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Immune cells display a high degree of phenotypic plasticity, which may facilitate their

participation in both the progression and resolution of injury-induced inflammation. The

purpose of this study was to investigate the temporal expression of genes associated

with classical and alternative polarization phenotypes described for macrophages and

to identify related cell populations in the brain following neonatal hypoxia-ischemia

(HI). HI was induced in 9-day old mice and brain tissue was collected up to 7 days

post-insult to investigate expression of genes associated with macrophage activation.

Using cell-markers, CD86 (classic activation) and CD206 (alternative activation), we

assessed temporal changes of CD11b+ cell populations in the brain and studied the

protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced

a rapid regulation (6 h) of genes associated with both classical and alternative polarization

phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the

number of CD11b+CD86+ cells at 24 h after HI (+3667%), which was coupled with

a relative suppression of CD11b+CD206+ cells and cells that did not express neither

CD86 nor CD206. The CD11b+CD206+ population was mixed with some cells also

expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both

CD86 and CD206, particularly in injured gray and white matter. Protein concentration of

galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206

in the injured hemisphere. These cells were predominantly resident microglia as very few

galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice

after HI. In summary, HI was characterized by an early mixed gene response, but with a

large expansion of mainly the CD86 positive population during the first day. However,

the injured hemisphere also contained a subset of cells expressing both CD86 and

CD206 and a large population that expressed neither activationmarker CD86 nor CD206.
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Interestingly, these cells expressed the highest levels of galectin-3 and were found to

be predominantly resident microglia. Galectin-3 is a protein involved in chemotaxis and

macrophage polarization suggesting a novel role in cell infiltration and immunomodulation

for this cell population after neonatal injury.

Keywords: perinatal brain injury, microglia, galectin-3, neuroinflammation

INTRODUCTION

Hypoxic-ischemic (HI) brain injury is an important contributor
to neonatal mortality as well as permanent neurological
impairments in surviving infants. HI triggers an imbalance
of CNS homeostasis and initiates peripheral and central
inflammatory responses, which can be detected within 2–3 h of
insult in rodent models (Hedtjärn et al., 2004; Bonestroo et al.,
2013). Persistence of inflammation in the injured human infant
brain is poorly defined, but hypothesized to continue for weeks
to years (Fleiss and Gressens, 2012) contributing significantly to
neurological outcome (Hagberg et al., 2015). Indeed, altering or
reducing inflammation in the context of perinatal brain injury
may have beneficial effects such as reducing lesion size (Hedtjärn
et al., 2002; Kigerl et al., 2009; Bolouri et al., 2014).

Microglia are the primary immune competent and phagocytic
cells of the brain (Kreutzberg, 1996). Despite ontogenetic
dissimilarities (Ginhoux et al., 2010), microglia are broadly
viewed as CNS counterparts to peripheral monocytes and
macrophages. Experimental evidence from adult models show
that brain injury rapidly activates microglia and lead to increased
phagocytic activity and altered production of cytokines and
reactive oxygen metabolites (Hanisch, 2002), features that are
also well documented in neonatal HI (Hedtjärn et al., 2004).
In the adult brain there is also a considerable contribution of
infiltrating peripheral immune cells to the brain after stroke-
like injury (Iadecola and Anrather, 2011). In contrast, little
infiltration of peripheral cells is seen acutely after neonatal stroke
(Denker et al., 2007), however, it remains unclear to what extent
peripheral immune cells contribute to the inflammatory response
after neonatal hypoxia-ischemia (Mallard and Vexler, 2015).

Early studies identified cytokines capable of inducing pro-
inflammatory (classical) or anti-inflammatory (alternative)
activities in macrophage cultures. Classically activated
macrophages are commonly associated with the expression
of surface antigen cluster of differentiation (CD) 86 and
the expression of inducible nitric oxide synthase (iNOS)

Abbreviations: ANOVA, analysis of variance; ARG1, arginase 1; BSA, bovine
serum albumin; CD, cluster of differentiation; CNS, central nervous system;
Contra, contralateral hemisphere; COX2, cyclooxygenase 2; CT, threshold
cycle; EDTA, ethylenediaminetetraacetic acid; EGFP, enhanced green fluorescent
protein; ELISA, enzyme-linked immunosorbent assay; FACS, fluorescence-
activated cell sorting; FSC, forward scatter; FIZZ1, resistin-like molecule alpha1;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HBSS, Hank’s Balanced
Salt Solution; HI, hypoxia-ischemia; IBA1, Ionized calcium binding adapter
molecule 1; IL, interleukin; iNOS, inducible nitric oxide synthase; IPSI, ipsilateral
hemisphere; MCP-1, monocyte chemoattractant protein-1; MCAO, middle
cerebral arterial occlusion; MHC II, major histocompatibility complex, class II; P,
postnatal day; PBS, phosphate-buffered saline; RT, room temperature; SSC, side
scatter; TNF-α, tumor necrosis factor alpha.

and pro-inflammatory cytokines including interleukin (IL)
1 and tumor necrosis factor alpha (TNF-α). Alternatively
activated cells instead express CD206 and arginase 1 and
have an enhanced production of anti-inflammatory cytokines
(e.g., IL-4 and IL-10) and factors facilitating resolution of
inflammation, immunomodulation, angiogenesis, and wound
healing (Mantovani et al., 2004). Similarly, polarized pro- and
anti-inflammatory phenotypes were demonstrated in cultured
microglia in response to specific cytokine stimuli (Chhor et al.,
2012). However, microglia phenotype expression patterns are age
and region dependent (Scheffel et al., 2012; Grabert et al., 2016)
and recent studies suggest a considerable overlap and complex
pattern of activation states (Murray et al., 2014), which may be
particularly apparent in vivo.

Galectin-3, a β-galactoside-binding lectin, is important for the
regulation of alternative activation in macrophages (MacKinnon
et al., 2008) and its expression is induced in microglia by anti-
inflammatory cytokines (IL-4/IL-10) and repressed in response
to pro-inflammatory stimulation (LPS) in vitro (Chhor et al.,
2013). Microglia express galectin-3 after ischemic injury in adult
and neonatal brain (Walther et al., 2000; Doverhag et al., 2010)
and in the adult brain galectin-3 is associated with protective
IGF-1-expressing microglia after stroke (Lalancette-Hébert et al.,
2007). However, galectin-3 is also a strong chemoattractant for
monocytic cells (Sano et al., 2000), induces production of pro-
inflammatory cytokines and we have previously demonstrated
that galectin-3 contributes to neonatal HI injury (Doverhag et al.,
2010). Galectin-3 is thus of specific interest in the polarization
and modulation of microglia phenotypes following HI injury.

In this study we inducedHI in postnatal day (P) 9mouse pups,
an age equivalent to the near term human infant with respect to
brain developmental stage (Craig et al., 2003). We investigated
the temporal expression of genes previously associated in vitro
with classical and alternative polarization phenotypes and used
well-defined macrophage cell-surface CD antigens to identify
specific phenotypes within the CD11b+ population (general
microglia/macrophage marker) in the brain following neonatal
HI. Finally, to explore the role of the immunomodulatory
factor galectin-3 in polarization of CD11b+ cells after HI, we
characterized the expression of galectin-3 in different post-HI cell
populations in the brain.

MATERIALS AND METHODS

Animals
Pregnant C57BL/6 mice were sourced from Charles River
Laboratories International (Sulzfeld, Germany). Lys-enhanced
green fluorescent protein (EGFP)-ki mice were obtained from
Dr. Tomas Graf, Autonomous University of Barcelona. Animals
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were housed at the Laboratory for Experimental Biomedicine
at University of Gothenburg under specific pathogen free
conditions on a 12 h light/dark cycle with ad libitum access to
standard laboratory chow (B&K, Solna, Sweden) and water.

Hypoxic-Ischemic Brain Injury Model
Hypoxic-ischemic (HI) brain injury was induced in P9 mice (of
both sexes) based on methods developed by Rice et al. (1981),
with some modifications for mice (Doverhag et al., 2010). In
brief, mice were anesthetized with isoflurane in a 1:1 oxygen
and nitrous oxide mix and the left common carotid artery
was permanently ligated with a 6-0 prolene suture. Mice were
returned to their home cage for 1 h of recovery and then
transferred to a temperature regulated incubator for a 50min
period of hypoxia (36◦C, 10% O2). The HI insult result in
injury in the ipsilateral (ipsi) hemisphere, typically in the cortex,
hippocampus and striatum, while there is no morphological
injury in the contralateral (contra) hemisphere as previously
reported by our group (Svedin et al., 2007). Sham-operated
animals were not exposed to artery ligation and hypoxia.

Reverse Transcription and qRT-PCR
Mice were deeply anesthetized and transcardially perfused with
ice-cold 0.9% saline. Brains were rapidly removed, hemispheres
separated, and snap-frozen on dry ice before being stored at
−80◦C. Total RNA was isolated using an RNeasy Lipid Tissue
Mini Kit (Qiagen, Sollentunna, SE) in accordance with the
manufacturer’s instructions. RNA concentration was measured
using a NanoDrop 1000 spectrophotometer (NanoDrop,
Wilmington, USA) and RNA quality was determined by
Experion Chip RNA analysis (BioRad, Solna, SE) (RQI value
8–10 for all samples). Reverse transcription was performed
in duplicate using a QuantiTect Reverse Transcription Kit
(Qiagen). qRT-PCR was performed on a Roche LightCycler480
(Roche, Bromma, SE) using a QuantiFast SYBR Green PCR kit
(Qiagen) with the following cycling protocol: 10 s denaturation
at 95◦C followed by 30 s annealing/extension at 60◦C for 40
cycles. All primers were purchased from Qiagen (Table 1)
and amplification specificity was confirmed by melting curve
analysis. Relative quantitation was performed in accordance

with the standard curve method and expression values were
normalized to the reference gene glyceraldehyde 3-phosphate
dehydrogenase (GAPDH).

Immunohistochemistry
Animals were deeply anesthetized and transcardially perfused
with ice-cold 0.9% saline followed by buffered 6% formaldehyde
(Histofix; Histolab, Gothenburg, Sweden). Brains were rapidly
removed, post-fixed for 24 h at 4◦C, cryoprotected in 30%
sucrose, and sectioned at 25µm on a Leica CM3050 S cryostat
(Leica, Sweden). Non-specific antibody binding sites were
blocked through a 30 min room temperature incubation in TBS
containing 3% donkey serum and 0.1% Triton X-100 (hereafter
referred to as blocking buffer). Sections were then incubated
overnight at 4◦C with the following primary antibodies diluted
in blocking buffer: rabbit anti-ionized calcium binding adapter
molecule 1 (Iba1) (1:1000, cat. no 019-19741, Wako, Osaka,
JP), rat anti-mouse CD86 (1:200, cat. no. 14-0862, eBioscience,
San Diego, USA), goat anti-CD206 (1:200, cat. no. AF2535,
R&D Systems, Abingdon, UK), chicken anti-galectin-3 (1:1000,
gift from Prof. Anna Karlsson, University of Gothenburg)
and rat anti-galectin-3 (1:100, gift from Prof. Anna Karlsson,
University of Gothenburg) and rabbit anti-GFP (1:1000, cat.
no. ab290, Abcam, Cambridge, UK). Secondary antibodies were
diluted 1:1000 in blocking buffer and applied for 2 h at room
temperature: donkey anti-chicken CF488 (cat. no. SAB4600031,
Sigma-Aldrich, Saint Louis, MO, USA), donkey anti-rat Cy3
(cat. no. 712-165-153, Jackson, Newmarket, UK), donkey anti-
goat Alexa Fluor 633 (A-21082, Life Technologies, Sweden),
donkey anti-rabbit Alexa Fluor 647 (A-31573, Life Technologies,
Carlsbad, CA, USA), donkey anti-rat Alexa Fluor 488 (A-21208,
Life Technologies), donkey anti-rat Alexa Fluor 594 (A-21209,
Life Technologies) and donkey anti-rabbit Alexa Fluor 488 (A-
21206, Life Technologies).

Images were captured on a Zeiss Laser Scanning 700 inverted
confocal microscope equipped with Zen Black control software
(Zeiss, Oberkochen, DE) and processed using Velocity (Perkin-
Elmer). Figures were compiled using Adobe CS6 (Adobe,
Kist, SE).

TABLE 1 | Primers used for qRT-PCR.

Gene Official symbol Entrez gene ID Primer Product number

Gapdh Gapdh 14,433 Mm_Gapdh_3_SG QT01658692

CD86 Cd86 12,524 Mm_Cd86_1_SG QT01055250

IL1b Il1b 16,176 Mm_Il1b_2_SG QT01048355

Cox2 Ptgs2 19,225 Mm_Ptgs2_1_SG QT00165347

iNos LOC673161 673,161 Mm_LOC673161_1_SG QT01547980

CD206 Mrc1 17,533 Mm_Mrc1_1_SG QT00103012

IL10 Il10 16,153 Mm_Il10_1_SG QT00106169

Fizz1 Retnla 57,262 Mm_Retnla_1_SG QT00254359

Arg1 Arg1 11,846 Mm_Arg1_1_SG QT00134288

Gal3 Lgals3 16,854 Mm_ Lgals3_1_SG QT00152558

IL6 Il6 16,193 Mm_Il6_1_SG QT00098875
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Fluorescence-Activated Cell Sorting
(FACS)
Sham-operated and HI animals were deeply anesthetized and
sacrificed via decapitation at 24 h, 72 h, and 7 days after
surgery. Brains were rapidly removed, hemispheres separated,
and transferred to ice-cold Hibernate-A (Invitrogen). In
order to generate sufficient material for downstream analysis,
corresponding hemispheres from two animals were pooled.
Single cells suspensions were obtained through enzymatic
dissociation in Ca2+ andMg2+ free Hank’s Balanced Salt Solution
(HBSS) containing 0.01% papain (Bionordika, Stockholm, SE),
0.1% Dispase II (Bionordika), 0.01% DNase I (Roche, Bromma,
SE) and 12.4 mM MgSO4. Briefly, samples were coarsely
chopped and further dissociated through three rounds of
enzymatic (37◦C, 10min) and mechanical digestion (repeated
pipetting) before addition of 10ml of warm Hibernate-A and
filtration over a 40µm cell strainer. Single cell suspensions
were then quantified on a BioRad TC10 automated cell counter
(BioRad, Solna, SE), centrifuged (350 g, 5min), supernatant
discarded, resuspended in 1 ml of staining buffer [0.5% bovine
serum albumin (BSA), 2 mM ethylenediaminetetraacetic acid
(EDTA), 0.09% Sodium Azide in phosphate buffered saline
(PBS)], and incubated at 4◦C for 20min with the following
primary antibodies: PerCP/Cy5.5 anti-mouse CD86 antibody
(1 µg/106 cells, cat. no 105028, BioLegend), APC anti-
mouse CD206 antibody (0.5 µg/106 cells, cat. no 141708,
BioLegend) and PE/Cy7 anti-mouse/human CD11b antibody
(0.25µg/106 cells, cat no 101216, BioLegend). Stained samples
were supplemented with 10ml staining buffer, pelleted (350 g,
5min), re-suspended in 500µl staining buffer, and kept on ice
until FACS sorting.

Cells were sorted on a FACS Aria II Cell Sorter
(BectonDickinson) equipped with a 100µm nozzle. Primary
gates were established on forward/side scatter plots (Figure 2A)
using appropriate isotype controls. Cells positive for CD11b
(Figure 2B) were further analyzed for their expression of CD86
and CD206 in the contralateral non-injured (Figure 2C) and
ipsilateral injured hemisphere (Figure 2D). Gating strategies
were based on previous studies (Bedi et al., 2013). Total cell
number per sorted population was recorded and representative
data was captured for the first 20,000 cells. Following sorting,
cells were pelleted (1000 g, 10 min), immediately frozen on dry
ice and stored at−80◦C until cell lysis/protein analysis.

Galectin-3 Protein Analysis
Cell pellets were lysed using a Bio-Plex Cell Lysis Kit (BioRad)
in accordance with manufacturer’s instructions. Briefly, lysing
solution was added and cells resuspended by repeated pipetting
before agitation on a microplate shaker (150 rpm, 4◦C, 15 min).
Samples were then centrifuged (4000 g, 10min) and supernatants
collected and stored at −20◦C. Protein concentration was
measured using a Pierce BCA Protein Assay Kit (Thermo
Scientific) as outlined in the manufacturer’s instructions.
Galectin-3 protein was measured using a Galectin-3 enzyme-
linked immunosorbent assay (ELISA) Kit (cat. no 12727, BG
Medicine). Data is presented as total amount target protein

per ml (pg/ml) or as normalized to protein concentration and
presented as pg target protein perµg total loaded protein. Sample
values falling below the lower limit of detection were substituted
with the manufacturer stated lower detection limit divided by the
square root of 2.

Statistical Analyses
All data are presented as group mean ± SEM. Data from males
and females were combined in each group as breakdown by
sex revealed no sex-specific expression of any of the markers
analyzed. qRT-PCR and FACS data were assessed by two-way
analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test. Galectin-3 protein concentrations over time
were assessed by Kruskal-Wallis followed by Dunn’s multiple
comparison test for each cell population vs. sham. Differences
were considered significant at ∗p≤ 0.05; ∗∗p≤ 0.01; ∗∗∗p≤ 0.001.
Analyses were performed using Prism (Graphpad, v.6.05)

RESULTS

Neonatal HI Induces Rapid Expression of
Genes Associated with Classical and
Alternative Activation
Using total cortical homogenates we performed a qRT-PCR
assessment of temporal expression profiles of genes associated
with classical activation (CD86, IL-6, IL-1β, Cox2, iNOS)
and alternative activation (CD206, IL-10, Fizz1, Arg1) in
macrophages, as well as the immunomodulatory factor galectin-
3 (Gal3) following HI (Figure 1). For all genes examined there
was a significant interaction between expression in the ipsi-
or contralateral hemisphere and with time, except for CD206
and iNos (Supplementary Table 1). Post-hoc analysis revealed
acute regulation in the ipsilateral hemisphere compared with
the contralateral hemisphere of genes associated with classical
activation: CD86 (4.0-fold; p < 0.001), IL-6 (8.6-fold; p < 0.001),
IL-1β (46.3-fold; p < 0.001); as well as genes associated with
alternative activation: IL-10 (6.0-fold; p < 0.001), Fizz1 (2.1-fold;
p < 0.001), Arg1 (4.3-fold; p < 0.001) at 6 h after HI, with no
significant regulation at later time points. Enhanced expression
of the immunomodulatory gene Gal3 could be detected at 6 h
(7.0-fold; p < 0.001) and 24 h (2.4-fold; p < 0.05) after HI. The
genes Cox2, iNos, and CD206 displayed no significant differences
between contralateral and ipsilateral hemispheres at any of the
time points investigated.

Different CD11b+ Cell Subpopulations Are
Present in the Injured Hemisphere after
Hypoxia-Ischemia
Having observed acutely elevated expression of inflammation-
associated genes in the ipsilateral hemisphere, we next asked
how the composition of microglia/macrophages in the brain may
be regulated in response to HI. We employed FACS analysis to
assess the total number of CD11b+ cells and to characterize cell
phenotypes within this population at different time points after
HI. Cells were characterized by a stepwise gating strategy based
on methods described by Bedi et al. (2013). This facilitated

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 December 2016 | Volume 10 | Article 286

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Hellström Erkenstam et al. Inflammation in Neonatal Brain after Injury

FIGURE 1 | Expression of pro- and anti-inflammatory genes following neonatal hypoxia-ischemia. Expression of genes associated with classic activation

(CD86, IL-6, IL-1β, Cox2, iNOS; A–E), alternative activation (CD206, IL-10, Fizz1, Arg1; F–I), and immunomodulatory (Gal3; J) was measured by qRT-PCR at 6, 24,

72 h, and 7 days in the contralateral (C) and ipsilateral (I) hemisphere after HI. Values are presented as mean ± SEM. Analysis by two-way ANOVA followed by Tukey’s

multiple comparisons test between ipsilateral and contralateral hemispheres; n ≥ 10 per group; *p ≤ 0.05, ***p ≤ 0.001.

identification of three major cell populations including
classically polarized-like cells (CD11b+CD86+CD206−),
alternatively polarized-like cells (CD11b+CD86+/−CD206+)
and a cell population that did not express either CD86 or CD206
(CD11b+CD86−CD206−) (Figures 2A–D).

Hypoxia-Ischemia Triggers Expansion of
the CD11b+ Cells for up to 7 Days
HI resulted in a significant expansion of the total number of
CD11b+ cells, which was both time and hemisphere dependent
(Supplementary Table 2), resulting in an increase of these cells
in the ipsilateral hemisphere at 24 h (+282.4%; p < 0.001), 72 h
(+103.4%; p < 0.001), and 7 days (+53.4%; p < 0.01). This effect
was mirrored in the expansion of the CD11b+CD86−CD206−

cell population (24 h, +95.6%, p < 0.001; 72 h, +47.0%, p <

0.001) (Figure 2E), the CD11b+CD86+CD206− cell population
(24 h, +3667.1%, p < 0.001; 72 h, +2898.8% p < 0.001)
(Figure 2F), and the CD11b+CD86+/−CD206+ cell population
(24 h, +402.2%, p < 0.001 and 72 h, +138.2%, p < 0.001,
Figure 2G).

There was an interaction between hemisphere and time
after HI that determined the ratio of different cell subtypes
(Supplementary Table 3). In the ipsilateral hemisphere, the
CD11b+CD86+CD206− population, in relative terms, was the
dominant cell type at 24 h after HI constituting 56% of
the total number of CD11b+ cells, compared to 7% in the
contralateral hemisphere (ipsi 56.4 ± 2.4% vs. contra 7.2 ±

1.1%, p < 0.0001, Figure 2I). At 72 h post-injury, 35% of the
CD11b+ cells in the ipsilateral hemisphere were CD86+CD206−,
compared to 5% in the contralateral hemispheres (ipsi 35.1

± 1.2% vs. contra 4.8 ± 0.3%, p < 0.0001). At 7 days post-
HI, the percentage of this cell population in the ipsilateral
hemisphere was reduced compared to levels at 24 h post-injury,
yet remained 2.5-times higher compared to the contralateral
hemisphere (ipsi 24.4 ± 0.9% vs. contra 10.0 ± 0.9%,
p < 0.0001).

The proportion of CD11b+CD86+/−CD206+ cells never
exceeded 8% of the total CD11b+ population, in either the
contra- or ipsilateral hemisphere, at any time point examined.
Despite an early increase in absolute numbers (Figure 2G), the
percentage of CD11b+CD86+/−CD206+ cells was reduced in
the ipsilateral compared to the contralateral hemisphere, at 24 h
(ipsi 3.2 ± 0.2% vs. contra 5.7 ± 0.7%, p < 0.01, Figure 2J). By
3 days post-injury the CD11b+CD86+/−CD206+ population in
the ipsilateral hemisphere had approximately assumed the same
relative size as in the contralateral hemisphere (Figure 2J).

In absolute numbers the CD11b+CD86−CD206−cell
population remained elevated over time in the ipsilateral
compared to the contralateral hemisphere (Figure 2E). However,
due to the large increase in CD11b+CD86+CD206− cells in
the ipsilateral hemisphere (Figure 2F), CD11b+CD86−CD206−

cells constituted a smaller proportion of the total CD11b+

population (Figure 2H) in the ipsilateral hemisphere compared
with the contralateral at 24 h (ipsi 36.4 ± 4.8% vs. contra 81.4
± 5.7%, p < 0.001), at 72 h (ipsi 54.7 ± 2.5% vs. contra 84.7 ±

1.0%, p < 0.001) and at 7 days (ipsi 63.9 ± 2.5% vs. contra 78.8
± 2.1%, p < 0.001) post-injury.

The CD11b+CD86−CD206− population represented
the largest population in the contralateral hemisphere
(approximately 80% of all CD11b+ cells (Figure 2H), where
the cell number was relatively constant during the study period
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FIGURE 2 | FACS analysis of CD11b positive cell populations in the brain after hypoxia-ischemia. Microglia cell populations were quantified in single cell

suspensions isolated from ipsilateral and contralateral cerebral hemispheres following hypoxia-ischemia. Samples were progressively gated based first on size (FSC)

and granularity (SSC) (A) followed by CD11b (B) and finally CD86 and CD206 (C-D) immunoreactivity, allowing identification of three distinct cell populations:

CD11b+CD86−CD206−, CD11b+CD86+CD206− and CD11b+CD86+/−CD206+ (C,D). Absolute number and % of total number of CD11+ cells of

CD11b+CD86−CD206−(E,H), CD11b+CD86+CD206− (F,I) and CD11b+CD86+/−CD206+ (G,J) cell populations in contralateral (C) and ipsilateral (I) hemispheres

at 24 h, 72 h and 7 days after HI. Values presented as mean ± SEM. Analysis by two-way ANOVA followed by Tukey’s multiple comparisons test between ipsilateral

and contralateral hemispheres at each time point; n = 6–7 per group; **p ≤ 0.01, ***p ≤ 0.001.
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(24 h: 299,680± 5164; 72 h: 311,810± 22,950; 7 days: 251,673±
18,105) (Figure 2E).

Identification of Microglia/Macrophage
Phenotypes by Immunohistochemistry
The presence of different cell phenotypes was confirmed by
confocal analysis on immuno-stained histological sections. Cells,
expressing Iba-1 (microglia/macrophage marker), but neither
CD86 nor CD206, were readily observed in injured areas
(Figure 3A) as well as in the contralateral hemisphere (data not
shown). Iba-1 positive cells with strong expression of CD86
were also found in the ipsilateral hemisphere (Figure 3A). In
white matter areas, such as the corpus callosum (Figure 3B), Iba-
1/CD206-positive cells were noted adjacent to Iba-1 positive cells
clearly expressing both CD206 and CD86. Interestingly, Iba-1
positive cells expressing CD206 only, were mainly found in the
meninges (Figure 3C) or the contralateral hemisphere (data not
shown).

Galectin-3 Is Primarily Expressed in
CD11b+ Cells That Lack CD86 and CD206
after Hypoxia-Ischemia
To evaluate immunomodulatory properties of the different cell
populations we investigated the protein expression of galectin-
3 in lysates of FACS-sorted cell populations. Considering the

marked changes in cell numbers of the different populations
after HI, we analyzed both changes in protein expression
in the total cell populations (pg/mL; reflecting the overall
contribution of each cell population, Figure 4A) as well as
corrected for protein content (pg/µg protein, Figure 4B) to
represent the protein expressed per cell. Galectin-3 expression
was upregulated in several cell populations (Figure 4B) with
significant changes observed at 24 h (942.1%; p < 0.001) and
at 72 h (790.9%; p < 0.001) in the CD11b+CD86−CD206− cell
population. In CD11b+CD86+CD206− cells, increased galectin-
3 expression was detected at 7 days (371.4%; p = 0.0413)
and in CD11b+CD86+/−CD206+ cells at 72 h (623.3%; p =

0.0015). When investigating the protein expression in the total
cell populations (pg/mL), CD11b+CD86−CD206− cells were
the main source of increased galectin-3 protein in the injured
hemisphere at all three time points (Figure 4A).

Immunohistochemical Identification of
Galectin-3 in Microglia with Low CD86 and
CD206 Expression
To validate galectin-3 levels measured by ELISA relative to
phenotypic markers in vivo, we conducted confocal microscopic
examination on histological sections stained for galectin-3,
CD86 and CD206 (Figure 5). Tile scanned photomicrographs
of whole brain sections 24 h after HI revealed robust galectin-
3 immunoreactivity in typically injured brain regions in

FIGURE 3 | Immunohistochemical visualization of CD86 and CD206 in Iba1 positive cells after neonatal hypoxia-ischemia. Representative

photomicrographs display immunoreactivity for Iba1, CD206, and CD86 in the striatum (A) the corpus callosum (B) and at the pial meningeal surface (C) of the

ipsilateral hemisphere 24 h after hypoxia-ischemia. (A) One star indicates Iba1 positive cell lacking CD86/CD206 immunoreactivity; white arrowhead indicates Iba1

positive co-labeled with CD86. (B) White arrow indicates Iba1 cell positive for both CD86 and CD206 and hashtag identifies Iba1 positive cell which is mainly

co-labeled with CD206. (C) Hashtag show Iba-1 positive cells only co-labeled with CD206. Scale bars: 25 µm.
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FIGURE 4 | Galectin-3 protein expression in different CD11b+ cell populations following neonatal hypoxia-ischemia. Hypoxia-ischemia (HI) was induced in

P9 mice and animals were sacrificed at 1, 3, and 7 days post HI. Brain hemispheres were processed into single cell suspension, stained with antibodies against

CD11b, CD86, and CD206 and sorted by FACS. Galectin-3 protein expression was determined in lysates of sorted cell populations by ELISA. Sham operated animals

(white bars), ipsilateral hemisphere in CD11b+CD86−CD206− cells (light gray bars), ipsilateral hemisphere in CD11b+CD86+CD206− cells (dark gray bars),

ipsilateral hemisphere in CD11b+CD86+/−CD206+cells (almost black bars). Protein concentrations expressed as target protein concentration per ml (A) and as

concentration of target protein per cell (B). Statistical comparisons were made using Kruskal-Wallis followed by Dunn’s multiple comparison test for each cell

population vs. sham. *p < 0.05, **p < 0.01, ***p < 0.001. n = 6–7 animals/group.

the ipsilateral hemisphere, including cortical regions and the
striatum, with staining absent from the contralateral hemisphere
(Figure 5A). In line with our ELISA results displaying increased
galectin-3 expression particularly in CD11b+CD86−CD206−

cells at 24 h after HI, confocal examination of individual cells
in the ipsilateral cortex showed that strongly galectin-3 positive
cells expressed low levels of CD86 and CD206 immunoreactivity
(Figure 5B). These galectin-3 immunoreactive cells displayed
amoeboid or hypertrophic but not highly ramified morphologies.
In contrast, classically and alternatively polarized cells that were
more strongly immunoreactive for CD86 and CD206, generally
displayed a low level of galectin-3 staining (Figure 5B).

By using Lys-EGFP-ki mice, that express EGFP in peripheral
myeloid cells but not in microglia (Faust et al., 2000), we were
able to determine that the cells expressing galectin-3 were mainly
resident microglia (Figure 6).

DISCUSSION

In this study we investigated the applicability of using
classical and alternative activation characterization of cerebral
microglia/macrophages to the context of neonatal HI brain
injury. We demonstrate that neonatal HI caused a rapid and
transient increase in the mRNA levels of genes related to both
pro- and anti-inflammatory phenotypes within the first 24 h
after the initial insult. Using classical macrophage CD antigens
as markers for classical and alternative activation, we identified
three major CD11b+ cell populations in the brain by FACS
analysis; cells expressing predominantly CD86 or CD206, and
a cell population that lacked CD86 and CD206 expression. A
dramatic expansion of the CD86 positive cells in the ipsilateral

hemisphere was observed at 24 h after HI. In contrast, although
increasing in real numbers, the relative proportions of CD206+

cells or cells lacking both CD86 and CD206 expression were
reduced after injury. Using immunohistochemistry, we were able
to identify Iba-1 positive cells with predominantly CD86 or
CD206 staining, but the CD206 positive cells frequently co-
expressed CD86 in injured areas while cells expressing CD206
only were mainly found in meninges or uninjured areas.
Interestingly, protein expression of the immunomodulatory
protein galectin-3 was markedly increased in cells that lacked
CD86 and CD206 and this novel finding suggest that the
population of these “non-polarized” cells may be important for
immune responses in the injured neonatal brain.

It is well understood that macrophages and microglia
can adopt distinct pro- and anti-inflammatory phenotypes in
response to specific polarizing stimuli in vitro (Stein et al., 1992;
Gordon, 2003; Chhor et al., 2013). However, the degree to which
such distinct inflammatory phenotypes exist in the complex
inflammatory environment of the injured CNS is less clear.
Studies investigating expression of genes associated with different
activation stages in the mouse middle cerebral artery occlusion
(MCAO) stroke model have suggested rapid, yet transient,
induction of genes associated with alternative activation followed
by a later, yet sustained, induction of genes associated with
classical activation (Hu et al., 2012). This data is in contrast to our
observation of rapid and transient induction of genes associated
with both classical (CD86, IL-6, and IL-1β), as well as alternative
(IL-10, Fizz1, Arg1, and IL-10) activation followed by return to
baseline expression at 24 h post HI. However, our results are in
line with previous investigations in neonatal rodent HI models,
which reported peak induction of IL-1β and TNF-α at 12 h after
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FIGURE 5 | Galectin-3 immunofluorescence staining following neonatal hypoxia-ischemia. (A) Photomicrograph of galectin-3 immunoreactivity in a coronal

section of the brain at 24 h after hypoxia-ischemia (HI), injured ipsilateral hemisphere to the right. (B) Representative photomicrographs of galectin-3 staining,

co-labeled with CD86 and CD206 in the ipsilateral hemisphere at 24 h after HI. Star indicates cells with low galectin-3 and high CD206 and CD86 staining. White

arrowhead demonstrates galectin-3 positive cell with weak CD206 and CD86 staining. Scale bars: A = 1000µm, B = 20µm.

HI (Bona et al., 1999) or upregulation of IL-1β and IL-10 at
3 h (Bonestroo et al., 2013), suggesting that the inflammatory
response to injury differ in the neonatal brain compared to the
adult.

Although useful in supplying information about the general
inflammatory response in the brain, examination of whole
hemispheric gene expression fails to address the phenotypic
composition of the microglia/macrophage pool. In order to
address these issues we employed FACS to characterize and
isolate CD11b+ cells based on their differential expression
of CD86 and CD206, both well characterized markers of
different activation phenotypes in vitro (Stein et al., 1992;
Chhor et al., 2013). This approach allowed identification of
three major CD11b+ cell populations: the CD86−CD206−

and the CD86+CD206− populations were largely homogenous,
while the cells positive for CD206 were more heterogeneous.
Based on previously well-established gating strategies (Bedi
et al., 2013), these cells were defined by their expression
of CD206 but included cells also expressing CD86 antigens.
Such findings are not without precedent in the adult brain:
flow cytometry studies have displayed co-expression of CD206

and the pro-inflammatory marker major histocompatibility
complex class II (MHCII) in the intact CNS (Li et al.,
2014), and CD206+/FcγRII/III+cells have been detected in a
mouse model of traumatic brain injury (Bedi et al., 2013).
In addition, immunohistological interrogation of HLA-DR+

foamy macrophages in active human multiple sclerosis lesions
indicated that 70% display co-immunoreactivity for CD206
and the pro-inflammatory marker CD40 (Vogel et al., 2013).
Further, our previous in vitro work with microglia using these
markers supports the complexity of our in vivo observations.
We observed that even using pro-typical inducers of classic
and alternative activation (LPS & IL-4), the expression of CD86
and CD206 could not be used to discriminate between these
two polarization states at all time points (from 4 to 72 h post-
exposure) (Chhor et al., 2013). Interestingly, using inducer-
switching experiments, we also demonstrated that expression of
these two markers is significantly altered by previous activation
suggesting that over time in vivo microglia might be primed
by the complex milieu of cytokines and chemokine in the
local micro-environment modulating the expression patterns
observed.
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FIGURE 6 | Galectin-3 is expressed in microglia in the injured

hemisphere after neonatal hypoxia-ischemia. (A) Photomicrograph of

galectin-3+ (red) and infiltrating myeloid EGFP+ (green) cells in the injured

cerebral cortex 24 h after neonatal hypoxia-ischemia. (B) Enlarged image of

galectin-3+ cells in box in (A). (C) Enlarged image of myeloid EGFP+ (green)

cells in box in (A). (D) Enlarged image of combined staining of cells in (A).

White arrowheads demonstrate galectin-3 positive cells; white arrows indicate

myeloid EGFP+ (green) cells. Scale bars = 20 µm.

In our model, immunohistochemistry revealed that the cell
populations expressing CD206 only or CD206 as well as CD86
were distinctly different regarding location. We identified a
small population of “pure” CD206+ cells, which was frequently
observed in the meninges. These cells have previously been
identified and described as “non-parenchymal macrophages”
(Galea et al., 2005). Further, we found single CD206-expressing
cells in the contralateral hemisphere, as well as in sham-operated
animals, consistent with the hypothesis that some microglia
possess an alternative activation-like phenotype in the intact CNS
(Ponomarev et al., 2007). The presence of a “mixed” population
expressing both CD206 and CD86, particularly in the cerebral
white matter, as well as a large population of seemingly non-
polarized cells (lacking both CD86 and CD206 expression) also
illustrates the complexity of the cellular response in the brain in
vivo. Taken together, our data suggest that the traditional classic
vs. alternative activation classification scheme oversimplifies the
concept of distinct inflammatory cell phenotypes in the brain in
vivo, which is also being recognized by the macrophage research
field (Murray et al., 2014; Nahrendorf and Swirski, 2016).

Within the first 24 h after HI all three cell populations
increased in the injured hemisphere with the largest expansion
seen for cells expressing CD86. This population dominated in
the HI hemisphere, and although both the total number and
the proportion of these cells steadily decreased with time after
injury the total number of cells was still elevated at 7 days in the
ipsilateral compared to contralateral hemisphere. Concomitant
with this, cell populations expressing CD206 or lacking both
CD86 and CD206 constituted a relatively smaller proportion of
cells for several days after HI, despite their increase in absolute
numbers. Studies of adult spinal cord injury (Kigerl et al., 2009)
and MCAO (Hu et al., 2012) have suggested a gradual increase
in both classically and alternatively activated microglia in the
first days after insult, with the presence of classically activated
microglia continuing to increase up to 28 days, whilst the
alternative activation response appeared transient with numbers
peaking at 5–7 days and decreasing gradually thereafter. Thus,
our findings suggest differences in neonatal and adult CNS
immune responses to injury.

A novel finding in this study is that the cell population lacking
CD86 and CD206 expression was the major contributor
of galectin-3 protein expression after HI. In support,
immunohistochemical analysis showed that cells with the
highest galectin-3 staining intensity expressed little CD86
or CD206 activation markers, yet exhibited the amoeboid
appearance associated with activated phenotypes. These results
further emphasize the inadequacy of using CD86 and CD206
as markers of microglia/macrophage activation. Galectin-3 is
an immunomodulatory factor that is involved in activation
and polarization of inflammatory cells, probably by inducing
pro-inflammatory cytokines (Jeng et al., 1994) and the release of
oxygen free radicals (Karlsson et al., 1998). Galectin-3 expression
in microglia is increased in response to the pro-typical alternative
activation inducer IL-4 in vitro (Chhor et al., 2013) and it has
been suggested that galectin-3 is essential for polarization
through a feed-back loop initiated by IL-4 (MacKinnon et al.,
2008). Our results demonstrate galectin-3 to be strongly
upregulated in response to injury. It is presently unknown to
what extent peripheral monocytes/macrophages may contribute
to cellular immune responses after neonatal HI (Mallard and
Vexler, 2015). Our data suggest that there is some degree of
infiltration of myeloid cells as indicated by the presence of EGFP
positive cells in the brain after HI. However, few of the EGFP
positive cells expressed galectin-3, suggesting that galectin-3 is
mainly expressed by microglia. Potentially, these cells may be
important in attracting and priming cells to additional stimuli
and thus modulating the inflammatory response, which appears
to be critical for development of brain injury according to
previous work (Doverhag et al., 2010).

CONCLUSIONS

We have shown a dynamic expression pattern of pro- and anti-
inflammatory mRNA in the brain after neonatal HI. CD11b+

cells that express the CD86 surface antigen, which has been
associated with classical activation of macrophages, dominated
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in the injured brain during the first days after HI. Cells
expressing antigen associated with alternative activation (CD206)
demonstrated a similar expansion over time, but with a smaller
magnitude of the increase resulting in a relative suppression of
this cell type. The CD206 expressing cells were heterogeneous
and there were cells expressing CD206 as well as CD86, thus
illustrating the complexity of the cellular immune response in
the brain after injury. A novel finding is that a large population
of CD11b+ cells in the brain after neonatal HI is “non-
polarized” with regard to classical activation markers CD86 and
CD206, but express high amounts of the immunomodulatory
factor galectin-3. We speculate that this population may be
important for attracting cells to injured areas and could
be involved in modulation of the post-injury inflammatory
response.
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