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Temporal coding of brain patterns for direct limb control  
in humans
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For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper 

extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm 

function in those tetraplegics. The main problem for this group of individuals, however, is the 

reduced ability to voluntarily operate device controllers. A brain–computer interface provides a 

non-manual alternative to conventional input devices by translating brain activity patterns into 

control commands. We show that the temporal coding of individual mental imagery pattern 

can be used to control two independent degrees of freedom – grasp and elbow function – of 

an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe 

the procedure from the initial screening to the final application. From eight naïve subjects 

participating online feedback experiments, four were able to voluntarily control an artificial arm 

by inducing one motor imagery pattern derived from one EEG derivation only.
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into  control signals for robotic arms or FES devices. Most of this 

research is done in non-human primates (Moritz et al., 2008; 

Pohlmeyer et al., 2009), only very few cases of paralysed humans 

were presented (Hochberg et al., 2006). Less invasive are electro-

corticographic (ECoG) signals recorded from electrodes placed 

on the surface of the brain without penetrating the cortex. ECoG 

provides a high signal to noise ratio and spatial resolution. First 

attempts to use this signal for neuroprosthetic control were 

reported recently (Pisthol et al., 2008; Márquez-Chin et al., 2009; 

Waldert et al., 2009). Currently the medical risks using invasive 

technologies are still too high. The effort to reduce the risks and 

improve technology may make this technology feasible for future 

clinical applications.

On the other hand, there are efforts to restore movement in high-

level SCI patients, by the use of an EEG-based, and therefore non-

invasive, BCI. Heasman et al. (2002) reported on a neuroprosthetic 

control based on the modulation of the occipital alpha by opening 

and closing the eyes. Our group reported on the restoration of the 

grasp function in high SCI patients by implementing a so-called 

brain switch based on either foot motor imagery (Pfurtscheller et al., 

2003) or left hand motor imagery (Müller-Putz et al., 2005). An 

EEG-based prosthetic control utilizing the modulation of steady-

state visual evoked potentials (SSVEP) (Regan, 1989) has recently 

been reported (Müller-Putz and Pfurtscheller, 2008). In this work, a 

four-class SSVEP–BCI was implemented to control hand open and 

close movements as well as pronation and supination of the wrist.

One issue in non-invasive BCIs based on the detection and classi-

fication of imagery patterns is the limited number of control signals 

available. However, the number of control commands provided 

by a BCI is rather low (at least in motor imagery-based BCIs this 

number typically ranges from one to five classes, see for example 

Obermaier et al., 2001). To increase the number of commands, we 

implemented a temporal coding of the brain signal.

INTRODUCTION

Brain–computer interfaces (BCIs) are systems that establish 

a direct connection between the human brain and a computer 

(Wolpaw et al., 2002), thus providing an additional communica-

tion channel. For individuals suffering from severe palsy, amyo-

trophic lateral sclerosis (ALS) or brain stem stroke, such a BCI 

constitutes a possible way to communicate with the environment 

(Birbaumer et al., 1999; Nijboer et al., 2008; Kübler et al., 2009). 

BCIs can also be used to control neuroprostheses in patients suf-

fering from a high spinal cord injury (SCI), for example by using 

functional electrical stimulation (FES) for grasp restoration with 

surface electrodes (Pfurtscheller et al., 2003) or implanted devices 

(Müller-Putz et al., 2006).

A major problem in high SCI patients (lesion above cervical 

level C4) is that they lose control over their grasp and elbow func-

tions. In addition to these functional deficits, the ability to control 

external levers or joysticks also deteriorates. Eye-tracking sys-

tems in combination with a computer screen are a viable option 

for spelling purposes, whereas such systems are cumbersome in 

prosthesis control applications because the users have to watch 

their moving arm. However, Danóczy et al. (2008) described 

the use of eye gaze for target selection and control of grasp in 

a robotic arm. Another possibility for neuroprosthetic control 

is the use of facial and neck electromyogram (EMG) recordings 

as proposed by Kirsch (2005) and Williams and Kirsch (2008). 

Whether patients can use such a configuration outside of their 

home is an open question. However, it seems that for those cases, 

a non-invasive BCI based on electroencephalographic (EEG) sig-

nals provides a good option to control such devices.

In the last couple of years, several attempts were made to control 

a neuroprosthetic device with the BCI. Two major approaches 

emerged: On the one hand, there is the invasive approach by 

decoding spike trains of motor neurons and transforming them 
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•฀ To฀establish฀a฀procedure฀starting฀from฀initial฀screening฀to฀the฀
application of a control system,

•฀ to฀ evaluate฀ the฀ feasibility฀ of฀ only฀ one฀ motor฀ imagery฀ pat-
tern for the control of an artificial arm (grasp and elbow 

functions),

•฀ and฀finally,฀ to฀ further฀ confirm฀ that฀ it฀ is฀possible฀ to฀ establish฀
such a control system with minimum number of EEG recor-

dings (only one EEG derivation).

The procedure used to train naive BCI users to produce a brain 

pattern which can be used in a temporal coding manner is shown 

in Figure 1. Subjects started with a screening session investigating 

three different types of motor imagery (MI) and step by step the 

most reactive brain pattern was identified and finally the subjects 

The Graz-BCI utilizes the midcentral event-related desynchro-

nization and synchronization (ERD/ERS) (Pfurtscheller and Lopes 

da Silva, 1999) during motor imagery to control external devices 

(Pfurtscheller and Neuper, 2001). The neurophysiological basis for 

the use of such a mental strategy for an EEG-based BCI is that 

execution and imagination of limb movements activate overlap-

ping sensorimotor cortical areas (Gerardin et al., 2000) and exhibit 

similar ERD/ERS patterns (Pfurtscheller and Neuper, 1997). In 

order to use the so-called ERD–BCI in patients, it is important to 

establish an experimental procedure that guides the participant to 

develop an appropriate mental strategy (Neuper et al., 2003) and 

keeps the motivation of the patients as high as possible.

The aim of this work can be summarized with the following 

three points:

FIGURE 1 | Procedure for naïve BCI users to learn to control an artificial arm 

with only one out of three motor imagery (MI) patterns (left, L; right, R, 

feet, F). Screening is performed with three types of MI, after feature extraction 

and classification, individual two types were selected and used in the Basket 

paradigm. From those results, the most reactive pattern was chosen to be used 

for the platform game and following in the arm control.
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learned to establish this pattern over two different time durations. 

Finally, this pulse-width coded (PWC) brain switch was applied in 

an artificial arm control.

MATERIALS AND METHODS

In order to set up the BCI in naive (inexperienced) BCI users to 

operate an artificial arm with only one motor imagery pattern, a set 

of experiments and feedback paradigms was devised. An overview 

of the whole procedure is given in Figure 1.

PARTICIPANTS

Ten healthy subjects (mean age 28.1 years, median age 24.5 years, 

standard deviation 10.3), 4 females and 6 males, participated in this 

study. The subjects were without any medical or psychological dis-

eases, had normal or corrected to normal vision and were paid for 

attending to the experiments. At the beginning of the study, all subjects 

were informed about the aim of this research project and gave their 

written consent to participate. The study was approved by the local 

ethic committee.

SCREENING PARADIGM

The participants were sitting comfortably in an armchair, 1.2 m 

in front of a computer screen. Before the experiment started, 

they were instructed via a presentation running on the screen in 

front of them. After that, one out of three different visual cues 

was presented in a random order on the computer screen, indi-

cating the type of motor imagery to be performed (e.g., a left 

arrow for left hand motor imagery, right arrow for right hand 

motor imagery, and an arrow pointing downwards for foot motor 

imagery). Specifically, a single trial consisted of the following 

blocks: At second 0 a cross appeared in the middle of the black 

screen. After 2 s a beep sounded to catch the subject’s attention. 

The cue indicating the requested motor imagery appeared at sec-

ond 3 and stayed on the screen until second 4.25. During a time 

period of 5 s, the subjects were requested to perform kinesthetic 

motor imagery (Neuper et al., 2005) according to the cue. At 

second 8 the cross disappeared and the screen was blank again. A 

variable pause lasting between 0.5 and 2.5 s was added before the 

next trial began. One run consisted of 30 cues, 10 for each class. 

The whole screening session consisted of eight runs resulting in 80 

trials for each class. Short breaks were made between the runs. To 

get used to the experimental paradigm before the experiment was 

started, all participants had to execute the movements according 

to the cues presented on the screen.

EEG and EMG recordings

Thirty-two sintered Ag/AgCl electrodes were mounted over sen-

sorimotor areas covering C3, Cz, and C4 with the reference at the 

left and the ground electrode at the right mastoid (see Figure 2A). 

All electrode impedances were kept below 5 kOhms. A monopo-

lar amplifier (Synamps, Compumedics Germany GmbH, Singen, 

Germany) was programmed to record EEG signals with a sampling 

frequency of 1000 Hz, 0.05–200 Hz bandpass including a notch 

filter at 50 Hz. Sensitivity was 100 µV. The EMG was recorded from 

three bipolar channels over the left/right finger extensor muscles 

at the forearm and the right musculus tibialis, respectively, using a 

bipolar amplifier (g.tec, Guger Technologies, Graz, Austria). Filter 

settings were set to 0.5 Hz for high and 1000 Hz for low pass, 

the sensitivity was set to 2 mV. The EMG data was digitized with 

3000 Hz and stored for further analysis.

Time–frequency maps

Orthogonal source derivations (Laplacian derivations) (Hjorth, 

1975) were calculated to obtain reference-free data. Segments (tri-

als) of 8 s duration were extracted from the data with respect to the 

visual cue onset (3 s before and 5 s after the cue).

To obtain time–frequency maps of the eight Laplacian channels, 

ERD/ERS analysis (Pfurtscheller and Lopes da Silva, 1999) was 

performed for frequency bands between 1 and 40 Hz with respect 

to a specific reference interval (0.5–1.5 s). To that end, sinusoidal 

wavelets were used to assess changes in the frequency domain by cal-

culating the spectrum within a sliding window, squaring and sub-

sequent averaging over the trials (Delorme and Makeig, 2004). The 

statistical significance of the ERD/ERS values was determined by 

applying a t-percentile bootstrap algorithm (Davision and Hinkley, 

1997) with a significance level of α = 0.05. These so-called ERD/

ERS maps were calculated for each subject.

For a more general overview, so-called “median ERD/ERS maps” 

were computed. The median of the ERD/ERS values of each time 

and frequency point of all 10 subjects was determined resulting in 

a new ERD/ERS map. To include the statistical significance of the 

individual ERD/ERS maps, all not significant values were set to 

zero. This procedure was performed for each of the three motor 

imagery classes.

For statistical analysis, the significant frequency ranges in the 

alpha and beta band were extracted from the median maps. Here 

the ERD/ERS was counted only if it lasted at least 0.75 s and its 

amplitude was more than 20%. This was done for each type of 

motor imagery and its somatotopically corresponding cortical 

area (e.g., left hand motor imagery and C4, right hand and C3, 

feet motor imagery and Cz). The obtained frequency ranges were 

then used to extract the ERD/ERS values of each subject for the 

three types of motor imagery and the three electrode positions 

C3, Cz, and C4 in the time range from second 3.5 to 7. For each 

frequency band (alpha and beta) an analysis of variance (ANOVA) 

was performed. Each ANOVA consisted of the within-subject vari-

ables “class” (left hand, right hand, or foot motor imagery) and 

“electrode” (C3, Cz, C4).

Identification of two best separable motor imagery classes

Each Laplacian EEG channel derivation was analyzed independently 

by means of the distinction sensitive learning vector quantization 

(DSLVQ) algorithm (Pregenzer et al., 1996). At each time two out of 

the three motor imagery tasks were compared. DSLVQ was applied 

to logarithmic band power features (calculated by filtering, squaring 

and averaging over a 1-s time window) from 6 to 34 Hz (step size 

1 Hz, bandwidth 2 Hz) extracted from corresponding trials with 

the same latency to the beginning of the trial. These features were 

analyzed independently in steps of 0.5 s from 0.0 s to 8.0 s.

In order to obtain reliable values of the classification perform-

ance and the feature relevance the DSLVQ method was repeated 

100 times (three codebook vectors per class, type C training, 10000 

iterations, learning rate decreased from α = 0.05 to α = 0.0 and 

α′(t) = 0.1 α(t)).
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performed using the “basket paradigm” (Krausz et al., 2003). The 

aim of this experiment was to hit a target (basket) with the ball-

shaped control cursor at a predefined time. A red and a green 

“basket” (target) were presented at the bottom of the screen. After 

a pause with a fixed length of 1 s, a small green ball appeared at 

the top of the screen and began to fall downwards with a con-

stant speed. The time the ball took to reach the target was set to 

4 s. The subjects’ task was to hit the green basket (the position 

of which changed randomly from trial to trial). The horizontal 

position of the ball was directly controlled by the classification 

output (distance to the hyperplans), which was weighted by previ-

The two best separable motor imagery tasks were chosen for 

further subject training. This selection implies one Laplacian chan-

nel and up to three frequency bands. For classification in the next 

experiment, a classifier based on Fisher’s linear discriminant analy-

sis (LDA, 10-times 10-fold crossvalidation) was calculated.

CUE-BASED BASKET PARADIGM

After the screening experiments, two of the subjects decided not 

to participate in further experiments, which left eight remain-

ing subjects for the subsequent experiments. With the classifiers 

obtained from the screening session, online feedback training was 
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FIGURE 2 | (A) Schematic EEG electrode arrangement. For electrode position Cz 

(#17) the required electrodes for the orthogonal source derivations are highlighted. 

(B) Median ERD/ERS maps for C3, Cz, and C4 and for three types of motor 

imagery. (C) Mean ERD/ERS values of defined frequency ranges (mu and beta) and 

three types of motor imagery. Significant differences (p < 0.05) are marked with a 

square bracket, an additional asterisk indicates a significance level of p < 0.01.



www.frontiersin.org June 2010 | Volume 4 | Article 34 | 5

Müller-Putz et al. EEG-based limb control

ASYNCHRONOUS TRAINING: A PLATFORM GAME

For the purpose of subject training a computer game-like paradigm 

was created resembling a platform game. The participants were con-

trolling a jumping ball and had to leapfrog obstacles presented in 

random intervals between 10 and 15 s along the way. The obstacles 

were “hills” with the length of either 1 or 3 s. Each time the LDA 

output was exceeding a selected threshold (TH was set to the class 

mean plus its standard deviation) the difference between the actual 

LDA output and the threshold was mapped to the height of the 

ball. The subjects were instructed to perform motor imagery only 

to jump over the obstacles and not in the periods in between. Six 

runs (each run lasted 300 s) with 10 short and 10 long obstacles 

(randomly placed) were performed. At the upper left corner of 

the screen, a score corresponding to the game performance was 

displayed. It increased when the ball successfully moved over the 

obstacles. For further analyses, the EEG data (recorded in the same 

way as for the basket training), the landscape and the trajectory of 

the ball were stored.

Data analysis

To conduct a more detailed analysis as compared to the perform-

ance measure during the game, the ball movement was analyzed. 

Therefore, four parameters were defined. The true positives (TPs) 

indicate whether the ball was correctly moving over the  obstacles. 

The maximum number was 40 s (corresponding to 100%). The 

false positives (FPs) give the time when the ball was jumping 

without moving over the hills (maximum 260 s corresponding 

to 100%). Taking into account that a user typically starts jump-

ing a bit before the hill begins and also jumps a little farther than 

necessary, the number of TPs and FPs was calculated in a second 

way. In addition to the duration of the hill (1 or 3 s), 1 s was pad-

ded before and after the actual hill, thus generating the hill size 

with 3 and 5 s.

PULSE-WIDTH MODULATED BRAIN SWITCH FOR ARTIFICIAL  

ARM CONTROL

The last stage consisted of controlling a robotic arm. For the arm 

a simple robot with six degrees of freedom was mounted on the 

chest of a manikin. For this study, only the gripper, serving as the 

hand, and the elbow were used.

The two different durations of the mental activity were used to 

operate a pulse-width coded switch. The output of the PWC switch 

depended on the threshold TH and the durations t
short

 and t
long

. Each 

time the TH was exceeded for a duration t > t
long

, the output was 

2; for t > t
short

 and t < t
long

, the output was 1; otherwise the output 

was 0. The two states were alternatively mapped to the commands 

hand open/close (state 1) and elbow flexion/extension (state 2) (see 

Figure 3). After each triggered movement, a so-called refractory 

period of 5 s was added. During this period commands given by 

the BCI were ignored, so that the corresponding hand/arm could 

move without any disturbances.

To get control and evaluate the performance, all subjects had to 

perform a predefined movement sequence: hand open (O), hand 

close (C), elbow flexion (F), elbow extension (E), O, and C. The 

training was performed in the “error ignoring” mode. This means 

that the robotic device was only accepting commands in the correct 

order. Wrong commands were ignored.

ously calculated gain factors to shift the mean deflection for each 

direction to the middle of the basket. Each session consisted of 

eight runs and each run consisted of 40 trials. After each run, the 

performance score (correct hits) was presented to the subjects on 

the screen. During this training they learned to establish two dif-

ferent brain patterns by imagining hand and/or foot movements. 

These experiments were repeated until subjects reached at least 

70% accuracy over one session (320 trials).

EEG recording

Five Ag/AgCl electrodes comprising one Laplacian derivation were 

placed either around C3, Cz, or C4, depending on the results of 

the screening procedure. The electrodes were placed in a way that 

a single orthogonal derivation was possible, which means one elec-

trode was directly over, for example, C3 whereas the remaining 

four were placed 2.5 cm anterior, posterior, lateral, and medial to 

this position. The reference electrode was placed at the left mas-

toid and the ground electrode was mounted at the right mastoid. 

The EEG was recorded using a g.BSamp amplifier (g.tec, Guger 

Technologies, Graz Austria), 0.5–100 Hz band pass filter, notch 

filter on (50 Hz), and a sensitivity of 100 µV. The sampling rate 

was 250 Hz.

Signal processing

The real-time Graz BCI system is based on Matlab and Simulink 

using the Real-Time Windows Target toolbox (The Mathworks 

Inc., Nattick, USA). The Laplace derivation C
LAP

 was computed 

by applying equation (1) on a sample-by-sample basis. Here C
center

 

was, for example, C3 and C
surr

 were the orthogonally surrounding 

electrodes (Hjorth, 1975).

C C C
i

i

LAP center surr
= −

=
∑1

4 1

4

,

 
(1)

Furthermore, logarithmic band power features were computed 

(again sample-by-sample). By applying Fisher’s LDA (the weights 

were obtained during the cue-based training period) a classifica-

tion was realized. The LDA distance was used to evaluate the brain 

pattern. After each session the DSLVQ analysis was repeated and 

a new classifier was computed. Depending on the online/offline 

classification accuracy (highest value wins), the old classifier, the 

updated classifier, or the new classifier was used for the next feed-

back experiment.

For the next set of experiments only one brain pattern was 

selected and used as follows: Analyzing the classifier output time 

series of the two classes lead to the conclusion that one out of the 

two classes (class 1) did not significantly change from a period with-

out motor imagery to a period with motor imagery. However, the 

other class (class 2) did show significant changes. It was therefore 

assumed that the first case (class 1) is a very general case, which 

means that the classifier would also select this class if no motor 

imagery was performed. Thus, this classifier output describes the 

so-called no-control (NC) state. Introducing a threshold TH into 

the class of the other motor imagery pattern (class 2), a switch 

function can be designed (intentional control, IC). Only when the 

motor imagery is recognized well enough to exceed the threshold 

a control signal is triggered.
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In a second block of runs, the subjects had to perform the move-

ment sequence according to the timing indicated by the experimenter. 

Again, non-control periods were included (1 min per run, total 4 min). 

This procedure allowed the identification TP and FP detections.

To get more insight into the results different performance 

measures were computed: the first one was the FN/TP rate calcu-

lated from both evaluations blocks. The number of FPs itself was 

related to the maximum number of FPs possible. Therefore, the 

time needed to trigger the hand and elbow was added separately for 

each subject. The maximum time of non-control periods (14 min) 

was divided by the individual trigger times of the subjects. The 

number of FP was then related to this number and presented as a 

percentage number. Finally, the reaction time was calculated (from 

Evaluation of the PWC switch

To evaluate the performance, the experiment was repeated in two 

different ways (four runs each): First, after a long period (1 min) 

of rest (non-control state) subjects had to perform the sequence 

as fast as possible, followed by a period of 30 s of non-control. 

Then the sequence had to be performed again, and a non-control 

period of 1 min finalized one run. The periods without actions 

(2.5 min per run, total 10 min) were introduced to measure the 

number of false positives. While the experiment is performed, the 

number of TPs, false negatives (FNs), and FPs can be counted. In 

case of a FP during non-control periods – where the arm moved as 

well – participants had to finish the sequence first and then repeat 

the whole sequence.

Th

Th

Th

t t0

t0

t0

t +t0 short

t +t0 short

t +t0 short

t +t0 long

t +t0 long

t +t0 long

t

t

state 1 state 2 no switch

hand open/close

th
re

s
h

o
ld

 e
x
e

e
d

e
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?

elbow flexion/extension

FIGURE 3 | Principle of the pulse-width coded switch and one subject during artificial arm control.
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ERS for each electrode. In Figure 2C the means for mu and beta are 

shown. Significant (p < 0.05) differences are market with a squared 

bracket, additional marked brackets (with ‘*’) show a significance 

level p < 0.01. This results show clearly, the lateralization that occurs 

corresponding to each type of motor imagery.

Electromyogram signals obtained from the screening  recordings 

were classified according to the cues presented on the screen. It 

was found that there was no correlation between the EMG and 

classification results.

CUE-BASED BASKET PARADIGM

Eight subjects participated in the basked BCI feedback paradigm. 

The goal was to reach at least 70% accuracy. Therefore, each subject 

performed an individual number of sessions. In Table 3 the results 

of the last session can be seen. Additionally, the used Laplacian 

derivations as well as the two motor imagery classes are displayed. 

Seven of the participating subjects reached an accuracy ranging 

from 70.4% to 91.6% (mean 81.6%). Only subject al2 was unable 

to hit the targets after four sessions (51.9%).

run 5 to 8) to give an overview of how many seconds a subject took 

to carry out a specific movement. For both movements the times are 

presented. An illustration of the set-up can be seen in Figure 3.

RESULTS

SCREENING

Classification accuracies, type of imagination as well as identified 

frequency bands after screening of 10 subjects are presented in 

Table 1. The average accuracy was 83.8%. Furthermore, the posi-

tions of the Laplacian derivation as well as the time point of the 

classification accuracy complete this description.

In Table 2 the frequency ranges obtained from the median ERD/ERS 

maps (Figure 2B) are displayed. Moreover, median and mean ± SD 

ERD/ERS values from these frequency ranges are included.

The results of the two ANOVAs show a significant main effect 

“class” (F
(2,18)

 = 35.86, p < 0.001 for the mu band; F
(2,18)

 = 3.941, 

p = 0.038 for the beta band) and a significant interaction “class × elec-

trode” (mu: F
(4,36)

 = 7.941, p < 0.001; beta: F
(4,36)

 = 3.776, p = 0.012). 

Paired t-tests were applied to investigate the differences of ERD/

Table 1 | DSLVQ classification results.

Subject Electrode Type of Acc.  t (s) FB 1 FB 2 FB 3 

 position imagination (%)  (Hz) (Hz) (Hz)

ak10 C3 Left Right 94 5.5 9 12 – – – –

ak10 C3 Right Foot 94 5.5 9 12 20 22 – –

al2 Cz Right Foot 72 5.0 8 10 19 23 23 27

al3 C3 Right Foot 70 5.5 10 12 21 23 – –

al4 C4 Left Foot 94 5.5 10 15 23 26 – –

al5 C2b Left Foot 92 5.5 10 14 18 25 28 30

al6 C3 Right Foot 78 6.5 11 13 – – – –

al7 C3 Right Foot 84 5.5 12 14 – – – –

al8 C1a Right Foot 88 5.5 – – 19 22 22 32

al9 C3 Right Foot 82 5.5 9 13 15 17 20 25

al10 C3 Left Foot 84 6.5 8 10 10 13 21 24

For each subject the Laplacian channel derivation (electrode position) with the best offline classification accuracy (acc) between the motor imagery tasks with 

corresponding time (t) are presented. FB 1, 2, and 3 show the selected frequency band. acc 83.8, t 5.7 s, alpha band: 9.7–12.9, beta: 19.5–26.1 Hz.

Table 2 | Frequency ranges obtained from median ERD/S maps (at least 0.75 s ERD of more than 20%). 

 Motor imagery Frequency ranges C3 Cz C4

  Electrode Frequency Median  Mean ± SD  Median Mean ± SD Median  Mean ± SD  

  position range (Hz) (%) (%)  (%)  (%) (%) (%)

Left Mu C4 9.3–12.5 19.4 11.1 ± 33.3 6.2 2.4 ± 18.9 40.3 38.4 ± 18.5

 Beta C4 23.1–23.7 8.5 16.1 ± 26.3 2.1 7.3 ± 19.1 31.0 27.5 ± 23.0

Right Mu C3 10.0–12.7 46.3 41.4 ± 18.9 5.9 9.9 ± 25.2 11.6 11.1 ± 25.1

 Beta C3 18.9–23.2 24.3 29.0 ± 22.5 7.3 12.6 ± 19.7 4.8 12.4 ± 23.2

Foot1 Mu Cz 9.7–12.62 −10.9 −20.6 ± 27.1 −1.9 0.6 ± 25.2 −6.5 −9.5 ± 15.1

 Beta Cz 26.9–27.8 0.1 4.2 ± 10.2 17.0 5.1 ± 36.1 −2.5 0.6 ± 10.8

Applying these ranges the median, mean and standard deviation (SD) for mu and beta ERD and three different electrode positions was calculated from second 3.5 

to 5.5.
1Negative values indicate an ERS.
2Frequency range for Cz mu was estimated from mu frequency ranges from C3 and Cz.
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FIGURE 4 | LDA output of the evaluation procedure with the artificial arm. 

Averaged LDA output (± standard error) of four subjects for short (upper) and 

long (lower) switches are given in the panels at the right. The horizontal line 

represents the threshold to be exceeded for the duration detection. Time 

duration between the vertical lines show give the time period for short and 

long motor imagery duration. At the left side an ERD/S map of subject al4 

shows the reactive frequency bands during both, the short and long 

motor imagery.

PLATFORM GAME

Table 4 presents the number of TPs and FPs for both the strict and 

weak conditions during six runs (total 30 min) of five subjects. After 

averaging the LDA output for short and long jumps, the mean and 

standard error give a qualitative overview of the system perform-

ance (not presented in the paper).

ARTIFICIAL ARM CONTROL

The results of the evaluation procedure with the artificial arm 

consisting of two parts (four runs each) are presented in Table 5. 

The number of TPs and FNs during control and the number of FPs 

during non-control are presented in the first three columns. The 

times needed to trigger a movement are displayed in the next two 

columns separately for the hand and elbow movement. For a better 

overview, the FN/TP rates as well as a measure for FPs are given 

in the last two columns. One subject was not able to participate in 

runs 5–8. In Figure 4, the time–frequency maps of the best subjects 

are presented for short motor imagery and long motor imagery, 

respectively. The learned motor imagery pattern represented by 

power decrease (ERD) in two frequency bands and the resulting 

LDA output can be clearly seen. The corresponding mean LDA 

output (± standard error) is shown in the right part of the figure. 

Here, also the results of the other participants are presented.

Additionally, a movie is available as supplement. It shows one 

sequence performed by subject al4. Starting with opening, closing, 

elbow flexion, elbow extension, opening (all TP), elbow flexion (not 

performed, but counted as FN), and closing.

DISCUSSION

In this paper we described a BCI set-up procedure which was 

defined to start with naive BCI users with an initial screening and 

continues with different experiments to finally let them control an 

artificial arm in a self-paced way by means of a pulse-width coded 

brain switch. During the first screening, participants performed 

imagined movements with three limbs. Pattern analyses lead to 

the use of two patterns for cue-based feedback training. Further 

analysis led to one distinct pattern which was then trained to be 

elicited over two durations. The applied procedure was straight-

forward and led to satisfying results.

In the following paragraphs, the single procedural steps are dis-

cussed in more detail.

The mu and beta frequency ranges obtained from median ERD/S 

maps and the frequency bands obtained from DSLVQ show the 

same results. Median ERD/S maps show bands from 9.3 to 12.7 Hz 

(mu), 18.9 to 23.7 Hz (beta left, right motor imagery), and 26.9 to 

27.8 Hz (beta, foot motor imagery). Mean frequency bands from 

DSLVQ are 9.7 to 12.9 Hz (mu) and 26.9 to 27.8 Hz. It is interesting 

to note that the beta ERD in foot motor imagery is higher than for 

left or right hand motor imagery. However, in a former study, short 

time foot motor imagery showed also a beta ERD in the range of 

29.0 ± 4.4 Hz (Müller-Putz et al., 2007).

When inspecting the initial classification accuracies obtained 

from the DSLVQ analysis, it is worth mentioning that the mean 

accuracy was 83.8% (average over 10 subjects, cross-validated). 

Such a high accuracy may be a result of the careful preparation 
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basis of PWC method, the control of an artificial arm was realized. 

Participants were trained to establish one motor imagery pattern 

over two durations, depending on the task to be performed. It is 

important to mention that the durations of the motor imagery 

patterns varied over subjects and the adjustments for the timing 

threshold has to be done very carefully. It is necessary to make a 

clear difference between the codes. Here it is important to note that 

a pattern cannot be actively stopped by the BCI user. He/she just can 

and involvement of the participants in the study. Moreover, they 

had to execute the movements prior the EEG recording. Another 

point was that the experimenter instructed the subjects to perform 

kinesthetic motor imagery and not only visual motor imagery (for 

more details see Neuper et al., 2005).

Further insights are obtained from the DSLVQ analysis (Table 2). 

All best accuracies show that there is always foot motor imagery 

involved when comparing two classes. So, it is either left hand motor 

imagery or right hand motor imagery versus foot motor imagery. 

The statistical analysis shows why. During left or right hand motor 

imagery there is always an ERD at the contralateral side (as often 

reported by e.g., Pfurtscheller and Lopes da Silva, 1999) and no 

ERD/S at the other electrode positions. On the other side, during 

foot motor imagery there is a weak ERD over Cz accompanied by 

an ERS at the lateral electrode positions. This phenomenon of local 

(Cz) ERD and surround ERS (C3, C4) was reported by Neuper and 

Pfurtscheller (2001).

An important step in BCI set-up is to transfer good classifica-

tion accuracies from initial screening into comparable classifica-

tions when presenting online feedback. Eight subjects participated 

in the Basket feedback paradigm. They performed several sessions 

until their classification accuracy reached a level of about 70%. 

From the results presented in Table 3, only one person was not 

able to learn to control the ball of the paradigm and was therefore 

excluded from further studies. The average of their performances 

(without al2) was 81.6 ± 8.7% and was insignificantly lower (t-test, 

p < 0.05) than the results from initial screening (83.7%). Here, four 

subjects reached more than 80% and three more than 70%.

Five subjects remained in the study (two quitted their partici-

pation, one was excluded) and played the platform game. The 

idea behind this was to train one selected type of motor imagery 

to be used for different durations. Therefore, the subjects had 

to leapfrog hills using motor imagery lasting for one and three 

seconds, respectively. The results (see Table 4) show that only one 

(al7) out of the five subjects was not able to perform the task with 

certain accuracy. TPs and FPs were nearly equal which shows that 

there was no control. Also, calculating FP and TP with more weak 

boarders, there was no real improvement. The remaining four 

subjects were invited to participate in the final experiment.

One very important result found in this work and reported for 

the first time is that individuals can learn to modulate patterns 

with variable durations use those for different commands. On the 

Table 3 | Results of the BASKET feedback experiment.

Subject Channel Classes Session Accuracy  Time 

    (%) (s)

ak10 C3 Right– Foot 2 72.81 6.00

al10 C3 Left – Foot 1 88.93 3.99

al2 Cz Left – Foot 4 51.88 3.70

al3 C3 Right – Foot 1 76.88 3.59

al4 C4 Left – Foot 1 90.00 5.91

al6 C3 Right – Foot 4 70.36 5.70

al7 C3 Right – Foot 2 80.63 4.28

al9 C3 Right – Foot 1 91.56 386

For each subject, the selected Laplacian channel, the performed motor imagery 

tasks, the number of sessions needed to achieve a good performance. The 

accuracy and corresponding time are also presented.

Table 4 | Results of pulse-width modulated brain switch during six runs 

(total 30 min) platform game.

Subject Electrode Type of TP% FP%  TPw% FPw%  

 position imagination  (40) (260) (80) (220)

ak10 C3 R 55 29 51 26

al4 C4 L 94 37 92 27

al7 C3 F 51 49 52 48

al9 C3 R 56 24 54 19

al10 C3 L 95 41 90 33

Electrode position and the type of imagination is presented in column 2 and 

3 (R, right hand; L, left hand; F, feet). TP% and FP% during strict conditions, 

TPw% and FPw% during weak conditions. Numbers in parenthesis represent 

the maximum time for each condition.

Table 5 | Results of the evaluation procedure of four subjects.

Subject TP FN FP RT1 (s) RT2 (s) FN/TP FP/max

 Control Non-control median (mean ± SD) median (mean ±฀SD) (1) (%)

al4 96 (70) 24 (11) 21 (15) 2.7 (2.7 ± 0.7) 1.9 (5.1 ± 4.8) 0.25 (0.16) 12.5 (168)

al9 94 (70) 50 (35) 23 (16) 3.9 (6.4 ± 5.8) 2.4 (11.7 ± 12.9) 0.53 (0.37) 11.0 (210)

al10* 58 52 2 – – 0.89 1.6 (125)

ak10 99 (75) 52 (32) 39 (31) 3.5 (6.4 ± 6.0) 20.8 (19.7 ± 10.2) 0.52 (0.43) 32.5 (120)

True positive (TP) and false negative (FN) movement selections are obtained from control state. False positive (FP) number of movements occurred during the 

non-control state. Numbers in parentheses give the results from the first four runs. The reaction times to trigger state 1 (RT1, grasp) and state 2 (RT2, elbow) are 

given in the two right columns. Median time values (mean ± standard deviation) are indicated.

*This subject participated only in the first four runs of the evaluation procedure.
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stop in imagining the movement. Then the pattern needs some time 

to collapse. This should be in a timescale where the time threshold 

for the long motor imagery has not shown up. The critical point is 

to set both thresholds in a way that FNs are avoided (selecting the 

long period instead of the short or never selecting the long motor 

imagery). Another crucial point is the selection of the threshold for 

the LDA classifier to basically select the motor imagery pattern. Is it 

too low, the pattern will be selected easily – FNs occur during rest 

(non-control). Is the threshold to high, users will have problems in 

selecting a command, particularly the long motor imagery.

One out of four subjects reached very good accuracies in the 

evaluation procedure (comparing FN/TP), two were medium, and 

one was weak. The numbers of TPs give a kind of overview how 

many movements they had triggered. The number of FPs in the 

non-control task is comparable for all subjects except subject al10. 

He had weak results during the control phases but very low number 

of FP in the non-control parts of the evaluation procedure. This 

is an indicator that the threshold for the LDA was very high, and 

after more detailed analysis we found that he had only problems in 

reaching the long time threshold for elbow movement.

From these results it can be concluded that participants need indi-

vidual training to receive a good performance, but also adjustments 

have to be made for the thresholds, especially for subject al10. In the 

future, an automatic adjustment method has to be implemented.
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