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We theoretically investigate the time dependence of the first-order coherence function for a one-dimensional

driven dissipative nonequilibrium condensate. Simulations on the generalized Gross-Pitaevskii equation show

that the characteristic time scale of exponential decay agrees with the linearized Bogoliubov theory in the regime

of large interaction energy. For very weak interactions, the temporal correlation deviates from the linear theory,

and instead respects the dynamic scaling of the Kardar-Parisi-Zhang universality class. This nonlinear dynamics

is found to be quantitatively captured by a noisy Kuramoto-Sivashinsky equation for the phase dynamics.

DOI: 10.1103/PhysRevB.91.045301 PACS number(s): 05.40.−a, 42.65.Sf, 71.36.+c

I. INTRODUCTION

The condensation of exciton polaritons realized in semi-

conductor microcavities has provided a new setting to study

Bose-Einstein condensation (BEC) under a nonequilibrium

condition [1,2]. In contrast to conventional BEC [3], exciton-

polariton condensation is achieved at relatively high tempera-

tures [4,5]. This remarkable feature is owed to the much lighter

effective mass of the polariton quasiparticles as compared

to the atoms in conventional BEC, making it possible to

reach condensation even at room temperature [6,7]. The

nonequilibrium character has its origin in the dynamic balance

between the losses and pumping of the cavity as a result of the

short quasiparticle lifetime, ranging from a few to 100 ps. In

this respect, polariton condensates resemble spatially extended

lasers.

It is of fundamental importance and interest to understand

how the quantum fluid develops its coherence when the system

departs from equilibrium. The coherence function is thus a

key observable in studies regarding the onset of superfluidity

and algebraic order due to the Berezinskii-Kosterlitz-Thouless

transition [8–10]. Recently, it was found by us [11] and

Sieberer et al. [12] that nonlinear Kardar-Parisi-Zhang (KPZ)

physics is crucial in understanding the coherence of polariton

condensates. We derived an equation for the long wave phase

dynamics that takes the form of a noisy Kuramoto-Sivashinsky

equation (KSE), which is in the KPZ universality class [13].

It was shown that the nonlinearity in the noisy KSE phase

equation becomes especially important when the collisional

polariton-polariton interactions become weak. In that regime,

the linearized Bogoliubov theory that successfully describes

the coherence of equilibrium condensates breaks down.

Various nonlinear phenomena associated with KPZ dy-

namics have been intensively studied for decades, such as

stochastic interfacial growth, propagation of flame fronts, and

directed polymers [14–16]. Their dynamic scaling properties

are characterized by the two-point correlation function in space

and time,

C(x,t ; x ′,t ′) ≡ 〈[θ (x,t) − θ (x ′,t ′)]2〉, (1)

where the interpretation of scalar field θ (x,t) depends on the

specific physical problem under investigation. In the present

case, θ (x,t) corresponds to the local phase fluctuation of a

quantum fluid at point x and time t . It is well known that at long

times and large scales, the correlator of the KPZ class follows a

scaling form, C(x,t ; x ′,t ′) = |x − x ′|2χf (|t − t ′|/Lz), where

χ and z are two scaling exponents satisfying χ + z = 2,

and f (x) is the KPZ scaling function [14,17]. For the 1+1

dimensional case, the exact values of the scaling exponents,

obtained via dynamic renormalization group analysis and

confirmed by several numerical studies, are χ = 1
2

and z =
3
2
. Hence, in the Fourier space, the correlator scales as

C(k,t) ∝ k−2f (tk3/2). The occurrence of such scaling in the

one-dimensional (1D) nonequilibrium condensate has been

reported in Ref. [11], where the discussion was restricted to the

static properties of first-order spatial coherence. The properties

of the dynamic correlations in the nonequilibrium condensate

are still not clear so far. It is the purpose of this paper to

fill this gap and clarify the scaling properties that emerge

in the 1D nonequilibrium system. We shall demonstrate that

the characteristic KPZ scaling behavior can be most easily

identified in the temporal correlation function in the weak

interaction regime.

This paper is organized as follows. In Sec. II, we re-

capitulate the linear Bogoliubov and nonlinear noisy KSE

approaches to the calculation of the coherence function. Then

we describe our numerical schemes of simulation, which can

adequately take into account the effects of nonlinearities on the

temporal correlations. In Sec. III, the KPZ dynamic scaling

properties in Fourier and real space are elaborated with the

numerical results. Our conclusions are finally drawn in Sec. IV.

II. THEORY AND METHODS

We study the dynamics of nonequilibrium quantum fluids

in terms of the generalized Gross-Pitaevskii equation (GGPE).

The GGPE reads [8,11]

i
dψ(x,t)

dt
=

[

−
∇2

2m
+ g|ψ |2 + i

(

P0

1 + |ψ |2/ns

− γ

)]

ψ

+
dW

dt
, (2)

where ψ(x,t) is the classical field wave function, g the

interaction strength, P0 the pump strength, ns the saturation

density, and γ the damping rate. The last term of Eq. (2)

represents the effect of random noise. Its correlations are taken
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to be Gaussian and uncorrelated in both space and time,

〈dW (x,t)dW ∗(x ′,t ′)〉 = 2Dδ(x − x ′)δ(t − t ′)dtdt ′, (3)

where D is the noise strength.

In the absence of noise, the steady state density of GGPE

is n0 ≡ |ψ0|2 = ns(P0/γ − 1) when the pumping exceeds the

losses (P0 > γ ). If the Bogoliubov theory of quantum fluids is

valid, we can linearize the macroscopic wave function near the

steady state as ψ(x,t) = [ψ0 + δψ(x,t)]e−iμt , with δψ(x,t)

the fluctuation field and μ = gn0 the oscillation frequency

determined by the self-interaction energy of the bosons. In

the presence of noise, the linearization of the GGPE leads to

an equation of motion for the fluctuation field in the Fourier

space [8],

i

(

dδψk

dδψ∗
−k

)

= L

(

δψk

δψ∗
−k

)

dt +
(

dWk

−dW ∗
−k

)

, (4)

with L the Bogoliubov matrix defined as

L =
(

ǫk + μ − iŴ μ − iŴ

−μ − iŴ −ǫk − μ − iŴ

)

, (5)

where ǫk = k2/(2m) is the kinetic energy of the bosons

and Ŵ = γ (P0 − γ )/P0 the dressed damping rate of the

fluctuation field. After diagonalizing L, one gets two branches

of eigenenergies, λ±
k = −iŴ ± iωk , where ωk =

√
|Ŵ2 − E2

k |,
and Ek =

√
ǫk(ǫk + 2μ) is the energy dispersion of the

standard Bogoliubov mode.

The physical quantity we are interested in is the first-order

coherence function,

g(1)(x,t ; x ′,t ′) ≡
1

n
〈ψ†(x,t)ψ(x ′,t ′)〉, (6)

where n is the average density. The Fourier transform of the

spatial coherence gives the momentum distribution

g
(1)
k (t,t ′) ≡ 〈ψ†

k (t)ψk(t ′)〉

=
n

2π

∫

dxe−ik(x−x ′)g(1)(x,t ; x ′,t ′). (7)

In the eigenbasis of L, by performing a stochastic integration

over the noise field [18], the k-dependent correlation function

of fluctuation field can be obtained as

g
(1)
k (t,t ′) = 2πDe−Ŵ(t−t ′)

⎧

⎨

⎩

[

1
ωk

(

μ2+Ŵ2

E2
k

+ i
ǫk+μ

Ŵ

)

sinh ωk(t − t ′) + 1
Ŵ

(

1 + μ2+Ŵ2

E2
k

)

cosh ωk(t − t ′)
]

, for k � kc,
[

1
ωk

(

μ2+Ŵ2

E2
k

+ i
ǫk+μ

Ŵ

)

sin ωk(t − t ′) + 1
Ŵ

(

1 + μ2+Ŵ2

E2
k

)

cos ωk(t − t ′)
]

, for k > kc,
(8)

where kc =
√

2m(
√

μ2 + Ŵ2 − μ)1/4 is the critical momentum

for bifurcation. Assuming t = t ′ in Eq. (8), we then recover

the expression for the momentum distribution of density in

Ref. [8],

nk ≡ 〈ψ†
k (t)ψk(t)〉 =

2πD

Ŵ

[

1 +
4m2(μ2 + Ŵ2)

k2(k2 + 4mμ)

]

. (9)

In thermal equilibrium, the linearized Bogoliubov theory is

sufficient to compute the low temperature (loosely speaking,

the analog of weak noise) correlation functions. Out of

equilibrium, however, it turns out that the nonlinearity in the

phase evolution can affect the coherence, even for small D.

The long wavelength phase fluctuations are described by a

noisy Kuromoto-Sivashinsky equation (KSE),

�
∂θ (x,t)

∂t
=

1

2m

[

−
η

2m
∇4θ + 2ημ∇2θ − (∇θ )2

]

+

√

D

n0

dWθ

dt
, (10)

where η = (1 + ns/n0)γ −1 is a parameter determined by the

gain medium. As noticed in Ref. [11], if one rescales the KSE

variables as

x = x̃l∗, t = t̃ t∗, θ = θ̃ θ∗,
(11)

μ = μ̃μ∗, k = k̃/ l∗,

then Eq. (10) can be cast into a dimensionless form,

∂θ̃(x̃,t̃)

∂t̃
= −∇̃4θ̃ + μ̃∇̃2θ̃ − (∇̃ θ̃ )2 +

dW̃θ̃

dt̃
, (12)

where the rescaling factors are given by

l∗ =
(

1

2m

)4/7

η3/7

(

D

�n0

)−1/7

, (13)

t∗ = �

(

1

2m

)2/7

η5/7

(

D

�n0

)−4/7

, (14)

θ∗ =
(

1

2m

)−1/7

η1/7

(

D

�n0

)2/7

, (15)

μ∗ =
1

2

(

1

2m

)−1/7

η6/7

(

D

�n0

)2/7

. (16)

Thus one can see the only free parameter in the dimensionless

KSE is the rescaled chemical potential μ̃, a measure of

effective interaction strength between the bosons. The validity

of KSE formalism relies on a fact that the spatial and temporal

coherence of the quantum fluid is primarily dominated by

the phase correlator. As usual, the contribution from density

fluctuations turns out to be negligible for the long distance

decay of the coherence. Therefore, the behavior of the first-

order coherence function g(1)(x,t) is well approximated by

g(1)(x,t) = 〈e−iθ(x,t)eiθ(0,0)〉 = 〈e−i�θ(x,t)〉, (17)

where �θ (x,t) ≡ θ (x,t) − θ (0,0). If the phase fluctuation

dWθ behaves as a white noise and has a Gaussian distribution,
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then the average in Eq. (17) can be determined by a standard

cumulant expansion up to the second order, which yields

g(1)(x,t) ∝ e− 1
2
〈�θ2(x,t)〉 = e− 1

2
C(x,t), (18)

where a constant factor has been omitted.

To reveal the KPZ scaling of the temporal coherence for

the exciton-polariton system, we have performed numerical

studies on both GGPE and KSE in one spatial dimension.

The GGPE (2) is numerically solved using the splitting-flip

method: The wave function evolves alternatively as ψk(t) →
e−iT �tψk(t) in the Fourier space and ψ(x,t) → e−iV �tψ(x,t)

in the real space, where T = k2/(2m) and V = g|ψ |2 +
i[P0/(1 + |ψ |2/ns) − γ ]. The two evolutions are connected

by a Fourier transform, and the noise term is added every time

the real space wave function ψ(x,t) is updated. The KSE (12)

is numerically simulated in Fourier space with the Euler

one time step method, θ̃k̃(t̃ + �t̃) = θ̃k̃(t̃) + �θ̃k̃(t̃). In this

process, the temporal discretizations of linear and noise terms

of KSE are performed directly. Meanwhile, the nonlinear part,

related to the square of the phase gradient, is obtained using

the pseudospectral discretization approach [19]: The phase

gradient is first computed in Fourier space by multiplication

k̃θ̃k̃(t̃), then a Fourier transform of it yields ∇̃ θ̃ (x̃,t̃), from

which [∇̃ θ̃(x̃,t̃)]2 can be calculated and at the end transformed

back to Fourier space. Since the simulation is performed on

Eq. (12) in a dimensionless form, the real units of phase

correlation Eq. (18) are retrieved by employing the rescaling

formula Eq. (11).

In both GGPE and KSE cases, we implement the simula-

tions on a one-dimensional system of 128 sites with periodic

boundary conditions. To measure the correlation function of

the GGPE under dynamic balance, we start from the initial

configuration with uniform density and random local phase.

For the numerical comparison between the GGPE and the KSE,

we have used in the GGPE simulations the following fixed

numerical values for the parameters: m = 1, γ = 10, ns = 1

and P0 = 20 and grid spacing �x = 0.5. After about 105–106

iterations with a time step �t = 0.001, the system is stabilized

at a steady state. Then the ensemble averaging of temporal

correlation g(1)(x,t) is performed over about 1000 sequences

of samples of ψ(x,t). Each sequence of time evolution has

a duration of t = 1000. For the KSE, we start with a flat

distribution of θ (x,t). We let the phase field evolve freely at

the same step as GGPE up to t = 1000, during which the phase

correlation is measured. This process is repeated about 1000

times to get the ensemble average.

III. TEMPORAL CORRELATION AND

DYNAMIC SCALING

A. Correlation time in Fourier space

The spatial coherence of nonequilibrium condensates has

been explored in an earlier work by us by means of the

GGPE and the KSE [11], where the long distance decay of the

spatial coherence was found to be exponential. It was found

that the nonlinear term in the noisy KSE (10) can affect the

coherence length but it does not change the nature of the decay.

In the present work, we shall concentrate on the temporal

correlations. In analogy with the spatial coherence, we expect

FIG. 1. (Color online) Characteristic momentum dependence of

correlation time τc in (a) the linear regime of μ = 2 and (b) the

nonlinear regime of μ = 0. Three typical power-law dependences of

k are plotted by red dashed, black dashed-dotted, and blue solid lines

as guide to the eyes. The green squares and red circles are simulations

on GGPE and KSE, respectively, and the blue open circles denote

Bogoliubov theory. kc is the bifurcation momentum, and �x = 0.5

the discretization length in real space.

the effects of the nonlinearity in the phase equation (10) to be

more prominent for weak interactions μ̃ → 0.

As seen in Eq. (8), the Bogoliubov theory claims an

exponential decay for the temporal correlation. We therefore

introduce a correlation time τc to characterize the time

dependence of correlations, and estimate this time scale by

fitting the temporal correlation function to an exponential,

g
(1)
k (t) = e−t/τc(k). (19)

Figure 1 displays our numerical results for τc as a function of

momentum k in two representative cases, the “linear” regime

with μ = 2 in Fig. 1(a)and the “nonlinear” regime with μ̃ = 0

in Fig. 1(b). The simulations on GGPE and KSE are plotted

by the green squares and red circles, respectively, which agree

with each other very well in both panels, justifying that the

spatial and temporal coherences are indeed dominated by

the phase fluctuations. For comparison, the blue open circles

represent the Bogoliubov theory predictions from Eq. (8). The

red dashed, black dashed-dotted, and blue solid lines indicate,

respectively, the 1/k4, 1/k2, and 1/k3/2 relations in the double

logarithmic scale.

According to the Bogoliubov theory Eq. (8), the long time

properties of g
(1)
k are classified into two categories depending

on the value of k. When k > kc (kc is marked by black dotted

lines in Fig. 1), the profile of g
(1)
k shows a time dependence of

e−Ŵt , which corresponds to a trivial constant τc = 1/Ŵ. When

k � kc, the long time behavior turns out to be e−(Ŵ−ωk )t , and

one gets

τc ∼ 1/[Ŵ −
√

Ŵ2 − ǫk(ǫk + 2μ)]. (20)

If μ �= 0, in the region k → 0, the leading order terms

of Eq. (20) give τc ∼ Ŵ/(ǫkμ) ∼ 1/k2. This behavior is

illustrated in Fig. 1(a) by the gathering of three different

symbols along the black dashed-dotted line for small momenta,
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indicating that Bogoliubov theory works well if the interaction

energy μ is sufficiently strong (linear regime for the phase

equation). At the smallest wave vectors, however, a small

discrepancy between the Bogoliubov theory and the numerics

appears. This is expected, because the nonlinear KPZ scaling

behavior should take over at large distance and time scales.

When the interaction energy vanishes (μ̃ → 0), deviations

from the linear theory become pronounced at much smaller

scales (larger momenta). In Fig. 1, we show Eq. (20), giving

τc ∼ 2Ŵ/ǫ2
k ∼ 1/k4, by the red dashed line and blue open

circles in Fig. 1(b). The numerical simulations on GGPE

and KSE reveal a marked deviation from the Bogoliubov

theory, immediately below the bifurcation wave vector kc.

Instead of the τc ∼ 1/k4 relation, the simulations show

unambiguously a 1/k3/2 dependence, a well-known feature

due to the dynamic scaling behavior of the KPZ universality

class. In the simulation of GGPE in Fig. 1, the noise strength is

fixed at D = 0.01. We have also tested some different values

of D. Except for a shift in τc, we did not find any difference in

the scaling.

In the nonlinear regime, where the Bogoliubov theory

breaks down, it is a priori no longer guaranteed that the

exponential decay (19) remains accurate. In order to address

this concern, we present our raw data of simulations, together

with fitting curves, in Fig. 2. Here we show the time evolutions

of function ln[g
(1)
k (t)/g

(1)
k (0)] for three different momenta,

k = π/32 (the smallest nonzero k in our simulation), π/8, and

π/2. The black squares and green circles denote the simulation

data of GGPE and KSE, and their fitting results are plotted

by the red dashed and blue solid lines, respectively. One can

see in both linear (upper panels) and nonlinear (lower panels)

regimes that the straight lines fit quite well on the simulation

results up to a cutoff point, after which numerical errors spoil

0 500 1000
−8

−6

−4

−2

0

ln
[g

(1
)

k
(t

)/
g

(1
)

k
(0

)] (a)

k=π/32

0 200 400
−8

−6

−4

−2

0
(b)

k=π/8

0 20 40
−8

−6

−4

−2

0
(c)k=π/2

0 500 1000
−8

−6

−4

−2

0

t

ln
[g

(1
)

k
(t

)/
g

(1
)

k
(0

)]

(d)

k=π/32

0 200 400
−8

−6

−4

−2

0

t

(e)

k=π/8

0 20 40
−8

−6

−4

−2

0

t

(f)

k=π/2

GGPE

KSE

Liner theory

GGPE fit

KSE fit

FIG. 2. (Color online) Extraction of correlation time τc by fitting

the temporal correlations in terms of Eq. (19). The upper panels

[(a)–(c)] show the correlations for three different values of k when

μ = 2. The lower ones [(d)–(f)] are for μ = 0. The black squares

and green circles are from GGPE and KSE simulations, respectively.

Numerical fittings to exponential decays are illustrated by the red

dashed and blue solid lines. The orange dashed-dotted lines represent

results from Bogoliubov theory as a reference.

FIG. 3. (Color online) Time evolution of representative correla-

tion functions in (a) the linear regime with μ = 2 and (b) the nonlinear

regime with μ = 0. The blue solid lines depict the correlations at short

distances, x/�x = 16, while the black dashed-dotted lines present

those at long distances, x/�x = 48, both of which are obtained via

GGPE. The corresponding KSE simulations are plotted by the red

squares and green circles, respectively.

the data. These errors reflect the stochastic fluctuations due to

the noise terms, which decrease for longer time averaging.

Within our numerical uncertainty, we can conclude that

the temporal correlation decays as an exponential even in

the nonlinear regime, and the 1/k3/2 dependence of τc does

characterize the dynamic coherence of the nonequilibrium

quantum fluid.

B. Scaling function in real space

So far, we have investigated the scaling of the temporal

coherence in momentum space. While experimentally acces-

sible, it may be hard to make a precise measurement of the

coherence time close to zero momentum, where the intensity

is very high. Alternatively, coherence at fixed distance also can

be studied.

In Fig. 3, we study the time evolution of spatial correlation

in the linear regime with μ = 2 in Fig. 3(a), and the nonlinear

regime with μ = 0 in Fig. 3(b). The blue curves (red squares)

display the time dependence of the correlation for closely

spaced points with x/�x = 16, obtained with the GGPE

(KSE). For comparison, the correlation between two distant

points of x/�x = 48 is shown by the black dashed-dotted

curve (green circles) computed with GGPE (KSE) over the

same time range.

As one can see, with an elapsing time difference, the

temporal correlations at short and long spatial distances tend

to the same asymptote, though they are very different at equal

times. Here one also notices some small difference between

the GGPE and KSE results, which we attribute to density

fluctuations.

As discussed in the Introduction, the KPZ universality

class is characterized by a distinctive scaling function. With

Eq. (18), we can connect the scaling function f to the spatial

coherence as

f (t/xz) = C(x,t)x−2χ = −2 ln[g(1)(x,t)]x−2χ . (21)
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FIG. 4. (Color online) Dynamic scaling behaviors of GGPE (up-

per panels) and KSE (lower panels) for different interaction energies

μ. Here f (t/xz) is the dynamic scaling function, and z is the scaling

exponent extracted from numerical simulations (see text). The three

different curves in each panel denote short, intermediate, and long

distances.

Figure 4 plots our numerical results of the shifted scaling

function f (t/xz) − f (0) obtained from numerical simulations

over GGPE (upper panels) and KSE (lower panels), respec-

tively. Here we select several separations in real space x/�x =
16, 32, 48 on the N = 128 chain with a periodic boundary

condition. The three curves can be made to collapse by a proper

spatiotemporal rescaling. Specifically, when μ = 2, we find z

to be 1.7 for the GGPE simulation in Fig. 4(a), and 1.8 for the

KSE data in Fig. 4(c). These values are between the Bogoli-

ubov prediction (z = 2) and the KPZ theory (z = 1.5). This

shows that for our simulations, the finite size effects are still too

large to evidence the KPZ scaling. On the other hand, when in-

teractions vanish, μ = 0, we find the typical KPZ value of z =
1.5 for both GGPE and KSE. This result proves that the KPZ

physics dominates at all length scales over the Bogoliubov

physics in the absence of interactions. In finite size nonequi-

librium quantum fluids, it is thus easier to evidence the char-

acteristic KPZ scaling when the interaction energy is small.

Since the periodic boundary conditions are imposed in the

numerical simulations of GGPE and KSE, the calculated 1D

dynamical scaling functions f (t/xz) turn out to be symmetric

with respect to the center x/�x = N/2 of the chain, which

to a certain extent modifies the scaling behaviors of f (t/xz).

To assess such a boundary effect on the finite systems, in

Fig. 5 we check the dynamical scaling function f (t/xz) at

a fixed point x/�x = 32 for three 1D systems with lengths

N = 64, 128, and 256. Here the values of scaling exponents z

are the same as those in Fig. 4. For the case of N = 64 (blue

dots), as the checkpoint just corresponds the chain center,

the spatiotemporal behavior has been significantly modified

by the periodic boundary condition. One can see that the

dynamical scaling functions show a clear difference from those

of N = 128 (red dashed curves) and 256 (green solid curves).

Although the results of N = 128 and 256 are also subjected to

the periodic boundary conditions, a good agreement between

FIG. 5. (Color online) Boundary effects on the dynamic scaling

function f (t/xz) at the point x/�x = 32 in the simulation of the

GGPE (upper panels) and KSE (lower panels), where z’s are the same

scaling exponents as in Fig. 4. The boundary-induced modification

is prominent for the chain of N = 64 (blue dots), while it is

negligible for N = 128 (red dashed curves) and 256 (green solid

curves).

them signifies that the boundary effect has become negligibly

small because the checkpoints are sufficiently far from the

chain centers. From this scaling analysis, we can infer that

the dynamic scaling properties presented here are generic

for the 1D quantum fluid and can be observed in the

thermodynamic limit.

In connection with the experimental observation of the

KPZ scaling in microcavity polariton condensates, assuming

n0 = ns = 100 μm−1, D = γ = 0.5 meV, we estimate that

the typical length and time scales of KPZ regime are l∗ =
3.4 μm and t∗ = 45 ps. This means that with a contemporary

experimental setup, it is technically feasible to study the KPZ

scaling effects on the basis of semiconductor microcavities.

IV. CONCLUSIONS

To summarize, we have shown that the coherence function

of a 1D nonequilibrium quantum fluid is subject to the KPZ

dynamic scaling. The KPZ scaling feature is a consequence of

the nonlinearity inherent in the nonequilibrium system. It turns

out to be a leading effect in the weak interaction regime, domi-

nating the decay of phase correlation across space and time. In

the nonlinear regime, consistent numerical results on scaling

exponents have been obtained from the GGPE and KSE.

Especially at weak interactions, the characteristic KPZ scaling

behavior of 1+1 dimensions is recovered with χ = 1
2

and z =
3
2

in systems of moderate size. With an increase of interaction

strength, the nonlinear effect is, at intermediate distances,

overtaken by the linear one, thus validating the Bogoliubov

approach.

Our results show that the KPZ universality class is important

to describe the coherence properties of 1D nonequlibrium

quantum fluids. It therefore looks promising to further in-

vestigate the effect of the KPZ physics on two-dimensional

clean [12] and disordered [20] systems.
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