as described previously45. The first
round of the PCR (PCR1) amplification was performed with a reaction mixture
containing 8 μL Nuclease-free water, 0.5 μL KOD-Plus-Neo (TOYOBO, Osaka
Boseki, Japan), 2.5 μL of 1 μM PCR1 forward primer, 2.5 μL of 1 μM PCR1 reverse
primer, and 5 μL DNA template. The products of the PCR1 reactions were verified
using a 1.5% agarose gel, purified using Monarch DNA Gel Extraction Kit (New
England Biolabs, Ipswich, MA, USA), and quantified by a Qubit® 4.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA). Equal amounts of purified PXR1 products were
pooled, and subjected to the secondary round of PCR (PCR2) amplification. The
PCR2 was performed with a reaction mix containing 21 μL Nuclease-free water, 1
μL KOD-Plus-Neo (TOYOBO, Osaka Boseki, Japan), 5 μL of 1 μM PCR2 forward
primer, 5 μL of 1 μM PCR2 reverse primer, and 5 μL pooled PCR1 products. The
PCR2 products were verified using a 2% agarose gel, purified using the same Gel
Extraction Kit and qualified using the Qubit® 4.0 Fluorometer. The amounts of the
specific product bands were further qualified by Agilent 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA). Equal molars of specific products were pooled and purified
after mixing with AMPure XP beads (Beckman Coulter, Pasadena, CA, USA) in a
ratio of 0.8:1. Purified amplicons were paired-end sequenced (2 × 250) using
Illumina-P250 sequencer.

Bioinformatic analysis of 16S-rRNA gene sequence data. Sequenced forward
and reverse reads were merged using USEARCH11 software46, then demultiplexed
according to known barcodes using FASTX-Toolkit47. After trimming barcode,
adapter and primer sequences using USEARCH11, 19,096,003 sequences were
retained with an average of 105508 sequences per sample. After excluding the
samples with sequences <1000, 157 samples from 35 COVID-19 patients, 10 non-
COVID-19 patients and 13 healthy individuals were subjected to the following
analysis.

Because traditional OTU (operational taxonomic units) picking based on a 97%
sequence similarity threshold may miss subtle and real biological sequence
variation48, several novel methods such as DADA249 and Deblur50 were developed
to resolve sequence data into single-sequence variants. Here, the DADA2 was
employed to perform quality control, dereplicate, chimeras remove on Qiime2
platform51 with default settings except for truncating sequence length to 250 bp.
Finally, an amplicon sequence variant (ASV) table, equivalent to OTU table, was
generated and then spitted into gut ASV table (2348 ASVs) and throat ASV table
(4050 ASVs). The taxonomic classification of ASV representative sequences was
conducted by using the RDP Naive Bayesian Classifier algorithm52 based on the
Ribosomal Database project (RDP) 16 S rRNA training set (v16) database53. To
eliminate sequencing bias across all samples, both the gut ASV table and throat
ASV table were subsampled at an even depth of 4700 and 3000 sequences per
sample, respectively. The ASV coverage of 82.6% (gut) and 77.2% (throat) were
sufficient to capture microbial diversity of both sites.

Identification and characterization of microbial community types. Dirichlet
multinomial mixtures (DMM)54 is an algorithm that can efficiently cluster samples
based on microbial composition, its sensitivity, reliability, and accuracy had been
confirmed in many microbiome studies55–57. DMM clustering were conducted
with bacterial genus abundance from throat and gut microbiota using the com-
mand “get.communitytype” introduced by v1.44.1 of mothur58. The appropriate
microbial community type numbers (DMM clusters) were determined based on the
lowest Laplace approximation index. According to sample counts per cluster, the
fisher exact test was applied to discover significant associations between each
cluster and host conditions (such as healthy controls, COVID-19 patients, and
Non-COVID-19 patients) under P values that are below 0.05 adjusted by the False
Discovery Rate (FDR). Conjugated with the Analysis of Similarities (ANOSIM), the
reliability of DMM clustering was further validated and then visualized by the
Nonmetric multidimensional scaling (NMDS) based on the Bray–Curtis distance
under bacterial genus level. The ANOSIM statistic “R” compares the mean of
ranked dissimilarities between groups to the mean of ranked dissimilarities within
groups. An R value close to “1.0” indicates dissimilarity between groups, whereas
an R value close to “0” indicates an even distribution of high and low ranks within
and between groups”. The ANOSIM statistic R always ranges between −1 to 1. The
positive R values closer to 1 suggest more similarity within sites than between sites,
and that close to 0 represent no difference between sites or within sites59. ANOSIM
p values that are lower than 0.05 imply a higher similarity within sites. Richness
(Observed OTUs/ASVs) and Pielou’s evenness for each community type were
calculated for estimating the difference of alpha-diversity. The analyses of alpha-
diversity, NMDS and ANOSIM were performed using R package “vegan” v2.5-6.
Dynamic change of community types was showed according to collected dates of
specimens with ‘pheatmap’ package in R. Furthermore, to compensate for the
effects of sample size, the Margalef’s index was calculated by dividing the number
of species in a sample by the natural log of the number of organisms collected15.
For association between community types and potential confounding factors such
as sex, age, virus existence, and antibiotic use, the fisher exact test based on sample
count was performed and the association with FDR-corrected p value < 0.05 was
considered significant.
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Indicator analysis in throat and gut community types. According to the defi-
nition given by the United Nations Environment Programme (1996), the indicator
species are a group of species whose status provides information on the overall
condition of the ecosystem and of other species in that ecosystem, reflecting the
quality and changes in environmental conditions as well as aspects of community
composition. To obtain the reliable indicator genus that is specific to each com-
munity type, we performed the Indicator Species Analysis using the indicspecies
package (ver.1.7.8)60 in R platform with top 30 genus contributing to DMM
clustering in both throat (accounting for 66% cumulative difference) and gut (68%
cumulative difference). Dynamic changes of indicator genera corresponding to
each throat community type were showed in all COVID-19 patients using the
pheatmap package in R and only gut indicator genera with indicator values that
were above 0.05 were presented in the patients.

Co-occurrence network analysis of a crosstalk between throat and gut

microbiota. Based on microbial genus abundances normalized by the centered log
ratio transformation of both throat and gut samples collected from 13 COVID-19
patients at the same time point, we calculated the Pearson Correlation Coefficient
(Pearson’s r) among the throat and gut microbial genera. The Pearson’s r with P
values that were below 0.05 after the FDR adjustment were considered significant
correlations. Co-occurrence network of significantly correlated microbial genus
pairs was visualized using Cytoscape v3.8.061.

Statistics and reproducibility. Raw sequences were analyzed on Linux (Red Hat
4.8.5-36) and Windows10 environment. Software under Linux environment
include USEARCH11, FASTX-Toolkit, DADA2 and Deblur, both of which were
integrated in Qiime2 (v2019.10) and RDP Naive Bayesian Classifier algorithm.
Software under Windows10 including Dirichlet multinomial mixtures integrated in
Mothur v1.44.1, RStudio v1.2.1335. Data analysis and plotting were performed in
RStudio with R v3.6.1 and R packages including pheatmap (v1.0.12), vegan (v2.5-
6), permute (v0.9-5), lattice (v0.20-38), ggplot2 (v3.3.0), RColorBrewer (v1.1-2),
viridis (v0.5.1), indicspecies (v 1.7.9), ade4 (v 1.7-15), ggalluvial (v 0.11.3), and grid.
To promote reproducibility, we provided the analyses scripts/code of the correla-
tion analysis R package as supplemental file 1. Detailed information on statistics
and comparisons are provided in Method and/or figure legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of 16 S rRNA gene sequences are available at NCBI Sequence Read Archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra/) at BioProject ID PRJNA639286.
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