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Common spatial pattern (CSP) method is widely used for spatial filtering and brain

pattern extraction from electroencephalogram (EEG) signals in motor imagery (MI)-based

brain-computer interfaces (BCIs). The participant-specific time window relative to the

visual cue has a significant impact on the effectiveness of the CSP. However, the

time window is usually selected experientially or manually. To solve this problem, we

propose a novel feature selection approach for MI-based BCIs. Specifically, multiple time

segments were obtained by decomposing each EEG sample of the MI task. Furthermore,

the features were extracted by CSP from each time segment and were combined

to form a new feature vector. Finally, the optimal temporal combination patterns for

the new feature vector were selected based on four feature selection algorithms, i.e.,

mutual information, least absolute shrinkage and selection operator, principal component

analysis and stepwise linear discriminant analysis (denoted as MUIN, LASSO, PCA, and

SWLDA, respectively), and the classification algorithm was employed to evaluate the

average classification accuracy. With three BCI competition datasets, the results of the

four proposed algorithms were compared with traditional CSP algorithm in classification

accuracy. Experimental results show that compared with traditional algorithm, the

proposed methods significantly improve performance. Specifically, the LASSO achieved

the highest accuracy (88.58%) among the proposed methods. Importantly, the average

classification accuracies using the proposed approaches significantly improved 10.14%

(MUIN), 11.40% (LASSO), 6.08% (PCA), and 10.25% (SWLDA) compared to that using

CSP. These results indicate that the proposed approach is expected to be practical in

MI-based BCIs.

Keywords: brain–computer interface (BCI), electroencephalogram (EEG), motor imagery (MI), common spatial

pattern (CSP), feature selection, support vector machine (SVM)

INTRODUCTION

Brain Computer Interface (BCI) is a direct communication system between the brain and external
devices, which does not rely on human peripheral nerves andmuscles (Wolpaw et al., 2002; Nicolas-
Alonso and Gomez-Gil, 2012). In the past few decades, BCI technology has achieved great progress
and found a wide range of application scenarios in daily life, such as wheelchair control for disabled
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patients, entertainment and smart home control for healthy users
(Yin et al., 2013; Herweg et al., 2016; Xu et al., 2016). Most
of the BCI systems are EEG-based due to its relatively low
expense, high portability, better time resolution, and minimal
risks to users as compared to other modalities (Arvaneh et al.,
2011). At present, the most extensively used brain signals for
BCI input are event-related potential (ERP) (Zhang et al., 2014;
Jin et al., 2015, 2017; Yin et al., 2015, 2016; Xu et al., 2018),
steady-state visual evoked potential (SSVEP) (Pan et al., 2013;
Wang et al., 2016; Xing et al., 2018; Zhang et al., 2018), and
motor-imagery (MI) (Zhang et al., 2015, 2017; Ang and Guan,
2017; Qiu et al., 2017; Meng et al., 2018; Lugo et al., 2019).
MI-BCI works without outer stimuli, thus it is more intuitive
for users (Yu et al., 2012; Velasco-Alvarez et al., 2013). Some
MI-BCI systems depend on the well-known neurophysiological
phenomenon of event-related synchronization (ERS) or event-
related desynchronization (ERD), which is either enhancement
or suppression of the EEG (Meng et al., 2013). Other MI-BCI
systems use slow cortical potentials such as movement-related
cortical potentials (Hinterberger et al., 2004; Ren et al., 2014).

The common spatial pattern (CSP) algorithm (Ramoser
et al., 2000) is a method that can extract spatial feature for
distinguishing the two types of MI tasks in EEG-based MI-BCI
systems. The primary goal of the CSP is to compute spatial filters
in a data drivenmanner, whichmaximizes the difference between
the variance of two classes (Arvaneh et al., 2011). However, an
important factor on which the effectiveness of the CSP algorithm
depends is the specific time segment of the EEG used in the
preprocessing phase (Blankertz et al., 2006). This parameter
setting has great effect on subsequent CSP feature extraction and
classification. Traditionally, a fixed single time period is used as
a general setting for the majority of state-of-the-art MI-BCIs,
such as a time period of 2.5–4.5 s after optic cue onset (He et al.,
2012), 4–7 s or 0–3.5 s from the beginning of trial (Qiu et al.,
2016). Although using subject-specific settings can improve the
efficiency of CSP approach to a certain degree, these parameters
are usually chosen experientially or manually (Blankertz et al.,
2006) andmay lead to bad experimental results due to the conflict
from useless EEG signals.

In this study, a novel temporal combination pattern
optimization method is proposed for MI-based BCIs. First, all
the motor imagery trials for every type were decomposed to
multiple time segments and were processed via band-pass filter
on each time segment. Second, the features from multiple time
segments of each sample were extracted by CSP spatial filter and
were combined to form a new feature vector. Third, the optimal
temporal combination patterns for the new feature vector were
selected based on the four feature selection algorithms. Last,
the classification algorithm support vector machine (SVM) was
employed for identifying different categories, then the average
classification accuracy was computed via the cross-validation
approach. To our knowledge, no research on the incorporation of
the feature selection method into temporal combination pattern
optimization for motor imagery BCIs has been reported so far.

The remainder of this paper is organized as follows:
section Methods describes the proposed methods, including
multi-time segmenting and temporal band-pass filtering, EEG

feature extraction based on CSP algorithm, feature selection,
classification of optimal spatial-temporal features and event-
related spectral perturbation; section Results shows description
of the datasets and experimental results; section Discussion
presents the discussion; and section Conclusion concludes
the study.

METHODS

The proposed temporal combination pattern optimization
method is shown in Figure 1. The method mainly includes four
parts, which are used for EEG raw data preprocessing, feature
extraction and classification (i.e., multi-time segmenting and
temporal band-pass filtering, EEG feature extraction based on
CSP algorithm, feature selection based on four methods, and
classification of selected CSP features). In the training phase,
the CSP spatial filters and discriminative CSP features for each
time segment are computed using the training data labeled
with the two-class MI action. Then the temporal combination
patterns are selected, and the SVM classifier model is trained.
In the evaluation phase, the class of each single-trial MI task is
computed using the parameters obtained from the training phase.

Multi-Time Segmenting and Temporal
Band-Pass Filtering
In the first stage, EEG raw signals are decomposed to a total of
five time segments. The time segments are: Tsi = T0(i − 1) ∼
2 + T0(i − 1), i = 1, 2, ..., 5, where the unit is second, T0 = 0.5
for dataset 1, T0 = 0.25 for dataset 2 and 3. When prompted via
the optic cue, participants start performing motor imaging tasks.
The indexes of these five time windows are represented by the
numbers 1 to 5. A third-order Butterworth filter is applied to filter
single-trial EEG data for each time segment with frequency range
between 8 and 30Hz. The reason we use these configurations of
time segments and band-pass frequency range is that they contain
most of empirically chosen parameters in the relevant literatures
(Feng et al., 2018).

EEG Feature Extraction Based on CSP
Algorithm
As a spatial filtering approach, CSP has been extensively applied
in MI-BCI systems. Its main goal is to minimize the variance
of another type of data while maximizing the variance of one
type of data, thereby obtaining a set of filters that can extract
spatial features (Wang et al., 1999). The variance difference of
two-class signals after band-pass filtering is maximized by using
CSP projection matrix W. The eigenvectors corresponding to m
minimum andmaximum eigenvalues are used to form a new final
filter W2m ∈ ℜc×2m. m is fixed to 2 in this paper. The features
from a trial of EEG signal E are computed as below:

f = log(var(WT
2mE)) (1)

where f ∈ ℜ1×2m. Merging of feature matrices from Ns time
segments forms a new feature matrix for the ith trial as follows:
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FIGURE 1 | Illustration of temporal combination pattern optimization method.

fi = [f1,i, f2,i, ..., fNs ,i] (2)

where fi ∈ ℜ1×(Ns∗2m). The number of time segments Ns= 5 in
this paper.

To distinguish from the evaluation data, the feature vectors

and true class labels from the training data are denoted as f and
y, respectively,

f = [f 1, f 2, ..., f nt ]
T

(3)

y = [y1, y2, ..., ynt ]
T (4)

where f ∈ ℜnt×(Ns∗2m), y ∈ ℜnt×1, yi and f i denote true class
mark and the feature matrix for the ith training trial, respectively,
i= 1,2,. . . , nt ; nt denotes the total number of training trials.

Feature Selection
In the third stage, various feature selection algorithms are

employed to choose distinguishing feature matrix f extracted
from training data. Based on the studies performed on the
BCI Competition IV Dataset I, III Dataset IVa and III Dataset
IIIa, the four feature selection-based algorithms (i.e., mutual
information, least absolute shrinkage and selection operator,
principal component analysis and stepwise linear discriminant
analysis) produced better performance than other feature
selection methods (Meier et al., 2008; Ang et al., 2012), so these
algorithms are applied in this paper.

The Mutual Information-Based Feature Selection

Algorithm
Mutual information is a useful measure of information in
information theory. It can be seen as the amount of information
about a random variable contained in another random variable.
The mutual information-based feature selection algorithm is
described as follows:

Step 1: Initialize the features F and the selected features S.
Initialize S = ∅, F = f = [vT1 , v

T
2 , ..., v

T
ns×2m] from the

training data, where vTj is the jth column vector of f .

Step 2: Calculate the mutual information I(vj;ω) of every
feature vj using the type tag ω = {1, 2} (Kwak and Choi, 2002).

I(vj;ω) = H(ω)−H(ω|vj)

= −
2∑

ω=1
p(ω)log2p(ω)− (−

2∑
ω=1

p(ω|vj)log2p(ω|vj))
(5)

where p(ω|vj)log2p(ω|vj)=
nt∑
i=1

p(ω|vj,i)log2p(ω|vj,i), vj,idenotes

the jth feature of the ith trial from vj;nt is the number of
training trials. The probability p(ω|vj,i) is calculated via the
Bayes theory as follows:

p(ω|vj,i) =
p(vj,i|ω)p(ω)
2∑

ω=1
p(vj,i|ω)p(ω)

(6)

where p(ω) denotes the prior probability of class ω, p(ω|vj,i)
is the conditional probability of type ω given vj,i,p(vj,i|ω) is the
conditional probability of feature vj,i given typeω. p(vj,i|ω) can
be estimated as follows:

p̂(vj,i|ω) =
1

nω

∑

r∈Iω
φ(vj,i − vj,r , h) (7)

where nω represents the number of trials belonging to category
ω among all training trials, Iω represents the set of trials
belonging to category ω among all training trials, vj,r denotes
the feature values from the rth trial of vj, φ represents a smooth
Gaussian kernel function, and its smoothing parameter is h.
The univariate Gaussian kernel is employed as:
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φ(y, h) = 1√
2π

e−(y2/(2h2)) (8)

h = (
4

3nω

)
1/5

σ (9)

where σ denotes the standard deviation of y in formula (10).
Step 3: Sort all the mutual information I(vj;ω) of features

in descending order in step 2. Then the first k/2 and the
corresponding pair of features are selected.

LASSO-Based Feature Selection Algorithm
LASSO was first proposed by Robert Tibshirani in 1996
(Tibshirani, 1996), and its full name is Least absolute shrinkage
and selection operator. This method is a kind of compression
estimation. It obtains a more refined model by constructing
a penalty function, so that it compresses some regression
coefficients, that is, the sum of the absolute values of the
mandatory coefficients is less than a fixed value; at the same
time, some regression coefficients are set to zero. Therefore, the
advantage of subset shrinkage is retained, and it is a method
for processing biased estimates with complex collinearity data
(Nigham and Aggarwal, 2005; Meier et al., 2008). The calculation
process of the LASSO-based method is as bellow:

Step 1: Initialize the features F and the selected features S as the
step 1 of Section 2.3.1.

Step 2: Calculate the contribution degree (CD) of every feature
vj with the type tag.

Given a random variable of the type tag y =
[y1, y2, ..., ynt ]

T , yi = {1, 2} (Meier et al., 2008; Meinshausen
and Yu, 2009), a standard linear regression function can be
expressed as:

y = Fβ + ε (10)

where y is a nt × 1vector, F = f = [vT1 , v
T
2 , ..., v

T
ns×2m] denotes

a nt× (2mns) matrix, ε denotes a noise vector whose mean is 0
and variance is constant. With reference to (Wang et al., 1999),
the estimated value of LASSO can be expressed as:

β̂ = argmin
β

(||y− Fβ||22 + λ||β||1) (11)

where || · ||1, || · ||2 represent the l1-norm and l2-
norm respectively. λ denotes a compensation factor which
can encourage a sparse solution LASSO estimate β̂ (i.e.,
many entries in β̂ are equal to zero). By using quadratic
programming (Schittkowski, 1985), the solution β̂of the
optimization problem depicted by Eq. (13) can be computed.
The entries βj in the LASSO estimator β̂ = [β1,β2, ...,β2mns ]

T

between the class label y and the feature F imply the
contribution degree (CD) of the jth feature vj. Since β̂ is sparse

to some degree, meaning that most of the values in β̂ are 0, we
can classify the CDs of different features in the feature set F to
the class label y. The variable CDs of diverse features is defined
as: CDj = |βj|.

Step 3: Sort the CDs of features which meet CDj > 0 in
descending order in step 2. Then we choose the first k features.
If the number of selected features is less than k, the penalty
parameter λ will be adjusted.

Principal Component Analysis-Based (PCA) Feature

Selection Algorithm
PCA is a statistical approach that is very effective in linear
dimensionality reduction and feature selection. A set of variables
that may be correlated is transformed into a set of linearly
uncorrelated variables by orthogonal transformation. The
transformed set of variables is called the principal component.
The PCA-based algorithm is described as follows:

Step 1: Initialization as the step 1 of Section 2.3.1.
Step 2: Calculate the linear transformation W of the feature F

given the type tagy = [y1, y2, ..., ynt ]
T , yi = {1, 2}.

The PCA can maximize the retention variance through a
linear transformationy = WF. In other words, it finds the W
by minimizing the reestablishment error. Each row vector of
W points to the normalized orthogonal eigenvector computed
from the signal covariance matrix. We can use singular value
decomposition (SVD) as one simple approach to PCA.

Step 3: For dimensionality reduction, the column vectors of
UFcorresponding to the k largest eigenvalues are chosen to
form a final required transformation matrixW.

Stepwise Linear Discriminant Analysis-Based

(SWLDA) Feature Selection Algorithm
The SWLDA is a commonly used algorithm in pattern
recognition. Its main idea is to minimize the distance within the
class and maximize the distance between the classes, to obtain
the optimal projection direction to produce the best classification
results. SWLDAmainly includes two parts, stepwise forward and
backward analysis, and weighting the input variables using least
squares regression to achieve classification of the type tag ω =
{1, 2}. The main flow of SWLDA-based method is as bellow:

Step 1: Initialize the features F and the selected features S as the
step 1 of Section 2.3.1.

Create an initial function that can select features. This
function calculates the significance (i.e., p-value) via the F-test
to get the most significant feature that can predict the type tag.
The condition that the feature is selected to enter S is set to p
< 0.1, and the condition to remove from S is set to p > 0.15
(Krusienski et al., 2006).

Step 2: A new feature vjis interpolated into the process.
By performing the forward stepwise analysis, the largest
statistically significant feature will be added into F if p
< 0.1. By performing the backward stepwise analysis, the
least statistically significant feature will be removed from S

if p > 0.15.
Step 3: Repeat step 2 until the number of selected features in

S reaches a predefined number or until the entry/removal
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condition is not satisfied for all features in the model. We set
the maximum number of significant features to k.

Classification of Optimal Spatial-Temporal
Features
The fourth part introduces the model building and pattern
recognition of the selected feature vectors. It is worth noting
that because the selected CSP spatial filters appear in pairs,
when using the proposed algorithm for feature selection, if a
feature is chosen, its corresponding feature is also chosen. After
performing feature selection in the section Feature selection, the
selected feature vectors for training EEG signals are denoted as
F ∈ ℜNt×k where nt denotes the total number of training trials
and k is set to 4. k = 4 means two pairs of feature vectors are
selected, that is, the selected features appear in pairs. We set k=4
in this work because the number of features is also 4 (i.e., 2m =
4) for the algorithm without feature selection, which is compared
with the four feature selection-based algorithms in the Section
Experimental Results.

The support vector machine (SVM) is used in this work
since it has broad applications in classification. Plenty of BCI
researches reported outstanding performance using SVM for
classification. SVM finds a normal vector and a side-play amount
of a discrimination hyperplane to separate the data from two
classes by maximizing margins between two classes (Meng et al.,
2013). LIBSVM is used as the classification tool in the current
study (Chang and Lin, 2011).

Event-Related Spectral Perturbation
The event-related spectral perturbation (ERSP) is a common
method that can be used to examine the spectral power changing
law of the electroencephalogram from the view of time-frequency
domain, which could show ERD/ERS phenomenon of diverse
MI tasks. Variable ERSP with frequency and time is defined
as follows:

ERSP(f , t) = 1

N

N∑

i=1

(Gi(f , t)
2) (12)

where N denotes the total number of trials, and Gi(f , t) denotes
the spectral power for ith trial at a specific time (t) and frequency
(f ) (Delorme andMakeig, 2004). For eachmotor imagery trial, we
calculate the average spectrum power from−3 to 5 s and between
1 and 35Hz, where t = 0 denotes the time of cue onset. In this
article, a two-dimensional plot of ERSP over time and frequency
for the three main channels (i.e., C3, CZ, C4) is displayed and
used for discussion.

In addition, topographical distribution was displayed to show
the distribution of ERD/ERS in different regions of the brain
during the execution of different motor imaging tasks. The
averaged ERSP value was calculated within alpha band and
imagination period (4 s). Since 60 EEG channels (except HEO,
VEO, CB1 and CB2) were recorded in the dataset 3, the time-
frequency and topographical figures were plotted using the EEG
data from participant “l1,” which achieved a relatively high
classification accuracy.

RESULTS

Description of the Datasets
Dataset 1 (BCI Competition IV Dataset I) (Ang et al., 2012): The
dataset comprised calibration and evaluation data from seven
participants, including four healthy individuals (named “a,” “b,”
“f,” “g”) and three artificially generated “participants” (named “c,”
“d,” “e”). We only used the calibration data from each participant
consisting of two runs, totaling 200 trials for two types ofMI tasks
where these two types of tasks come from left hand, right hand or
foot. Figure 2A shows the timeline of every trial. First, a fixed
cross for 2 s appears on the display to prompt the participants to
prepare. Then, a 4 s arrow would appear on the display to prompt
the participant to start the MI task. The directions of the arrows
are left, right, or down, respectively, indicating left, right and foot
imagination tasks. Last, the screen was all black for 2 s, indicating
that the trial was over. In this process, a fixed cross appeared
for a total of 6 s, as shown in the Figure 2A. EEG signals for 59
channels were recorded at 1,000Hz sampling rate. These data
were then bandpass filtered (0.05–200Hz) and downsampled to
100Hz. The details of the competition including ethical approval,
and the data download website is as follows: http://www.bbci.de/
competition/iv/.

Dataset 2 (BCI Competition III Dataset IVa) (Blankertz
et al., 2006): The dataset included EEG signal from five healthy
participants. Each participant was instructed to complete 280
trials. In each trial, the participants were asked to perform 3.5 s
right-hand and foot motor imagery missions. Then participant

FIGURE 2 | Timeline of one trial in the dataset 1 (subgraph A), 2 (subgraph B),

and 3 (subgraph C).
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TABLE 1 | Accuracy (%) and significance comparisons of different methods applied on dataset 1, 2, and 3.

Participant Methods

CSP MUIN LASSO PCA SWLDA

a 55.5 87.5 86.5 78.0 84.5

b 66.0 82.5 83.0 78.0 82.0

c 77.5 92.0 92.0 66.0 87.0

d 90.5 96.5 98.0 93.5 97.5

e 92.5 100.0 100.0 98.0 98.5

f 85.5 91.5 91.0 90.5 91.5

g 54.5 82.0 79.5 76.0 79.0

Mean ± std 74.6 ± 14.8 90.3 ± 6.3 90.0 ± 7.0 82.9 ± 10.6 88.6 ± 7.0

aa 80.7 81.8 83.6 80.0 83.2

al 97.5 95.7 98.9 98.9 98.9

av 68.2 68.6 70.4 66.1 72.5

aw 95.7 96.8 97.1 96.4 96.8

ay 92.1 92.1 96.4 93.2 96.8

Mean ± std 86.9 ± 11.0 87.0 ± 10.6 89.3 ± 10.9 86.9 ± 12.3 89.6 ± 10.2

k3 85.6 93.3 93.9 92.2 91.7

k6 60.8 57.5 61.7 62.5 60.8

l1 90.0 95.8 96.7 95.8 94.2

Mean ± std 78.8 ± 12.8 82.2 ± 17.5 84.1 ± 15.9 83.5 ± 14.9 82.2 ± 15.2

p-value – 0.0097 0.0016 0.048 0.002

FIGURE 3 | A two-dimensional feature distribution map for each class obtained by using traditional method and the proposed feature selection-based algorithms (i.e.,

MUIN, LASSO, PCA, SWLDA) in dataset 1 [subjects (A–G)].
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was instructed to relax for a period of changing length (see
Figure 2B). EEG signals for 118 channels were recorded at
1,000Hz sampling rate. These data were then bandpass filtered
(0.05–200Hz) and downsampled to 100Hz. The details of the
competition including ethical approval, and the data download
website is as follows: http://www.bbci.de/competition/iii/.

Dataset 3 (BCI Competition III Dataset IIIa) (Blankertz et al.,
2006): The dataset included EEG signals from three subjects
labeled “k3,” “k6,” and “l1,” who were instructed to complete 90,
60 and 60 trials, respectively. In each trial, the screen was first
completely black for 2 s, during which subjects could rest and
relax. Then a “beep” sound was issued, and a cross “+” appeared
on the display to remind the participants to prepare for this trial.
This process lasted for 1 s. From t = 3, a 4 s-long arrow appeared
on the screen, prompting the subject to start performing motor
imaging tasks. The directions of the arrows were left, right, up, or
down, which represented the left, right, tongue, and foot motor
imaging tasks (see Figure 2C). EEG signals for 60 channels were
recorded at 250Hz sampling rate. For the purpose of evaluating
the feature selection methods of optimal temporal combinations,
the EEG signals of left-hand and right-hand motor imagery
missions were selected in the current study. The details of the
competition including ethical approval, and the data download
website is as follows: http://www.bbci.de/competition/iii/.

Experimental Results
For the above competition data in section Description of the
datasets, we made a comparison from multiple angles on the
performance among the proposed feature selection of optimal
temporal combination patterns algorithms and the traditional
CSP algorithm (denoted CSP). The fixed time windows (2–
6 s for the dataset 1 and 3–6 s for the dataset 2 and 3
as shown in Figure 2) were employed for analyses. For the
proposed algorithms, we used four feature selection-based
methods: mutual information, least absolute shrinkage and
selection operator, principal component analysis and stepwise
linear discriminant analysis (denoted as MUIN, LASSO, PCA
and SWLDA, respectively).

The experiment was performed by applying 10 × 10-fold
cross-validation to avoid overfitting on the datasets 1–3. In each
fold of this procedure, we optimized the temporal combination
pattern and trained CSP spatial filters and classification model on
the 90% training samples. The remain 10% samples were used as
testing data to evaluate the performance of different algorithms.
After finishing this procedure for all 10-folds, all data had been
involved in the test set.

Table 1 shows the accuracy and significance comparisons of
different methods (i.e., CSP, MUIN, LASSO, PCA and SWLDA
algorithms) applied on dataset 1, 2, and 3. Experimental results
show that classification accuracy is significantly enhanced by
using the proposed algorithms compared with the traditional
CSP method. Specifically, for three datasets, the proposed feature
selection-based methods achieve higher classification accuracies.
For seven subjects of dataset 1, the average accuracies are
74.6% (CSP), 90.3% (MUIN), 90.0% (LASSO), 82.9% (PCA),
and 88.6% (SWLDA), respectively. For five subjects of dataset 2,

the average accuracies are 86.9% (CSP), 87.0% (MUIN), 89.3%
(LASSO), 86.9% (PCA), and 89.6% (SWLDA), respectively. For
three subjects of dataset 3, the average accuracies are 78.8%
(CSP), 82.2% (MUIN), 84.1% (LASSO), 83.5% (PCA), and
82.2% (SWLDA), respectively. The results from three datasets
confirm the superiority of the proposed algorithms over the
CSP algorithm (paired t-tests, p < 0.05). Among the four
feature selection-basedmethods, the results show that the LASSO
yield best average classification accuracy (88.6%) across all the
participants compared to MUIN, PCA, and SWLDA (87.6, 84.3,

FIGURE 4 | The bar chart represents the total number of selected time

windows for the proposed algorithms in datasets 1–3. (The meaning of time

window indexes can be found in Section Multi-time segmenting and temporal

band-pass filtering).

TABLE 2 | Ratio comparison of samples with selected features from different time

windows to the total samples.

Participant Methods

MUIN LASSO PCA SWLDA

a 0.7 0.6 0.6 0.8

b 0.2 0.5 0.9 0.3

c 0.9 1 0.5 1

d 0 0.7 0.5 0.9

e 0.3 1 0.8 0.8

f 1 0 0.8 1

g 0.7 0.7 0.9 0.8

aa 0.7 1 0.9 1

al 1 0.8 1 0.5

av 0.9 1 0.7 0.5

aw 0.6 0.7 0.7 0.4

ay 1 1 0.7 1

k3 1 1 1 0.8

k6 0.7 1 0.5 0.7

l1 0.5 1 0.9 0.7

Mean ± std 0.68 ± 0.3 0.8 ± 0.27 0.76 ± 0. 17 0.75 ± 0.22
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and 87.7%). By applying a paired sample t-test on the datasets 1–
3, we find that this superiority is significant (p = 0. 03, 0.04, and
0.046). But in these three methods (MUIN, PCA, and SWLDA),
the classification accuracy between each pair is not significant (p
> 0.05). The results from the three competition datasets confirm
that the proposed algorithms are significantly better than the
CSP algorithm in terms of classification accuracy. Using a paired
t-test, the resulting p < 0.05.

To explain the superiority of the proposed algorithms, we
compared the two-dimensional feature distribution between the
methods made with and without feature selection. As shown in
Figure 3, we depicted the two-feature distribution of each class in
dataset 1 for seven participants “a”-“g.” The red asterisks and blue
circles represented the left and right feature types, respectively.
For every subject, the sub-graph in the first row indicates that it
was drawn directly using CSP, and the sub-graph in the bottom
indicates that it was obtained using the proposed algorithms
(i.e., MUIN, LASSO, PCA, SWLDA see section Methods). The
results from Figure 3 demonstrate that the features selected by
the proposed algorithms are easier to distinguish and perform
the pattern recognition, compared with the features obtained by
traditional method.

We also calculated the total numbers of selected time
windows based on the proposed methods for datasets 1–3
to determine whether the selected time windows varied in
different methods (see Figure 4). The results indicate that the
numbers of selected time windows for the proposed methods
are different. Interestingly, the number of features selected by
the four methods in the time window indexes 1–3 is more than
that in the time window indexes 4–5, which indicates that the
early period of the motor imagery task contributes more to the
classification accuracy.

We further calculated the proportion of samples with selected
features from different time windows to the total samples in
datasets 1–3 via 10-fold cross-validation. The results of applying
different approaches on the data of each participant are shown in
the Table 2. The mean ratios are all more than 50%, which shows
that the proportion of features selected from the combination
of different time windows exceeds the proportion from the
same time window for the four methods. More specifically,
the ratio for method LASSO is the highest, which explains to
some extent that the method LASSO achieves a relatively high
average classification accuracy (88.6%). Note that both ratios of
participant d in MUIN and participant f in LASSO are zero. It
may be because the features from the same time window are
sufficient for both cases to provide all the information needed
for classification.

DISCUSSION

As we know, feature extraction plays an important role in motor
imagery (MI)-based BCI studies (Park et al., 2013; Kevric and
Subasi, 2017). As an effective spatial feature extraction algorithm,
the CSP algorithm has been widely applied in MI-BCI related
research fields and has achieved admirable results. Recently, some
researches have improved and optimized the traditional CSP
algorithm to solve the issue of the parameter setting in the time

segment of the EEG used. These solutions could be divided into
the following two categories.

(1) Automatic selection for parameters. Time segment
selection method based on correlation (Feng et al., 2018)
is proposed to choose a subject-specific time window for
CSP correlation analysis. Efficient wrapper-based methodology
(German et al., 2013) is proposed for automatic selection of
features computed in different time segments.

(2) Feature selection using informationmeasure. For example,
Fisher’s common spatial pattern (FCSP) (Fattahi et al., 2013) uses
the Fisher’s criterion as an optimal function for estimating the
spatial and spectral filters. Mutual information-based method
(Ang et al., 2012) automatically optimizes the time windows
and frequency ranges, by calculating the MUIN variable between
the spatial and temporal features reflected by the EEG data
and the activity of the corresponding micro-neurons. CSP-
tangent space mapping (TSM) algorithm (Kumar et al., 2017) is
proposed by utilizing Riemannian tangent space information for
extracting features.

Although all the solutions improve the performance of the
traditional CSP algorithm to varying degrees, none of them
consider the temporal combination patterns during the MI task.
From Table 2 we can find that the feature vectors are selected
from diverse time windows for most participants. Although the
time during which the subject performs the task is known,
the time when the brain activity is associated with the task is
unknown and it may even be intermittent. Although we know the
time when the subjects perform the motor imagery task, the time
when ERD / ERS phenomenon occurs is unknown. Therefore,
using a fixed single time period for data interception and pattern
recognition does not obtain the best classification performance.
Although some studies have begun to focus on the optimization
of time segment (Ince et al., 2009; Higashi and Tanaka, 2013; Qiu
et al., 2016; Feng et al., 2018), the combination of time windows
is not considered.

In this study, the proposed feature selection-based
method considers the temporal combination patterns among
participants’ data during motor imagery mission, and applies
the feature selection algorithms to optimize the combination
patterns of time windows for every participant. We then verified
the effectiveness of the proposed methods using competition
datasets and obtained significantly higher classification accuracy,
compared with the CSP method (see Table 1).

As shown in Figure 1, the band-pass filtering plays an
important role in the proposed algorithm and has a significant
impact on the final result. Because of the heavy load of
computation, it is difficult to employ multiple frequency
bands for filtering the EEG measurements in optimization
of the frequency-temporal feature. Therefore, a fixed range
of band-pass frequencies is used to filter the EEG data.
Theoretically, the interaction effect between the time window
and the frequency range will affect the classification effect.
Therefore, without optimizing the frequency range, optimizing
only the time window may not get the best classification results
(Xu et al., 2014). Thus, a fixed band-pass frequency range may
not be the optimal band-pass filter setting to some extent. In
subsequent research work, to solve this problem, we will try
to incorporate the multiple frequency bands in the temporal
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optimization to find optimal combination of frequency band
and time segment. Maybe, different subjects have different
optimal time segments. In the future, we will try to use other
multi-time segments and optimize the multi-time segments
for each subject to further improve the performance of the
proposed method.

The time-frequency plots of different motor imaging tasks
are shown in Figure 5, where blue areas indicate the ERD
phenomenon. We used data from the C3, CZ, and C3 channels
of the subject “l1”. Left-hand and right-hand MI tasks are
represented by LH and RH, respectively. As shown in Figure 5,

after the subjects perform the MI tasks for 500ms, a clear
and persistent ERD phenomenon appeared in the alpha band.
Under two kinds of motor imagery tasks, the ERD phenomenon
appears in the 8–9Hz frequency band at the C4 channel, and
the phenomenon between two tasks is not quite different.
In contrast, the ERD phenomenon under the two tasks at
the C3 channel is significantly different. Compared with right
hand MI task, the ERD feature band of left-hand MI task
is broader in alpha rhythm (9–11Hz). In addition, the ERD
in alpha rhythm is intermittent and instable (i.e., sometimes
ERD is strong but sometimes is weak). This explains the

FIGURE 5 | Time-frequency plots for participant “l1” under 2 MI mission and 3 channels (C3, CZ, and C4). LH and RH indicate left hand, right hand, respectively. Blue

indicates ERD.

FIGURE 6 | Topographic maps of 2 MI missions from participant “l1”. These graphs are obtained using the ERSP value of every channel and interpolation between

the channels. The blue area indicates that an ERD phenomenon occurs in the corresponding brain area when the subject performs the motor imagery task.
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rationality of temporal combination pattern optimization to
some extent.

Figure 6 presents the topographical distributions of two
mental tasks obtained from participant “l1”. We can find a
clear ERD phenomenon on near all C3 and C4 channels during
both MI tasks, which means the ERD is mainly distributed in
the sensorimotor region of the cerebral cortex corresponding
to human limbs. Additionally, the ERD of left-hand MI task is
stronger in right hemisphere compared to that in left hemisphere,
and vice versa.

CONCLUSION

In this study, a novel feature selection-based method of optimal
temporal combination patterns is proposed for MI-BCI systems.
In our method, multiple time segments were obtained from each
MI sample. After that, the features were extracted by CSP from
each time segment and were combined to form a new feature
vector. Finally, the four feature selection algorithms and the
classification were applied to evaluate the effectiveness of the
proposed method. The results from three competition datasets
suggested that the proposed algorithms (i.e., MUIN, LASSO,
PCA and SWLDA) could improve the performance compared to
traditional feature extraction approach (i.e., CSP). Experimental
results showed that the LASSO achieved the highest accuracy
(88.58%) among the proposed methods. More specifically, the
average classification accuracies using the proposed approaches
significantly improved 10.14% (MUIN), 11.40% (LASSO), 6.08%
(PCA), and 10.25% (SWLDA) compared to using CSP directly
on the datasets 1–3 (p < 0.05). The proposed algorithms hold
promise for practical applications in MI-based BCIs.
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