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Abstract 

Binaural coincidence detection is essential for the localization of 
external sounds and requires auditory signal processing with high 
temporal precision. We present an integrate-and-fire model of spike 
processing in the auditory pathway of the barn owl. It is shown that 
a temporal precision in the microsecond range can be achieved with 
neuronal time constants which are at least one magnitude longer. 
An important feature of our model is an unsupervised Hebbian 
learning rule which leads to a temporal fine tuning of the neuronal 
connections. 

·email: kempter.wgerst.lvh@physik.tu-muenchen.de 
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1 Introduction 

Owls are able to locate acoustic signals based on extraction of interaural time dif
ference by coincidence detection [1, 2]. The spatial resolution of sound localization 
found in experiments corresponds to a temporal resolution of auditory signal pro

cessing well below one millisecond. It follows that both the firing of spikes and their 
transmission along the so-called time pathway of the auditory system must occur 
with high temporal precision. 

Each neuron in the nucleus magnocellularis, the second processing stage in the 
ascending auditory pathway, responds to signals in a narrow frequency range. Its 
spikes are phase locked to the external signal (Fig. 1a) for frequencies up to 8 
kHz [3]. Axons from the nucleus magnocellularis project to the nucleus laminaris 
where signals from the right and left ear converge. Owls use the interaural phase 

difference for azimuthal sound localization. Since barn owls can locate signals with a 
precision of one degree of azimuthal angle, the temporal precision of spike encoding 
and transmission must be at least in the range of some 10 J.lS. 

This poses at least two severe problems. First, the neural architecture has to be 
adapted to operating with high temporal precision. Considering the fact that the 
total delay from the ear to the nucleus magnocellularis is approximately 2-3 ms [4], 
a temporal precision of some 10 J.lS requires some fine tuning, possibly based on 
learning. Here we suggest that Hebbian learning is an appropriate mechanism. Sec
ond, neurons must operate with the necessary temporal precision. A firing precision 
of some 10 J.ls seems truly remarkable considering the fact that the membrane time 
constant is probably in the millisecond range. Nevertheless, it is shown below that 

neuronal spikes can be transmitted with the required temporal precision. 

2 Neuron model 

We concentrate on a single frequency channel of the auditory pathway and model 
a neuron of the nucleus magnocellularis. Since synapses are directly located on the 
soma, the spatial structure of the neuron can be reduced to a single compartment. 
In order to simplify the dynamics, we take an integrate-and-fire unit. Its membrane 
potential changes according to 

d u 
-u = -- + 1(t) 
dt TO 

(1) 

where 1(t) is some input and TO is the membrane time constant. The neuron fires, 
if u(t) crosses a threshold {) = 1. This defines a firing time to. After firing u is reset 

to an initial value uo = O. Since auditory neurons are known to be fast, we assume 
a membrane time constant of 2 ms. Note that this is shorter than in other areas of 
the brain, but still a factor of 4 longer than the period of a 2 kHz sound signal. 

The magnocellular neuron receives input from several presynaptic neurons 1 ~ k ~ 

J{. Each input spike at time t{ generates a current pulse which decays exponentially 
with a fast time constant Tr = 0.02 ms. The magnitude of the current pulse depends 
on the coupling strength h. The total input is 

t t f 
1(t) = L h: exp( --=-.!. ) O(t - t{) 

k,f Tr 

(2) 

where O(x) is the unit step function and the sum runs over all input spikes. 
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Fig. 1. Principles of phase locking and learning. a) The stimulus consists of a sound 
wave (top). Spikes of auditory nerve fibers leading to the nucleus magnocellularis 
are phase-locked to the periodic wave, that is, they occur at a preferred phase in 
relation to the sound, but with some jitter 0". Three examples of phase-locked 
spike trains are indicated. b) Before learning (left), many auditory input fibers 
converge to a neuron of the nucleus magnocellularis. Because of axonal delays 
which vary between different fibers, spikes arrive incoherently even though they 
are generated in a phase locked fashion. Due to averaging over several incoherent 
inputs, the total postsynaptic potential (bottom left) of a magnocellular neuron 
follows a rather smooth trajectory with no significant temporal structure. After 
learning (right) most connections have disappeared and only a few strong contacts 
remain. Input spikes now arrive coherently and the postsynaptic potential exhibits 
a clear oscillatory structure. Note that firing must occur during the rising phase of 
the oscillation. Thus output spikes will be phase locked. 
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All input signals belong to the same frequency channel with a carrier frequency of 

2 kHz (period T = 0.5 ms), but the inputs arise from different presynaptic neurons 

(1 ~ k ~ K). Their axons have different diameter and length leading to a signal 
transmission delay ~k which varies between 2 and 3 ms [4]. Note that a delay as 
small as 0.25 ms shifts the signal by half a period. 

Each input signal consists of a periodic spike train subject to two types of noise. 
First, a presynaptic neuron may not fire regularly every period but, on average, 
every nth period only where n ~ 1/(vT) and v is the mean firing rate of the neuron. 
For the sake of simplicity, we set n = 1. Second, the spikes may occur slightly too 
early or too late compared to the mean delay~. Based on experimental results, we 

assume a typical shift (1 = ±0.05 ms [3]. Specifically we assume in our model that 
inputs from a presynaptic neuron k arrive with the probability density 

P( J) __ 1_ ~ [-(t{ -nT- ~k)2l 
tk - . m= L...t exp 2 

v2~(1 2(1 
n=-OO 

(3) 

where ~k is the axonal transmission delay of input k (Fig. 1). 

3 Temporal tuning through learning 

We assume a developmental period of unsupervised learning during which a fine 
tuning of the temporal characteristics of signal transmission takes place (Fig. Ib) . 
Before learning the magnocellular neuron receives many inputs (K = 50) with weak 
coupling (Jk = 1). Due to the broad distribution of delays the tptal input (2) has, 
apart from fluctuations, no temporal structure. After learning, the magnocellular 
neuron receives input from two or three presynaptic neurons only. The connections 
to those neurons have become very effective; cf. Fig. 2. 
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Fig. 2 . Learning. We plot the number of synaptic contacts (y-axis) for each delay 

~ (x-axis). (a) At the beginning, the neuron has contacts to 50 presynaptic neurons 

with delays 2ms ~ ~ ~ 3ms. (b) and (c) During learning, some presynaptic neurons 

increase their number of contacts, other contacts disappear. (d) After learning, 

contacts to three presynaptic neurons with delays 2.25, 2.28, and 2.8 ms remain. 

The remaining contacts are very strong. 



128 R. KEMPfER, W. GERSTNER, J. L. VAN HEMMEN, H. WAGNER 

The constant h: measures the total coupling strength between a presynaptic neuron 

k and the postsynaptic neuron. Values of h: larger than one indicate that several 

synapses have been formed. It has been estimated from anatomical data that a 
fully developed magnocellular neuron receives inputs from as few as 1-4 presynaptic 
neurons, but each presynaptic axon shows multiple branching near the postsynaptic 
soma and makes up to one hundred synaptic contacts on the soma of the magnocel
lular neuron[5]. The result of our simulation study is consistent with this finding. In 
our model, learning leads to a final state with a few but highly effective inputs. The 

remaining inputs all have the same time delay modulo the period T of the stimulus. 
Thus, learning leads to reduction of the number of input neurons contacts with a 

nucleus magnocellularis neuron. This is the fine tuning of the neuronal connections 

necessary for precise temporal coding (see below, section 4). 
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Fig. 3. (a) Time window of learning W(x). Along the x-axis we plot the time 

difference between presynaptic and postsynaptic fiing x = t{ - tl:. The window 

function W(x) has a positive and a negative phase. Learning is most effective, if 

the postsynaptic spike is late by 0.08 ms (inset). (b) Postsynaptic potential {(x). 

Each input spike evoked a postsynaptic potential which decays with a time constant 

of 2 ms. Since synapses are located directly at the soma, the rise time is very 

fast (see inset). Our learning scenario requires that the rise time of {(x) should be 

approximately equal to the time x where W(x) has its maximum. 

In our model, temporal tuning is achieved by a variant of Hebbian learning. In 

standard Hebbian learning, synaptic weights are changed if pre- and postsynaptic 

activity occurs simultaneously. In the context of temporal coding by spikes, the 
concept of (simultaneous activity' has to be refined. We assume that a synapse k is 
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changed, if a presynaptic spike t{ and a postsynaptic spike to occur within a time 

window W(t{ -to). More precisely, each pair of presynaptic and postsynaptic spikes 

changes a synapse Jk by an amount 

(4) 

with a prefactor , = 0.2. Depending on the sign of W( x), a contact to a presynaptic 
neuron is either increased or decreased. A decrease below Jk = 0 is not allowed. 

In our model, we assume a function W(x) with two phases; cf. Fig. 3. For x ~ 
0, the function W(x) is positive. This leads to a strengthening (potentiation) of 

the contact with a presynaptic neuron k which is active shortly before or after a 

postsynaptic spike. Synaptic contacts which become active more than 3 ms later 

than the postsynaptic spike are decreased . Note that the time window spans several 
cycles of length T. The combination of decrease and increase balances the average 

effects of potentiation and depression and leads to a normalization of the number 
and weight of synapses. Learning is stopped after 50.000 cycles of length T. 

4 Temporal coding after learning 

After learning contacts remain to a small number of presynaptic neurons. Their 
axonal transmission delays coincide or differ by multiples of the period T. Thus the 

spikes arriving from the few different presynaptic neurons have approximately the 
same phase and add up to an input signal (2) which retains, apart from fluctuations, 

the periodicity of the external sound signal (Fig.4a). 
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Fig. 4 . (a) Distribution of input phases after learning. The solid line shows the 

number of instances that an input spike with phase <p has occured (arbitrary units). 

The input consists of spikes from the three presynaptic neurons which have survived 

after learning; cf. Fig. 1 d. Due to the different delays, the mean input phase 

v(lries slightly between the three input channels. The dashed curves show the phase 

distribution of the individual channels, the solid line is the sum of the three dashed 

curves. (b) Distribution of output phases after learning. The histogram of output 

phases is sharply peaked. Comparison of the position of the maxima of the solid 

curves in (a) and (b) shows that the output is phase locked to the input with a 

relative delay fl<p which is related to the rise time of the postsynaptic potential. 
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Output spikes of the magnocellular neuron are generated by the integrate-and-fire 
process (1). In FigAb we show a histogram of the phases of the output spikes. We 

find that the phases have a narrow distribution around a peak value. Thus the 
output is phase locked to the external signal. The width of the phase distribution 

corresponds to a precision of 0.084 phase cycles which equals 42 jlS for a 2 kHz 

stimulus. Note that the temporal precision of the output has improved compared 
to the input where we had three channels with slightly different mean phases and a 
variation of (T = 50jls each. The increase in the precision is due to the average over 
three uncorrelated input signals. 

We assume that the same principles are used during the following stages along the 

auditory pathway. In the nucleus laminaris several hundred signals are combined. 

This improves the signal-to-noise ratio further and a temporal precision below 10 jlS 

could be achieved. 

5 Discussion 

We have demonstrated that precise temporal coding in the microsecond range is pos
sible despite neuronal time constants in the millisecond range. Temporal refinement 

has been achieved through a slow developmental learning rule. It is a correlation 
based rule with a time window W which spans several milliseconds. Nevertheless 
learning leads to a fine tuning of the connections supporting temporal coding with 

a resolution of 42 jlS. The membrane time constant was set to 2 ms. This is nearly 

two orders of magnitudes longer than the achieved resolution. In our model, there 
is only one fast time constant which describes the typical duration of a input cur

rent pulse evoked by a presynaptic spike. Our value of Tr = 20 jlS corresponds to 
a rise time of the postsynaptic potential of 100 jls. This seems to be realistic for 

auditory neurons since synaptic contacts are located directly on the soma of the 

postsynaptic neuron. The basic results of our model can also be applied to other 
areas of the brain and can shed new light on some aspects of temporal coding with 

slow neurons. 

Acknowledgments: R.K. holds scholarship of the state of Bavaria. W.G. has been 

supported by the Deutsche Forschungsgemeinschaft (DFG) under grant number He 1729/2-

2. H.W. is a Heisenberg fellow of the DFG. 

References 

[1] L. A. Jeffress, J. Compo Physiol. Psychol. 41, 35 (1948). 

[2] M. Konishi, Trends Neurosci . 9, 163 (1986). 

[3] C. E. Carr and M. Konishi, J. Neurosci. 10,3227 (1990). 

[4] W. E. Sullivan and M. Konishi, J. Neurosci. 4,1787 (1984). 

[5] C. E. Carr and R. E. Boudreau, J. Compo Neurol. 314, 306 (1991). 


