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Abstract. We fill a void in merging empirical and phenomenological characterisation of the dynamical
phase transitions in complex networks by identifying and thoroughly characterising a triple sequence of
such transitions on a real-life financial market. We extract and interpret the empirical, numerical, and
analytical evidences for the existence of these dynamical phase transitions, by considering the medium size
Frankfurt stock exchange (FSE), as a typical example of a financial market. By using the canonical object
for the graph theory, i.e. the minimal spanning tree (MST) network, we observe: (i) the (initial) dynamical
phase transition from equilibrium to non-equilibrium nucleation phase of the MST network, occurring at
some critical time. Coalescence of edges on the FSE’s transient leader (defined by its largest degree) is
observed within the nucleation phase; (ii) subsequent acceleration of the process of nucleation and the
emergence of the condensation phase (the second dynamical phase transition), forming a logarithmically

diverging temporal λ-peak of the leader’s degree at the second critical time; (iii) the third dynamical
fragmentation phase transition (after passing the second critical time), where the λ-peak logarithmically

relaxes over three quarters of the year, resulting in a few loosely connected sub-graphs. This λ-peak
(comparable to that of the specific heat vs. temperature forming during the equilibrium continuous phase
transition from the normal fluid I 4He to the superfluid II 4He) is considered as a prominent result of a
non-equilibrium superstar-like superhub or a dragon-king’s abrupt evolution over about two and a half
year of market evolution. We capture and meticulously characterise a remarkable phenomenon in which
a peripheral company becomes progressively promoted to become the dragon-king strongly dominating
the complex network over an exceptionally long period of time containing the crash. Detailed analysis of
the complete trio of the dynamical phase transitions constituting the λ-peak allows us to derive a generic
nonlinear constitutive equation of the dragon-king dynamics describing the complexity of the MST network
by the corresponding inherent nonlinearity of the underlying dynamical processes.

1 Introduction

Although physicists have been intensively studying mor-
phology and topology of complex networks [1–15] (and ref-
erences therein) in order to understand the mechanisms re-
sponsible for the evolution of real-world complex systems,
there are still some intriguing “white spots” left, particu-
larly in the domain of dynamic phase transitions. These
transitions are the generic interest of this work. Arguably,
one of the most elusive among these, is the temporal
condensation phenomenon, together with a λ-transition
(or temporal λ-peak) associated with this phenomenon –
which hitherto have never been observed in a real-world
network [16]. By the term “temporal λ-peak” we under-
stand here the temporal shape of a short-range order
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parameter resembling the Greek letter λ1. In this work
we identify the temporal λ-peak on the real-life market
complex network and characterise its properties.

We study sophisticated dynamic properties of the min-
imal spanning tree (MST) network of assets’ returns as it
is a canonical “hard core” of the majority of empirical
complex networks. Let us recall that the MST is a cor-
relation based network where multiple connections and
loops are not allowed [17–28] and the number of vertices,
n, and edges, n − 1, are fixed. For such a network, the
inter-node distance is defined as d(i, j) ∝

√

1 − C(i, j),
for any pair of vertices. For comparison, we also use other

1 We adopt this terminology from the equilibrium
λ-transition between the normal I 4He and superfluid II 4He
components formed by the λ-peak of the heat capacity vs.
temperature.
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popular metrics, however, the obtained results are prac-
tically undistinguishable within the resolution considered
in this work. Furthermore, we expect that other corre-
lation based networks, such as the Threshold Networks
and Hierarchical Networks, will give very similar results,
if the threshold value and the number of hierarchy levels
are assumed to be sufficiently realistic quantities [29] (and
references therein).

In spite of the algorithmic simplicity of the MST con-
struction2, the dynamics of the MST network is still puz-
zling at microscale [24], because relocation of edges (links)
during the evolution of the MST network, involves a rear-
rangement of the entire graph3. As such, this evolution is
indeed a collective phenomenon [24] being the foundation
of phase transitions, where only the algorithmic (rather
than an analytic) recipe defines the network’s single time-
step transformation. Hence, the dynamics of this collective
phenomenon provides a significant rationale for our deci-
sion to use the evolving MST network.

We demonstrate a diachronic [32] approach to con-
densation, complementary to those considered by Albert
and Barabási [2] (and references therein) and Dorogovtsev
et al. [5] (and references therein). That is, we focus both on
the birth and death of condensation as dynamic phenom-
ena, which occur as a result of the dynamic λ-transition,
between two non-equilibrium states of a complex network.
This leads to the condensate, which arises as a temporal
superstar-like structure. This structure is manifested in
the form of a temporal singularity4 of the richest vertex
defining the dynamic λ-peak of its degree (or the short-
range order parameter), where both its sides diverge log-
arithmically. At this time, we believe this is the first work
presenting the birth and death of a condensate, manifested
through the temporal λ-peak, in a real-world stock market
complex network.

We develop (by neglecting fluctuations, cf. Sect. VIII.1
in Ref. [33]) a phenomenological description, where the
network rearrangement is derived from, and formally
equivalent to the phenomenological “macroscopic” evolu-
tion equations, where the transition probabilities involved
are verified in both semi-analytical and empirical ways. A
“microscopic”, qualitative explanation of the processes in-
volved was formulated through a detailed observation and
analysis of the evolution of the MST network on the prop-
erly prepared sequence of snapshot frames (i.e. a “film”
prepared by us), where active nodes and edges were suit-
ably marked to make systematic tracing possible5.

A variety of complex network models show the phe-
nomenon of condensation in which a finite fraction of

2 The most popular algorithms are both the Prim and
Kruskal ones [30] (and references therein) in this context, as
no analytic routine is known.

3 This defines the nonseparability feature, which makes for
example the Granger causality analysis inadequate for the
identification of causation between variables represented as
time-series [31].

4 Obviously truncated because of the finite size effect.
5 To see better details of the snap-shot frames, it is necessary

to enlarge them using the online version of the paper [34].

structural elements in the network (edges, triangles, etc.)
turn out to be aggregated into an ultra compact sub-
graph, e.g. a superstar-like structure of edges (or leader),
of a size distinctly smaller than the size of the network [5]
(and references therein), yet sufficiently large to strongly
dominate all other local structures present in this net-
work. In the present paper we consider not only the long-
lived structural condensation phenomenon but first of all,
the temporal λ-peak of the leader’s degree associated with
this, which has never been discussed before.

In sum, the present paper substantially and signif-
icantly extends our recent work [35]. We foresee that
our results, complementary in nature to those in refer-
ence [8] (and references therein), will provide a new im-
pact on the modeling of dynamic structural and topologi-
cal phase transitions and critical phenomena on financial
markets [5,36–38].

The paper is organized as follows. In Section 2 the
main goal is defined together with a systematic presenta-
tion of our empirical results, constituting a basis for the
phenomenological considerations following in the subse-
quent section. That is, Section 3 concerns the complex
critical dynamics of the richest vertex, as a reminiscence
of network complexity. In Section 4 we discuss and sum-
marize our results as well as highlight the most significant
phenomenon found in the evolution of the MST network
as a simple but sufficiently realistic and complex reference
phenomenon.

2 Phenomenology of the MST

network evolution

As a representative example of the complex network dy-
namics we take into account the evolution – in daily hori-
zon6 – of the most liquid number n = 459, of companies
quoted on the Frankfurt Stock Exchange7 (FSE) during
the particularly significant and intriguing period of large
FSE variability.

The entire time series considered begins on 2004-03-22
(Monday) and finishes on 2011-12-30 (Friday). However,
since we use a scanning window of a duration of 400 trad-
ing days (which we found to be optimal), the centre of the
scanning window scans a shorter range – from 2004-12-
27 (Monday) to 2011-03-25 (Friday). This still covers the
duration of the recent worldwide financial market crisis
and crash (for details, please refer to the quotation plot
of the SALZGITTER (SZG) AG-Stahl und Technologie
company together with the DAX shown in Fig. 1 in [34]).

These 459 companies define the core of the FSE –
hence, we can consider the total numbers of the MST ver-
tices and edges as conserved quantities. The methodology
based on these conserved quantities is different from that
used in our earlier works [30,35], where the number of the

6 We considered the evolution in both daily and weekly hori-
zons in the arXiv version of the present work [34] obtaining
consistent results.

7 For comparison, the DAX contains only the 30 largest
companies.
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most liquid companies shows temporal fluctuations (we
produced our film using this methodology). Both method-
ologies are used in the present work and the results ob-
tained with them are essentially indistinguishable within
the assumed resolution of the plots contained in this work.

More precisely, we only observe that the absolute min-
imum of the Mean Occupation Layer8 (MOL), is now lo-
cated at 2005-01-25 (Thursday) instead of two trading
days later, i.e. at 2007-01-29 (Monday) which we observed
before. Presumably, this small shift is due to the sensitiv-
ity of the MOL which is much greater than that of the
Mean Tree Length [18,21,30,35,41,42]. The temporal be-
havior of the Mean Occupation Layer strongly helps to
identify the temporal central (key) vertex of the complex
network [43].

2.1 Dominant role of the SZG company

We exploit the MST to investigate transient behavior of
a complex network during its evolution. We study this
evolution beginning from the equilibrium structure of the
stock market hierarchy long before the recent worldwide
financial crash. In Figure 1 this is represented by the
network (graph) at the moment registered as beginning
of the subsequent evolution of the equilibrium structure
to the one dominated by a superstar-like tree (superhub
or dragon-king). This emergent superhub (the SZG com-
pany) is identified in Figure 2 by the large red central cir-
cle centered in the graph. Subsequently, after adaptation
to the external conditions, this dissipative structure [44]
decays whilst its validating conditions disappear.

It is worth noting how small the SZG vertex9 (having a
degree equal to 3) is on the graph shown in Figure 1. The
size of the vertices in the graph are proportional to their
degree. The circles of the same color, both in the graph
and in the plot (placed in the upper row on its right-hand-
side), represent the same company (their abbreviations are
shown in the legend, while their corresponding full names
can be easily found on the internet). The vertices which
occupy the thirteen top positions of the rank almost all
the time are colored, while the remaining vertices are in
grey (although some of them also occasionally enter the
top 13 list, but only for a very short time).

8 It is particularly convenient to measure this size using
the Mean Occupation Layer (MOL) introduced by Onnela
et al. [39,40] for study of the S&P 500 index in the vicinity
of Black Monday (October 19, 1987) and also in the vicinity
of the currency crisis in January 1, 1998. In this context, MOL
can play the role of a temporal short-range order parameter,
sufficiently sensitive to the local structure of a complex net-
work [30,35]. The more appropriate name would be disorder

parameter, because the lesser is its value, the more star-like is
the local structure.

9 The vertex representing the SZG company is placed on the
North-West part of the graph and marked using a red dot sim-
ply named SZG. To see this dot better, it is necessary to em-
phasize it in the online version of the paper. The same applies
to other snap-shot frames.

Fig. 1. Snap-shot picture of the empirical MST (graph placed
in the lower row on the left-hand side of the figure) consist-
ing of companies quoted on the FSE within the sub-period
(the scanning window of 400 trading days) from 2004-10-28
(Thursday) to 2006-05-11 (Thursday) – these boundary dates
are denoted by the straight vertical red lines in two plots placed
in the upper row. The center of this sub-period – at 2005-08-
03 (Wednesday) – is denoted by the straight vertical blue line
(defining the frame of our film No. 16). The plot in log-log
scale, placed in the upper row on the right-hand side of the
figure, shows the fit of (unnormalized) empirical distribution
of vertex degrees (small circles) by a power law (solid sloped
straight line). Notably, the boundary companies (having a de-
gree equal to 1) are coming off the power law (in all snap-shot
pictures) as a result of a finite size effect. The colored circles in
this plot represent not only the corresponding companies but
also others of the same vertex degree. For instance, the bright
green circle represents the DPB vertex (having a degree equal
to 6) and four other companies having the same degree. The
name abbreviations of the thirteen most significant companies
(marked by the color circles – the same ones in the plot and
graph) are listed in the legend (placed in the right lower corner
of the figure).

Apparently, the superhub (shown in Fig. 2), decorated
by the hierarchy of trees mainly placed in its first three
coordination zones (or occupation layers), represents the
market structure during the sub-period surrounding the
crash.

Furthermore, the networks presented in Figures 1–3
have different but essentially typical modular structure.

All the snap-shot pictures obtained from our film
(Figs. 1–3), were calculated using a methodology which
considers a fluctuating number of the most liquid compa-
nies quoted on the FSE.

For a methodology considering a fixed number of com-
panies, the maximal vertex degree equals 88 instead of 91
(present for the former one) and the corresponding cen-
tre of the scanning window (denoted by the vertical blue
line present in the second plot in the upper row in Fig. 2)
is located at tmin ≡ 2007-01-25 (Thursday) as the po-
sition of the absolute minimum of the MOL. This posi-
tion is indistinguishable (within the assumed resolution
of the plots) from date 2007-01-29 (Monday) found us-
ing the former methodology. Fortunately, this difference
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Fig. 2. Snap-shot picture of the empirical MST (graph placed
in the lower row on the left-hand side of the figure) consisting
of the most liquid companies quoted on the FSE within the
sub-period from 2006-04-21 (Friday) to 2007-11-02 (Friday) –
these boundary dates are denoted by the straight vertical red
lines in both plots placed in the upper row. The center of this
sub-period – at 2007-01-29 (Monday; the frame of our film
No. 402) – is denoted by the straight vertical blue line. It
is worth noting, how significantly the SZG company is now
coming off the power law – its degree, equals 91, which is the
maximal value reached by the SZG vertex during its evolution.
Besides, SWV, ALV, and FPE3 companies (occupying the sec-
ond and ex aequo the third positions in the rank, respectively)
are slightly coming off this power law. These companies were
already “attracted” by the SZG vertex to its first and sec-
ond coordination layers (zones). Furthermore, DBK (the ini-
tial leader, when the MST network was in the “Equilibrium
scale-invariant network” – see Figs. 1 and 4 for details) now
occupies the fourth position in the rank and is located in the
second coordination zone. In fact, all these companies are now
located much more closely to the SZG vertex than earlier, i.e.
during the nucleation process [45–47] (see Figs. 13 and 14 for
details).

has no noticeable influence on any of our results. Indeed,
the date tmin appears several times in our further consid-
erations (cf. Figs. 4 and 15 as well as Figs. 5–7 and 9),
becoming the most significant parameter of our consider-
ations obtained directly from the empirical data (and not
from a fit to the data).

The central element of the structure presented in Fig-
ure 1 is the two-node core consisting of the DBK (green
circle) and ALV (orange circle) companies of degrees
greater than 10. Apparently, the two largest companies
the DBK (Deutsche Bank AG) and ALV (Allianz SE; the
green and orange circles, respectively, placed in the centre
of the graph in Fig. 1) are direct neighbors for the pe-
riod under consideration (i.e. for the “Equilibrium scale-
invariant network” shown in Fig. 4). This occurs when
the largest companies become coupled by the strongest
mutual correlations, an instance which is capable of effec-
tively balancing (or stabilizing) the entire stock market.

The structure presented in Figure 2 is superstar-like
and is centered at the SZG vertex (red circle) having a
degree equal to 91, i.e. much greater than the degrees of

Fig. 3. Snap-shot picture of the empirical MST (graph placed
in the lower row on the left-hand side of the figure) consisting
of companies quoted on the FSE within the sub-period from
2006-11-27 (Monday) to 2008-06-09 (Monday) – these bound-
ary dates are denoted by the straight vertical red lines in both
plots placed in the upper row. The center of this sub-period –
at 2007-09-03 (Monday; the frame of the film No. 558) – is
denoted by the straight vertical blue line. Now, the strong re-
arrangement of the MST network is well seen, e.g. in compari-
son with the corresponding one presented in Figure 2, as seven
vertices are coming off the power law, although, the SZG com-
pany still occupies the leading position. The colored circles in
this plot represent not only the corresponding companies but
also others of the same vertex degree, e.g. the orange circle
represents not only ALV but simultaneously SWV (dark blue
circle placed in the graph) and FPE (brown circle placed in
the graph).

all other nodes. Later (after the crash) it takes the mod-
ular structure shown in Figure 3. This latter structure
consists of two well-separated parts: the first, a single-
core one centered at the SZG node (now, having a degree
equal to 28) and the second, three-core structure, where
separated cores are centered at GBF (navy blue circle),
CBK (yellow circle), and ALV nodes of degrees greater
than 15. However, this is already with only a slight SZG
predominance – the vice-leader, GBF company, already
has a degree equal to 22. That is, this “after-shock” MST
network (concerning the sub-period of the right-hand-side
of λ-peak shown in Figs. 4 and 15) is strongly decen-
tralized consisting, at that moment, of seven well distin-
guished clusters centralized around the SZG, GBF, CBK,
FPE3 (blue circle), ALV, SWV (dark blue circle), and
FPE (brown circle) vertices.

The parameters necessary to describe the empirical
data shown in Figure 4 can be separated into two differ-
ent groups. To the first group belong parameters playing
a significant physical role. These are: (i) the dynamical
exponent z (also playing a significant role, for instance,
in the scaling of autocorrelation and autoresponse func-
tions [48]) obtained from the fit and thresholds (transi-
tion times) tcrit and (ii) tλ = tmin made out directly from
the empirical data (without any data fitting). The second
group contains only the calibration parameters (unimpor-
tant for the scaling regions from a physical point of view).
These parameters are as follows: (i) the mean height of the
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Fig. 4. The plot of the temporal SZG vertex degree, kSZG,
which forms, striking the eye, λ-peak. This peak is centered
at tλ = tmin = 544[td] ≡ 2007-01-25 (Thursday). This centre
is denoted by the dashed-dotted vertical red line. The empir-
ical data are shown by the erratic solid black curve obtained
for the daily horizon. The solid blue curve, consists of three
parts: two of them placed before the maximum of the λ-peak
and one after it. The height of the first horizontal blue part
equals A0 = 4.53 – a mean value of kSZG before the first tran-
sition time or critical threshold tcrit = 164[td] ≡ 2005-08-11
(Thursday) (the location of this threshold is denoted by the
first dashed vertical blue line). The long-term blue part (of
the order of one year), beginning at tcrit, is described by a
power law function A(t − tcrit)

1/z + A0, where the global dy-
namic exponent z = 2 and amplitude or control parameter
A = 2.50. Apparently, this parameter distinguishes between
the equilibrium scale-invariant network (for A = 0) and the
network nucleation phase (for A = 2.50). However, the early
stage of the nearly critical network dynamics (persisting for a
period of the order of one month, that is, between two sub-
sequent dashed vertical blue lines) is driven by the canonical
Lifshitz-Slyozov dynamic exponent z = 3 and A = 5.20 (the
green curve). The location of the dashed vertical green line is
defined further in Figure 15, where λ-peak is better seen. The
third part of the solid blue curve is defined for 0 < t− tλ < τR

by the logarithmic relaxation function −AR ln ((t − tλ) /τR),
where AR = 22 and τR = 480[td]. This function is a solu-
tion (14) of the macroscopic equation (13). The impetuously
increasing solid red curve represents a logarithmic function
−AL ln ((tλ − t) /τL), for 0 < tλ − t < τL, where amplitude
AL = 14 and τL = 2500[td]. The kSZG short-range cross-over
(of the order of one quarter) from nucleation to condensation
is defined somewhere in the surroundings of 2006-07 by the
overlap of solid blue and red curves, where no sharp transition
is observed.

background A0 (obtained from the empirical data utilis-
ing the fit); (ii) amplitudes A and AJ , J = L, R, cal-
ibrating the vertical axis, as well as (iii) the relaxation
times τJ , J = L, R, obtained from the fit, calibrating the
horizontal axis (or time). The presence of the calibration
parameters is necessary in any formula (and not only in
ours) if the comparison with empirical data is required.
The same remarks concern Figure 15.

It is instructive to systematically document, by
using sufficiently sensitive characteristics, that the
SALZGITTER (SZG) AG-Stahl und Technologie
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Fig. 5. Two different time-dependent entropies (based on the
empirical degree distributions) derived for the MST network
of the FSE, one which contains (solid curve) and one which
does not contain (dotted curve) the SZG vertex (for precise
entropy definition see Ref. [35]). The dashed-dotted vertical red
line is located at the absolute minimum of the former entropy,
i.e. at 2007-01-25 (Thursday). Apparently, no specific structure
is signalized at this date by the latter entropy in contrast to
the situation described by the former one. The meaning of
both dashed vertical blue lines, roughly defining the range of
the “funnel”, was illustrated in Figure 8 and explained in its
caption.

company becomes a dominant node of the Frankfurt
Stock Exchange MST network during the worldwide
financial and economical crisis, still persisting to date.
Some initial results concerning the structural and topo-
logical phase transitions we already found on the Warsaw
Stock Exchange (WSE) [30] – a complex network of 274
companies, quoted on the WSE throughout the period in
question. The analogous results concerning the FSE MST
were documented in our previous work [35] constituting
only a starting point for the present study. In the present
work we go far beyond the above mentioned results. We
show, that the superhub forms a temporal structural con-
densate on a real-life financial market. Subsequently, we
present the transition of the λ-type from this condensate
to scale-invariant topology decorated by the hierarchy
of local star-like hubs, representing the market structure
and topology directly after the worldwide financial crash.

We study the evolution of the MST network before
and after the common absolute minimum shown in Fig-
ures 5−7. We can speculate, that at this minimum the
least disordered state (cf. Fig. 2) of the MST network is
located, just between the preceding (cf. Fig. 1) and fol-
lowing (cf. Fig. 3) states of higher disorder. To be more
precisely, these more disordered states are located outside
the region limited by the dashed vertical blue lines, where
the amplitude of the MOL variogram (taking into account
the SZG vertex – denoted by the solid curve) shown in Fig-
ure 8 is distinctly higher than inside this region. Such a
behaviour is typical for a random variable remaining in
the surroundings of a stable fixed point for a longer time.

The significance of the central role of the SZG com-
pany within the sub-period from 2005-09-16 (Friday) to
2007-12-14 (Friday) (limited by dashed vertical blue lines

http://www.epj.org
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plotted in Figs. 5–9) is well captured by the conformity
of the two temporal (simplified) betweennesses, bSZG and
b2 (defined by Eq. (137) in Ref. [8]), shown in Figure 9.
Apparently, within the central peak (located around 2007-
01-25 as its center), the number of paths passing through
the SZG vertex is about one order of magnitude larger
than those passing through the vice-leader vertex, where
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a fixed point presence. The amplitude of the solid curve is
much smaller than the one of the dotted curve representing
the MOL’s variogram which does not contain the SZG vertex.
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Fig. 9. Temporal betweenness [49–51] of the SZG company
bSZG (the solid curve) and betweenness of the vice-leader b2

(the dashed curve). The vice-leader position is not occupied by
the same company all the time. The occupation of this position
varies from time to time. Remarkably, the leading position is
occupied by the SZG company only when its betweenness is
greater than the one of the temporal vice-leader. It takes place
for the time interval limited by the dashed vertical blue lines –
the same as shown in Figures 5–8. Apparently, the betweenness
bSZG reaches the absolute maximum at 2007-01-25 (denoted
by the dashed-dotted vertical red line) that is, it reaches this
maximum on the same day when the corresponding entropy,
MHSD, and MOL take the absolute minimum (cf. solid curves
in Figs. 5–8). Additionally, on that day the betweenness b2 (it
is then the SWV holding company) also assumes an absolute
minimum.
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the vice-leader vertex is defined as occupying the second
position in the rank of vertex degrees. Here, it is played
mainly by the SWV holding company10 being the leader of
the different ‘Sector of Renewable Energy Equipment’. In-
deed, the role of the SZG company is substantially greater
than that of the SWV one.

In this section we showed that even the vertex which
initially has a low degree can evolve towards the super-
hub size. Presumably, this is the result of the correlations’
weakness between companies and the low cardinality of
companies dominating market activity far from the crisis.
Hence, the correlations of companies with the SZG be-
came relatively more significant and they were therefore,
taken into account during the preparation of the temporal
MST network.

2.2 Empirical evidences for nucleation, condensation
and λ-transition

This paragraph contains detailed considerations concern-
ing the intriguing part of the MST network evolution11,
which occurs for time tcrit ≤ t ≤ tλ = tmin, where both
characteristic times, tcrit and tλ, were obtained directly by
considering empirical characteristics of the MST network
evolution – cf. Figures 4–9 and 15.

In Figure 1 the snap-shot picture presents (among
others) the empirical MST scale-invariant graph concern-
ing the sub-period ranging from 2004-10-28 (Thursday)
to 2006-05-11 (Thursday), i.e. covering 400 trading days.
The width of the scanning window is, indeed, fixed at this
number of trading days for the entire time series dura-
tion, as it was found to be optimal (other widths equal
to 300, 350, 450, and 500 trading days were also used).
This graph is characterized by a power law distribution of
vertex degrees, with the exponent α = 2.98 (see the plot
in the log-log scale placed in the upper row on the right-
hand side of the figure12). This figure clearly characterises
the situation typical for the sub-period named “Equilib-
rium scale-invariant network” ranging from the left-hand
boundary of the plot shown in Figure 4, i.e. from 2004-12-
05 (Monday), to the first dashed vertical blue line located
at 2005-08-11 (Thursday), that is for the MST network
remaining in the equilibrium state (the properties of this
state were extensively discussed in Sect. III in Ref. [34]).
Remarkably, we also obtained a plot almost identical to

10 SolarWorld (SWV) AG holding company is engaged in the
production of the crystalline solar power technologies.
11 Our result can be considered as a ‘dynamical’ example
of λ-peak, inspired by the behavior of 4He, which below the
λ-curve is in a superfluid II 4He phase, while being above it is
in the normal fluid I 4He phase [52]. This inspiration only has a
formal character because in our study the role analogous to the
temperature is played by time. That is, we deal with a dynam-
ical phase transition and not with the equilibrium one. Consid-
erations of the equilibrium λ-transition of 4He to the superfluid
phase and its hypothetical relation to the Bose-Einstein con-
densation can be found, e.g., in references [53,54].
12 The temporal standard deviation, ∆α(t), does not exceed
5% of the exponent α(t) for any time t [34].

Fig. 10. Snap-shot picture of the FSE directly after the first
two-day avalanche of edges attached by the SZG vertex at
Monday 2005-08-15 (the frame of the film No. 24). Indeed,
the red edges denote the avalanche attached in the current
step to the SZG vertex, while the single black edge indicates
the one which will be detached in the next time step (trading
day). The enlarging of the corresponding graph presented in
Figure 13 of the online version of the work [34], gives a better
view. Apparently, the SZG node became a leader, as shown by
the red circle in the graph and also by the corresponding red
circle slightly coming off the power-law in the plot placed in
the upper row on its right-hand side. The description of other
elements of this Figure is analogous to that given in Figures 1
and 2 as all of them are snap-shot pictures of the same film.

that shown in Figure 4 on the weekly horizon (for details
see Fig. 12 in Ref. [34]).

Notably, the power law fit (made, in all snap-shot
frames in the plot on the upper row on its right-hand-side,
for 2 ≤ k ≤ 10) was performed by the commonly known
least-square method; the maximal likelihood fit used here
gives almost the same result. However, for the logarithmic
binning a single decade of k range is insufficient to per-
form a credible fit. Nevertheless, a few points which we
obtained reproduced (for all snap-shot frames) the power
laws having exponents very similar to the corresponding
ones obtained by the above mentioned methods. Anyhow,
the principal goal of this work is to study the evolution of
the superhub and not statistical properties of other nodes
(e.g., their statistics). Therefore, the power law fits can be
considered only as very a rough guide.

Let us focus on the SZG company (very small red cir-
cle on the graph in Fig. 1), which is now a marginal vertex
since its degree hardly equals 3 (see also the red circle lo-
cated in the power law plot in the log-log scale placed in
the upper row on the right-hand side of the figure), but
which quickly (see Fig. 10 for details) becomes a domi-
nating vertex of the graph for about one-and-a-half year
(see the sub-periods named “Nucleation” and “Condensa-
tion” in Fig. 4). Indeed, we systematically follow the “ca-
reer” of this vertex by using characteristic snap-shot pic-
tures produced by our empirically based simulation of the
MST network evolution. The simulation was constructed
from pictures prepared subsequently from empirical tem-
poral daily (and, for self-consistency, also from weekly)
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Fig. 11. Snap-shot picture of the FSE at tcrit ≡ Thursday
2005-08-11 (the frame of the film No. 22) i.e., at the beginning
of the two-day avalanche of edges attached by the SZG vertex
(placed in the South-East part of the graph). Apparently, the
SZG vertex is still peripheral one with a degree, which hardly
equals 2 (see also the plot in the log-log scale placed in the up-
per row on its right-hand side) – it becomes the richest vertex
only after the avalanche ends at Monday 2005-08-15 (which
was visualized in Fig. 10). The largest number (10) of red un-
signed dots will attach to the SZG vertex during the first day
of the avalanche, i.e. during Friday 2005-08-12. The enlarging
of the corresponding graph present in Figure 14 of the online
version of the work [34], gives a better view.

MSTs [34]. To emphasise the analysis, each snap-shot pic-
ture is supplemented with the time-dependent plots of
DAX and MOL (the upper row in each figure containing
the MST graph).

The leading position was reached by SZG for the first
time within a very narrow region, extended in Figure 4,
between the first and second dashed vertical blue lines.
This position was reached in two stages. The first stage,
when SZG degree abruptly increased from 2 at tcrit ≡
Thursday 2005-08-11 (cf. Fig. 11) to 12 at Friday 2005-
08-12 (cf. Fig. 12) and the second stage, when its degree
again increased but now from 12 (at Friday 2005-08-12)
to 16 at Monday 2005-08-15 (cf. Fig. 10). This process is
sufficiently easy to see, since the edges in red denote the
ones attached in the current step to the SZG vertex, while
edges in black are going to be detached in the next step.
Indeed, Thursday 2005-08-11 can be considered a critical
time, tcrit, beginning the ‘Nucleation’ sub-period – at this
moment the time translation invariance is broken. It is
a beginning of the order’s increase of the MST network,
being an analog of the phase-ordering [48,55].

During the evolution over the “Nucleation” and “Con-
densation” sub-periods (see Fig. 4 for details), the SZG
company still occupies the leading position, increasing
its degree (up to some fluctuations) systematically. How-
ever, the manner of this increase distinctly differs for both
sub-periods.

For the “Nucleation” sub-period, the degree of the
SZG node only slowly, although systematically (up to
some fluctuations), increases – except for the two days of
abrupt increase considered above. This kind of increase is

Fig. 12. Snap-shot picture of the FSE directly after the first
day of the two-day avalanche of edges attached by the SZG
vertex, i.e. at Friday 2005-08-12 (the frame of the film No. 23).
Although the degree of the SZG node increased to 12, it still
is not the richest one (it is a vice-leader at the moment). The
enlarging of the corresponding graph present in Figure 15 of
the online version of the work [34], gives a better view. Only
after the second day of the avalanche, i.e. at Monday 2005-
08-15, it already occupies the leading position (see Fig. 10 for
details).
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Fig. 13. Snap-shot picture concerning companies quoted on
the FSE within the sub-period from 2005-04-12 to 2006-10-24
– these boundary dates are denoted, in both plots placed in the
upper row, by the straight vertical red lines. The center of this
sub-period – at January 16 (Monday), 2006 (the frame of the
movie No. 134) – is denoted by the straight vertical blue line.
Please note, how much the SZG company is now coming off the
power law – here, its degree equals 32. Besides, the DBK and
ALV companies (occupying the second and third positions in
the rank, respectively) are only slightly coming off this power
law.

determined by the structure of the MST, where very rich
vertices are unfortunately located (for this sub-period) too
far from the leading SZG node. This is documented by
the typical situation visualized in Figure 13, where the
richest nodes (DBK and ALV) are located four and five
“handshakes” from the SZG node, respectively. If we no-
tice that the SZG node mainly attaches nodes from its sec-
ond and third coordination zones, it becomes clear why the
SZG degree increases so slowly. The situation visualized in
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Fig. 14. Snap-shot picture concerning companies quoted on
the FSE within the sub-period from 2006-01-26 to 2007-08-
09 – these boundary dates are denoted, in both plots placed in
the upper row, as usual by the straight vertical red lines. The
center of this sub-period – at November 2 (Thursday), 2006
(the frame of the film No. 341) – is denoted (as usual) by the
straight vertical blue line. Note, how much the SZG company
is now coming off the power law in comparison with earlier,
analogous situations (for comparison see Fig. 13) – here, its
degree equals 53. This degree already quickly increases up to
its maximal value equal to 91 (cf. Fig. 2). Besides, the DBK,
ALV, and SWV companies (occupying the second and ex ae-

quo third positions in the rank, respectively) are only slightly
coming off this power law. Furthermore, DBK and ALV are
now “attracted” by the SZG vertex to its second and third co-
ordination layers (zones). They are now more closely located
to the SZG vertex than earlier (as it is shown, for instance, in
Fig. 13).

Figure 13 particularly indicates that only a single vertex
(coming from the second coordination zone) will become
connected to the SZG node in the next time step and that
no vertex will be disconnected. This is easily seen, since
the node which will be connected in the next time step
is always red, while black when already disconnected in
the previous step. Both here and in the entire work, the
edge in red denotes the one attached to the SZG vertex in
the current time step, while the edge in black is going to
be detached in the next step.

In Figure 14 we already present the situation char-
acteristic for the “Condensation” sub-period. Apparently,
the four richest nodes (at the moment DBK, ALV, SWV,
CBK) are located in the second and third coordination
zones of the SZG. This effect of the node “attraction” by
the leader is well visible in the vicinity of MOL’s absolute
minimum (cf. Fig. 2 and from Fig. 18 in Ref. [34]).

Furthermore, in the surroundings of the key date, i.e.
2007-01-25 (Thursday) denoted by the dashed-dotted ver-
tical red line (the same as in Figs. 5–9), the vertices oc-
cupying the second position in the ranking are located in
the first or the second coordination layer. Thus, the SZG
company has at one’s disposal a strongly increased num-
ber of edges. Presumably, this is the reason for the abrupt
increase of the SZG degree in the vicinity of tλ, well seen
in Figures 4 and 15. For instance, during Friday 2007-
01-12 (as a center of the sub-period from 2006-03-30 to
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Fig. 15. The empirical, temporal vertex degree difference
kSZG(t) − k2(t) (erratic solid black curve obtained for the
trading day horizon) vs. time t, which forms the λ-peak. The
smooth well fitted red and blue diverging solid curves were ob-
tained by using the function −A1

J ln
(

|t − tλ|/τ 1

J

)

, J = L, R,

for properly chosen values of calibration parameters A1

J and
τ 1

J for the left-hand-side (J = L) and right-hand-side (J = R)
of λ-peak (cf. Tab. 2). The critical (transition) time, tλ, is
common for both sides, as is required for self-consistency.
The central vertical dashed-dotted red line denotes the site
of tλ = 544[td] ≡ 2007-01-25 (Thursday). The above men-
tioned diverging curves illustrate what we call the dynamic
λ-transition. Additionally, the solid green curve illustrates the
nucleation process defined by the expression (6). This early
stage critical dynamics (driven by z = 4 and A = 6.45)
was paired with the red one at the intersection defined by
the dashed vertical green line located at Friday 2005-12-12
(255[td]). More refined calculations gives 3 ≤ z ≤ 4. The
straight horizontal blue line has a height equal to −9.73 that
is, equal to the average value of all daily time-series empirical
data for the period from 2004-12-01 (Wednesday) to 2005-08-
12 (Friday).

2007-10-11 – the frame of the film No. 386) the number
of effectively attached edges equals 13, which is a large
number in comparison with other single day attachments.
This is a recent large jump of kSZG, placed 14 trading
days before its absolute maximum, well seen in Figure 4
(a similar jump, although slightly shorter, is also seen in
Fig. 15).

The above observations justify (at least partially) a
canonical strategy of preferential rules frequently assumed
in modeling and simulation of complex network evolu-
tions. That is, the strong increase of the SZG degree pro-
vides an evidence for the particular form of the preferential
rule valid, during approximately one year, for the richest
vertex (dragon-king or core) making it increasingly richer.
Furthermore, the dynamics of the entire MST network can
be reduced then to the dynamics of the core that is, only
to the convenient dynamics of the dragon-king (considered
in Sect. 3). Hence, for instance, the structural controlla-
bility framework [56] (and references therein) of network
evolution can be applied mainly to its core.

For a prolonged time (when the network passed tλ),
“repulsion” dominates “attraction” (cf. Fig. 3 for de-
tails) and the MST network decouples into several locally
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centralized clusters (sectors) which leads to disintegration
of the temporal condensate.

3 “Macroscopic” equation

for the dragon-king non-linear dynamics

In this section we consider both the bullish and the bear-
ish sides of the λ-peak shown in Figure 4. We focus on the
dynamics of the SZG node degree, kSZG, in the frame of
a continuum approach. We begin with the analysis of the
more complex, left-hand side of the λ-peak. In this case,
the question is how its deterministic component (or the
first moment) k̄SZG increases in time. Basing ourselves on
empirical observations, we assume that it increases mono-
tonically. Effectively, this implies that there exists at least
one edge attached to the SZG node at every time step, in-
troducing a positive feedback. This edge comes from the
reservoir of the remaining edges, which are not members
of the first coordination zone (or the occupation layer) of
the SZG node.

The description of the right-hand, relaxation side of
the λ-peak follows analogously (cf. Sect. 3.3 for details).

Our approach is divided into three stages motivated
by the empirical data presented in Figure 4. Within the
first stage we deal with time ranging from tcrit = 164[td]
≡ 2005-08-11 to the middle of October 2006 (just before
the last but one kSZG jump13 shown in Fig. 4). Within the
second stage we consider the time range extending from
the latter date to tλ = 544[td] ≡ 2007-01-25 (the site of
tλ is denoted by the dashed-dotted vertical red line). The
third stage concerns the right-hand side of λ-peak.

As we are looking for the dynamics of the first moment,
k̄SZG, we disregard fluctuations (similarly as it was made
in Sect. VIII.1 in Ref. [33] – see Eq. (1.7) and the equa-
tion below). That is, we are looking for an equation which
relates only to the deterministic part of the corresponding
(unknown) Langevin (or Fokker-Planck) equation of the
process. Hence, the generic deterministic coarse-grained
or “macroscopic” equation of the superstar-like evolution,
formally valid for the first two stages, can be written in
the clearly interpretable binomial form:

dk̄SZG (t′)

dt
=

dk̄SZG (t′)

dt′
=

n−1−k̄SZG(t′)
∑

l=1

l p
(

l|k̄SZG (t′)
)

=
(

n − 1 − k̄SZG (t′)
)

b
(

1|k̄SZG (t′)
)

, (1)

13 The possible inflection point can be considered as a begin-
ning of the region of the impetuous kSZG increase. However,
to identify its exact location, the lower dispersion of the em-
pirical data is required. As suggested by our present empirical
data (shown in Fig. 4), we can only estimate that it is located
somewhere within the period from 2006-08-01 (Tuesday) to
2006-10-03 (Monday). We denoted this possible location date
by the dashed vertical green line.

where n − 1 − k̄SZG(t′) is a temporal number of edges
belonging to the reservoir at the time:

t′ =

{

t − tcrit (≥ 0) for the first stage

t − tλ (< 0) for the second stage,
(2)

and

p
(

l|k̄SZG(t′)
)

=

(

n − 1 − k̄SZG(t′)

l

)

b
(

1|k̄SZG(t′)
)l

× (1 − b
(

1|k̄SZG(t′)
)n−1−k̄SZG(t′)−l

.
(3)

Here, l is an effective number of edges attached to the SZG
node within the time unit considered; both conditional
probabilities p(l|k̄SZG(t′)) and b(1|k̄SZG(t′)) are also ef-
fective and can be interpreted as the corresponding effec-
tive rates to attach at time t′ to the SZG node (which
consists of k̄SZG(t′) edges) l edges and a single one, re-
spectively. The binomial form of equation (3) states that
edges are attached independently – the only dependence
is that of the basic conditional probability, b(1|k̄SZG(t′)),
on k̄SZG(t′).

Our goal is to derive the dependence of the basic con-
ditional probability on k̄SZG(t′). We can expect that this
probability depends both on k̄SZG(t′) and n−1− k̄SZG(t′)
numbers of edges. It is because, this probability can be
considered as a quotient of two other probabilities. The
first joint one, b(1, k̄SZG(t′)), inversely proportional to
n − 1 − k̄SZG(t′), describes an event when a single edge
is randomly drawn from the reservoir. In this ‘joint’ case
reservoir consists of n − 1 − k̄SZG(t′) edges and simul-
taneously the superstar-like SZG superhub consists of
k̄SZG(t′) edges. The second, most significant probability
p(k̄SZG(t′)) defines an event when k̄SZG(t′) edges belong
to the superstar-like SZG superhub at time t′. Hence,
equation (1) can be written in a form, which constitutes
the basis for our further analytical considerations

dk̄SZG(t′)

dt′
∝

1

p
(

k̄SZG(t′)
) . (4)

To complete this generic “macroscopic” equation, its
right-hand-side should be given in an explicit form.

To better understand why the growth rate of the
superstar-like superhub is inversely proportional to the
probability p(k̄SZG(t′)), we should recognize that this
probability decreases if the degree k̄SZG(t′) increases – a
larger degree is less probable to occur. Hence, equation (4)
simply means that the larger degree, although less prob-
able, is a more attractive, which leads to the increase of
the number of edges attached to the superstar-like super-
hub per time unit. This is a preferential rule concerning
the superstar-like superhub, leading to the positive feed-
back. This type of feedback leads to the herd effect re-
sponsible for creating of the λ-peak considered in detail in
Section 3.2.

In other words, equation (4) reflects the fact that the
more the SZG degree increases per unit time the greater is
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the SZG degree at any given time. This spells out the well-
known belief that “the rich becomes richer”. Nevertheless,
it is difficult to become a rich node; if this happens the
rate of the attaching edges also increases.

3.1 Nearly critical dynamics – the first stage

For the first stage we put forth a conjecture that the
probability p(k̄SZG(t′)) has a dynamical scaling form, i.e.,
p(k̄SZG(t′)) ∝ [k̄SZG(t′) − k̄SZG(0)]γ , which seems to be
quite a natural choice if we deal with a nearly critical dy-
namics. The conjecture is verified below by using the em-
pirical data. By the term “nearly critical dynamics” we
identify the dynamics which leads to a solution in the dy-
namical scaling form, i.e. valid within the scaling region.
Hence, equation (4) takes the phenomenological form for-
mally related to the slightly extended Allen-Cahn equa-
tion, with properly defined temporal diffusion coefficient
(cf. Eqs. (3.52), (3.53) and (3.55) in Ref. [48]),

dk̄SZG(t′)

dt′
=

D0
[

k̄SZG(t′) − k̄SZG(0)
]γ

=
D

(

k̄SZG(t′) − k̄SZG(0), T
)

k̄SZG(t′) − k̄SZG(0)
, A, γ > 0, (5)

which has solution

k̄SZG(t′) − k̄SZG(0) = A t′1/z , z = 1 + γ, (6)

where the temporal diffusion coefficient takes the formal
Arrhenius form:

D(k̄SZG(t′) − k̄SZG(0), T ) = D0 exp
(

−E(k̄SZG(t′)

−k̄SZG(0))/T
)

with D0 = A1+γ

1+γ , the inverted temperature 1
T = γ−1, and

the temporal energy barrier

E(k̄SZG(t′) − k̄SZG(0))
def.
= ln

(

k̄SZG(t′) − k̄SZG(0)
)

.

Furthermore, the second equation in equation (6) is a
particular case of equation (3.55) in [48] with ǫ = 1 as
the parameter. Although the diffusion coefficient is ex-
plicitly present in the right-hand-side of equation (5),
the right-hand-side contains only time- and not space-
dependent quantity. That is, it cannot be presented in
the diffusion form as the short-range order parameter,
k̄SZG(t′) − k̄SZG(0), does not depend on the space vari-
able. Therefore we deal here with a non-conserved short-
range order parameter, which plays a role analogous to the
time-dependent linear size of the clusters in the random-
site Ising model, yet different from the one considered in
the present paper (cf. Sect. 3.5 in Ref. [48]).

Indeed, the solution given by equation (6) (shifted by
the average height of the background A0 > 0) was well
fitted to empirical data, forming the “Nucleation” range
in Figure 4. These fits (where the amplitude A and the
dynamical exponent z were the only fitted parameters)

Table 1. Parameters characterizing left- and right-hand sides
of the kSZG λ-peak (calculated for trading day horizon in
Sects. 3.2 and 3.3, respectively).

Side (J) AJ τJ [td] tλ[td]
L 14 2500 544
R 22 480 544

are shown by the solid green (z = 3) and blue (z = 2)
curves, respectively. It is worth to note that when t → t+crit
the time derivative in the left-hand-side of equation (5)
diverges. This means that the superstar-like superhub is
ready to attach at tcrit an unlimited number of edges per
unit time – its “capacity” increases unlimitedly which is
the signature of criticality, characterised by the activity
of almost all elements of the system. No further details
concerning the MST network are needed to obtain such
a good agreement between the predictions and empirical
data, which verifies our conjecture. We believe this to be
a result of the dynamical criticality reached by the MST
network. The dynamical exponent z is, therefore, of a uni-
versal character and insensitive to microscopic details.

In our case we deal with growth of the mean “droplet”
size or the SZG node’s degree during the nucleation pro-
cess with the dynamical exponent z, which is a slowly de-
creasing function of time, from the Lifshitz-Slyozov value
z = 3 down to z = 2. This suggests, that we simultane-
ously observe some coupled competitive nucleation pro-
cesses [57,58] having various rates.

The logarithmic increase of k̄SZG(t′) within the ‘Con-
densation’ time range requires a different form of the
probability p(k̄SZG(t′)). Such a requirement substantially
changes equation (5). Nevertheless, such an increase can
be also formally reached (cf. [59]) by setting z → ∞ in
equation (6).

3.2 Diverging dynamics of a dragon king – the second
stage

We postulate that for the “Condensation” time range,
the probability that k̄SZG(t′) edges belong to the star-
like SZG superhub is proportional to an exponential, i.e.
p(k̄SZG(t′)) ∝ exp

(

−k̄SZG(t′)/AL

)

, where AL is a con-
stant parameter, which can be considered as a typical
value of k̄SZG. Hence, in the continuum limit, equation (4)
takes the form

dk̄SZG(t′)

dt′
=

AL

τL
exp

(

k̄SZG(t′)/AL

)

, (7)

where it is convenient to keep a proportionality constant
as the ratio of both the positive parameters AL and τL.
The above equation describes the exponential increase of
growth rate, providing the calibration of AL and τL from
the fit to the empirical data – their values are summarized
in Table 1.

It is a straightforward procedure to find a solution of
equation (7) – it takes, for tλ − t < τL, the following

http://www.epj.org


Page 12 of 15 Eur. Phys. J. B (2015) 88: 34

logarithmic form,

k̄SZG(t′) = −AL ln

(

tλ − t

τL

)

, (8)

where τL plays the role of the characteristic time of
growth. Apparently, expression (8) logarithmically di-
verges at the centre of λ-peak that is, when t → t−λ . In-
deed, this solution fits the empirical data well as shown in
Figure 4 by the solid red curve. Remarkably, tλ was inde-
pendently obtained from the empirical data as a position
of the local absolute maximum of the λ-peak14 – its value
is also shown in Table 1.

3.3 Constitutive equation

The right-hand side of the λ-peak can be considered by
assuming (in agreement with the empirical data) that the
deterministic part of this side monotonically decreases
with time. We respectively modify equation (1) obtaining,

dk̄SZG(t′)

dt′
= −

k̄SZG(t′)
∑

l=1

l p
(

−l|k̄SZG(t′)
)

= −k̄SZG(t′)b
(

−1|k̄SZG(t′)
)

, (9)

where we also express the conditional probability per unit
time, p(−l|k̄SZG(t′)), of disconnection of l edges from the
SZG superhub at time t′ = t − tλ (> 0), by the proper
binomial representation,

p
(

−l|k̄SZG(t′)
)

=

(

k̄SZG(t′)

l

)

b
(

−1|k̄SZG(t′)
)l

× (1 − b
(

−1|k̄SZG(t′)
)k̄SZG(t′)−l

.
(10)

Notably, the summation in equation (9) is extended up to
the k̄SZG(t′) edges, which simply means that all the edges
of the SZG node can change their location in the network.

Analogously, for the left-hand side of λ-peak, to solve
equation (9), the explicit dependence of the basic con-
ditional probability per unit time, b(−1|k̄SZG(t′)), on
k̄SZG(t′) is required. Again, this probability can be consid-
ered as a quotient of the other two probabilities. The first,
joint probability per time unit, b(−1, k̄SZG(t′)), inversely
proportional to k̄SZG(t′), describes an event when a given
single edge is randomly drawn from the SZG superhub.
The second probability, p(k̄SZG(t′)), was already defined
in Section 3. Hence, we can set a constitutive equation,
which describes both sides of the λ-peak,

dk̄SZG(t′)

dt′
∝

sgn(t′)

p(k̄SZG(t′))
, (11)

14 Nevertheless, for self-consistency and independent verifica-
tion, we also considered tλ as a fit parameter. We found it, to-
gether with parameters AL and τL, using the fit of formula (8)
to empirical data. All the parameter values were identical to
those obtained above using only two fit parameters. This con-
sistency was possible because the λ-peak is very well formed.

where the proportionality constant (implicitly present in
this equation) is positive (as in Eq. (4)) and

sgn(t′) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, for t′ = t − tcrit and 0 ≤ t ≤ t−crit

1, for t′ = t − tcrit or t′ = t − tλ

and t+crit ≤ t ≤ t−λ

−1, for t′ = t − tλ and t+λ ≤ t,

(12)

where t∓crit, λ means tcrit or tλ reached by t from their left-
or right-hand sides, respectively.

For the left-hand-side of the λ-peak, this equation re-
duces, obviously, to equation (4). The right-hand-side of
equation (11) is separately considered for different phases:
nucleation, condensation, and relaxation. Thus we derived
an equation which makes it possible to describe the dy-
namics of the core of the complex network in its phase far
from equilibrium.

In the previous paragraph the probability p(k̄SZG(t′))
was proposed in the form of an exponential. Here, we use
this form with conformed AR parameter that is, propor-
tional to exp

(

−k̄SZG(t′)/AR

)

. In this case, equation (11)
takes the form

dk̄SZG(t′)

dt′
= −

AR

τR
exp

(

k̄SZG(t′)/AR

)

, (13)

where the amplitude AR and the relaxation time τR are
positive quantities, estimated from the empirical data (see
Tab. 1 for details).

The interpretation of the above equation is analogous
to equation (7) although, herein, we consider (due to the
minus sign in its right-hand-side) the rate of disconnection
of edges from the superhub SZG.

It is also a straightforward procedure to find the solu-
tion of equation (13) – it takes for t−tλ < τR the following
logarithmic form

k̄SZG(t′) = −AR ln

(

t − tλ
τR

)

. (14)

This solution also logarithmically diverges at the centre of
λ-peak that is, at t → t+λ . Indeed, this solution was fitted
to the empirical data15 and plotted in Figure 4 by the
solid blue curve. Remarkably, the center tλ of the λ-peak
is common for both sides of the peak (cf. Tab. 1), which
confirms the self-consistency of our approach.

From above considerations we can conclude that the
complexities, present in the second equality in equation (1)
and the first equality in equation (9), reduce to nonlin-
earities present in the corresponding equations (5), (7)
and (13).

We gain a better empirical view at the λ-peak in
Section 3.4 by applying a complementary, relative short-
range order parameter that is, the difference ∆SZG(t) =
kSZG(t) − k2(t), where k2(t) is the temporal degree of a
vice-leader.

15 Analogously as in Section 3.2, parameter tλ was not a fit
parameter. The values of parameters, AR, τR, and tλ were
presented in Table 1.
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Table 2. Parameters characterizing left- and right-hand sides
of λ-peak defined by the difference kSZG(t)− k2(t) (calculated
vs. time for trading day horizon).

Side (J) A1

J τ 1

J [td] tλ[td]
L 16 544 544
R 25 200 544

3.4 λ-peak and condensation
within the complementary order parameter

In this section we consider, by using the complementary
short-range order parameter ∆SZG(t) defined above, the
dynamics of the richest SZG vertex16 – or dragon-king –
in the vicinity of January 25, 2007 as its evolution there
is much more distinct and intriguing than for other rich
vertices.

In Figure 15 the order parameter ∆SZG(t) is plot-
ted17 for the daily horizon. For the weekly horizon we
prepared an almost identical plot (for details see Fig. 25
in Ref. [34]). The second degree difference, k2(t) − k3(t),
(where k3(t) is the temporal degree of the company occu-
pying the third position in the rank at time t) almost van-
ishes within the range of the peak (cf. Fig. 6 in Ref. [35]).
The predominant role of the SZG company as a dragon
king is, therefore, evident. It should be emphasized that
this temporal peak is also of λ type, as both of its sides
are well fitted by the function −A1

J ln
(

|t − tλ|/τ1
J

)

, where

|t− tλ| < τ1
J . The values of the parameters A1

J , τ1
J , and tλ

for the left- (J = L) and right-hand (J = R) sides of the
peak for daily horizon are shown in Table 2. The critical
(transition) time (or threshold) tλ = 544[td] ≡ 2007-01-
25. The existence of this dynamical λ-peak confirms our
earlier observations, in particular the most significant one,
i.e. the common peak location (cf. Tabs. 1 and 2) or the
common centre of the peak, tλ.

Apparently, the temporal short-range order parameter
∆SZG(t) is better suited to study the left-hand side of λ-
peak than kSZG(t) itself. However, the latter one makes
a more refined study of the nucleation process possible.
Hence, we provide two complementary views on the same
phenomenon, which make the analysis more versatile.

4 Concluding remarks

In spite of the perceived importance of the dynamical
phase transitions on the financial markets, in particular
when applied to the analysis of market crashes, a system-
atic empirical and phenomenological analysis of this phe-
nomenon is still incomplete, with the reality invalidating
the established views and contradicting the established
facts.

By using the canonical MST network we studied, as
a representative example, the dynamics of the Frankfurt

16 The degree of the SZG vertex reaches its maximal value
equal to kmax

SZG = 88 at January 25, 2007.
17 The maximal value of the degree difference equals ∆max

SZG =
77 and is located at January 25, 2007.

Stock Exchange. The similarity of many stock exchange
indices has been recently convincingly demonstrated (cf.
Fig. 24 in Ref. [60]). Due to this similarity we can specu-
late that our results are not an exceptional case. Also, the
systematic investigation of superstar-like structures and
the study of their temporal dynamics with possible for-
mation of peaks of degrees, and related dynamical phase
transition phenomena appears as a realistic and promising
undertaking. This might have possible implications in such
significant problems as universality, network controllabil-
ity, and crash precursors. Besides, it is still fascinating, in
this context, how the market recoveres its activity after
the crash – the initial concept in this direction was pro-
posed in reference [61] as a kind of a spontaneous process.
The evolution of complex network towards the crash and
next the process of its recovery we consider as long-term
(slow-mode) processes of a positive feedback kind. Fur-
thermore, our brief analysis (outside this paper) shows
that the Planar Maximally Filtered Graph (PMFG) pre-
sented in reference [62] conserves the superstar-like struc-
ture and provides its dynamics very similar to the dragon-
king one presented herein.

The most innovative results of our work were provided
in Figures 4 and 15, where several MST network phases
forming the dynamical, structural and topological phase
transitions are clearly shown. In these figures we com-
pleted the dynamical phase diagrams, where two critical
times tcrit and tλ were presented. Furthermore, we derived
the generic constitutive equation (11) which described a
multiphase dragon-king dynamics, as supplementary ex-
plicit dependences (nonlinear herein) of the probability
p(kSZG) vs. temporal kSZG were applied, as required.
These dependences implicitly contain the relation of the
dragon-king to its surroundings (i.e. to the rest of the com-
plex network). We found predictions of equation (11) in
a good agreement with empirical data (cf. solid curves in
Figs. 4 and 15).

By data exploration through visualizing the evolution
of the MST network using our data-derived simulation
film, we uncovered the mechanism behind the primary
underlying process, leading from a marginal vertex at
the beginning (SZG herein) to its final domination as a
dragon-king – this dragon-king plays the role of the MST
network’s core over an exceptionally long period contain-
ing the recent crash. By using our constitutive equation
we were able to describe the dynamical complexity of the
MST network’s core by the nonlinear preferential rule of
the positive feedback type. In principle, such an approach
makes it possible to study different kinds of well formed
temporal peaks created on various financial markets by
the largest node’s degree. These peaks can be interpreted
as the result of herding effects, both on their bullish and
bearish sides. The concept of a complex network core was
already considered earlier in a purely theoretical way [63].
In this paper we combined both concepts, i.e., the dragon-
king dynamics and the superstar-like superhub one, with
an empirical and phenomenological background.

In conclusion, we demonstrated the first evidence for
the real-life dynamical condensation phenomenon with an
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associated λ-transition, together with a preceding phase of
nucleation growth. Further, we thoroughly investigated in
empirical, simulational, and analytical ways, the complete
phase diagrams for these intriguing dynamical phase tran-
sitions in real-world complex networks. We expect that our
results will be inspiring for interdisciplinary physicists in-
volved in a broad spectrum of disciplines studying emer-
gence evoked by complexity. We hope that our work, pro-
viding a significant example of the dynamical paradigm of
phase transitions and critical phenomena in a network as
complex as the stock market, will inspire further develop-
ment of a universal theory of dynamical phase transitions
in evolving complex networks.

One of us (T.G.) is grateful to the Foundation for Polish Sci-
ence for financial support and one of us (M.W.) acknowl-
edges for financial support from the Polish OPUS Grant
No. 2012/05/B/ST1/03195.
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Quantum Gases. Finite Temperature and Non-Equilibrium

Dynamics in Cold Atoms (Imperial College Press, London,
2013), Vol. 1

55. D. Sornette, Critical Phenomena in Natural Sciences.

Chaos, Fractals, Selforganization and Disorder: Concepts

and Tools, Springer Series in Synergetics, 2nd edn.
(Springer-Verlag, Heidelberg, 2004)

56. N.J. Cowan, E.J. Chastain, D.A. Vilhena, J.S.
Freudenberg, C.T. Bergstrom, Plos One 7, e38398 (2012)

57. D. Beysens, Y. Garrabos, C. Chabot, AIP Conf. Proc. 469,
222 (1998)

58. I.S. Gutzow, J.W.P. Schmelzer, The Vitreous State. Ther-

modynamics, Structure, Rheology, and Crystallization,
2nd edn. (Springer-Verlag, Heidelberg, 2013)
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