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Abstract

A number of reasoning problems involving the
manipulation of temporal information can nat-
urally be viewed as implicitly inducing an or-
dering of potential local decisions involving
time (specifically. associated with durations or
orderings of events) on the basis of preferences.

For example, a pair of events might be con-
strained to occur in a certain order, and. in ad-
dition, it might be preferable that the delay be-

tween them be as large, or as small, as possible.
This paper explores problems in which a set
of temporal constraints is specified, where each
constraint is associated with preference criteria
for making local docisions about the events in-
volved in the constraint, and a reasoner must

infer a complete solution to the problem such
that. to the extent possible, these local pref-

erences are met in the best way. A constraint
fl'amework for reasoning about time is gener-
alized to allow for preferences over event dis-
tances and durations, and we stud)" the con>
plexity' of solving problems in the resulting for-
realism. It is shown that. while in general such
problems are NP-hard, some restrictions on the
shape of the preference functions, and on the
structure of the preference set, can be enforced
to achieve tractability. In these cases, a simple
generalization of a single-source shortest path

algorithm can be used to compute a globally
preferred solution in polynomial time.

1 Introduction and motivation

Several real world problems involving the manipulation
of temporal information in order to find an assignment
of times to a set of activities or events can naturally
be viewed as having preferences associated with local
temporal decisions, where by a local temporal decision

we mean one associated with how long a single activity
should last, when it should occur, or how it should be
ordered with respect to other activities. For example,
an antenna on an Earth Orbiting Satellite such as Land-
sat 7 must be slewed so that it is pointing at a ground

station m or(bq tier r,'cor, h,[ ._,trm'e or tuh'mvtrv ,lain

to t)e (lownlmk(.,[ t() ,;trth. Assllln. that ,'ts part of the

daily Landsat 7 sch_:dttling activity a window [V = [.s. e]
is identified within which a slewing activity to one of the
ground stations for one of the antennae can begin, and
thus there are choices for assigning the start time for this
activity. Antenna slewing on Landsat 7 has been shown
to occasionally cause a slight vibration to the satellite.
which in turn might affect the quality of the image taken

by the scanning instrument if the scanner is in use during
slewing. Consequently. it is preferable for the slewing ac-

tivity not to overlap any" scanning activity, although be-
cause the detrimental effec_t on image quality occurs only
intermittently, this disjointness is best not oxpressed as
a hard constrain:. Thus if there are any star_ times t
within W such that no scanning activity occurs during
the slewing activity starting ar t, then t is to be pre-
ferred. Of course, the cascading effects of the decision
to (assign t on the scheduling of other satellite activities
nmst be taken into account as well. For example, the
selection of t, rather than some earlier start time withia

H', might result in a smaller overall contact period be-
tween the ground station and satellite, which in turn
might limit the amount of data that can be downlinked

during this porio,[. This may conflict with the prefer-
ence for attaining maximal contact times with ground
stations, if possible.

Reasoning simultaneously with hard temporal con-
straints and preferences, as illustrated in the example
just given, is the subject of this paper. The overall objec-
tive is to develop a system that will generate solutions to
temporal reasoning problems that are intuitively globally
preferred in the sense that the solutions simultaneously

meet, to the best extent possible, all the local preference
criteria expressed in the problem. Of course, local prefer-

ence criteria might conflict, as suggested in the example
just given, so an intelligent resolution of such conflicts is
a component in meeting the overall objective.

In what follows a formalism is described for rea-

soning about temporal preferences. This formalism
is based on a generalization of the Temporal Con-
straint Satisfaction Problem (TCSP) framework [4], with
the addition of a mechanism for specifying preferences,
based on the semiring-based soft constraint formalism [1;
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,'la.,s _)t"TCSPPs iI, which each con+tr;m,t+ involves only
a single i,m+rval, calle<l Simple' Tentporal Pr<>blems with

Prrf,,r_,m',,s (STPPs). is also defitxe<l.

[n Section 3. we denlonstrate the hardness of serving
general TCSPPs and STPPs. and pinpoint one source of
the hardm+ss to preference functions whose 'better" val-

tt+,s may fornt a non-convex set. Restricting the class of
a_Imissible prf, fer+mce flznctions to those with convex in-

t_wvals of "'bert_.r" values is consequently shown to result
in a tractable framework for solving STPPs. In section
4. an algorithm is introduced, based on a simple general-
ization of the single source shortest path algorithm, for
finding globally best solutions to STPPs with restricted

preference functions. In section 5, the work presented
here is compared to other approaches and results.

2 Temporal constraint problems with

preferences

The proposed framework is based on a simple merger
of two existing formalisms: Temporal Constraint Saris-
faction Problems (TCSPs) [41 and soft constraints based
on semirings !2j t. The result of the merger is a class of

problems called Temporal Constraint Satisfaction prob-
lems with preferences (TCSPPs). In a TCSPP, a soft
temporal constraint is represented by a pair consisting
of a set of disjoint intervals and a preference function:
(I = {[a_,b_] ..... [a_,b,_]},f). where f: I--+ A, and A
is a set of preference values.

Examples of preference flmctions involving time are:

• rain-delay: any function in which smaller distances

is preferred, that is. the delay of the second event
w.r.t, the first one is minimized.

• max-delay: assigning higher preference values to
larger distances;

• close to k: assign higher values to distances which
are closer to k: in this way, we specify that the dis-
tahoe between the two events must be as close as

possible to k.

As with cl_sical TCSPs, the interval component of
a soft temporal constraint depicts restrictions either on
the start times of events (in which case they are unary),
or on the distance between pairs of distinct events (in
which case they are binary). For example, a unary con-
straint over a variable X representing an event, restricts
the domain of X, representing its possible times of oc-
currence; then the interval constraint is shorthand for

tSemiring-based soft constraints is one of a number of for-
malisms for soft constraints, but it has been shown to gener-
alize many of the others, e.g., [5; 8; 9].
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An interesting sp+,<'ial case occurs when each con-

straint of a TCSPP contains at single [nrerva[. We call
such probletns Sarr,ple Temporal Problems wzth Prefer-
ences (STPPs), due _o the fa<:t that they generalize STPs
[4I. This <'ase is interesting because STPs are polynonfi-

ally solvable, while genera[ TCSPs are NP-hard. and the
effect of adding proforen : ,s to STPs is not imnte<liatelv
obvious. The next st._"rion ,Iiscussvs these issues in more

depth.
A sol+ttwrz to a TCSPP is a complete assignntent to

all the variables that satisfies the distance constraints.

Each solution has a global preference valse, obtained by
combining the local preference values found in the con-
straints. To formalize the process of combining local
preferences into a global preference, and comparing so-
lutions, we impose a semiring structure onto the TCSPP
framework.

.-k semiring is atuple <.4. +, x. 0.1'> such that

• .4 is a set and 0.1E .4:

• -,- the ad,litive operation, is comnmrative, associa-
tive and 0 is its unit oleznent:

• x, the multiplicative operation, is associative, dis-
tributes over +. 1 is its unit element and 0 is its

absorbing element.

A c-semirin9 is a semiring in which - is idempotent (i.e..
a + a = a. a __ .4). 1 is its absorbing element, and × is
commutative.

c-semirings allow for a partial order relation _<s over .4
to be defined as a <s b iff a + b = b. Informally. _<s gives
us a way to compare tuples of values and constraints,
and a _<s b can be read b is better than a. Moreover:
+ and x are monotone on _<s; 0 is its minimum and
1 its ma.,dmum; (A, <s) is a complete lattice and, for
alla, b_.4, a+b =lab(a,b). If x isidempotent, then
{.4, _<s) is a complete distributive lattice and x is its glb.
In our main results, we will assume x is idempotent and
also restrict _<s to be a total order on the elements of .4.
In this case a + b = ma.x(a, b) and a x b = min(a, b).

Given a choice of semiring with a set of values .4, each
preference function f associated with a soft constraint
{I, ]) takes an element from I and returns an element
of .4. The semiring operations allow for complete solu-
tions to be evaluated in terms of the preference values
assigned locally. More precisely, given a solution t in a
TCSPP with associated semiring (.4, +, x, 0, 1},let Tij =

<[i,.,, fi,j} be a soft constraint over variables Xi, Y,_ ,'rod
(v+, vj) be the projection of t over the values assigned to
variables Xi and Xj (abbreviated as (vi, vj) = t+x,,x,).
Then, the corresponding preference value given by fii

is fij(v# - vi), where vj - v, _ [ij. Finally, where
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Tit,' t:,l>rttnal .ql)hlti{Jns t)f +t TCSPP are tlu>e .s<)tutions

v+.'hi<'h h+tv+' tlt,: b+'sl" pr_fcrc:ttct, vahv,, where "'best" is

tlt't_'l'tttilI,',[ tJ.y' the oI'+[+!riti_ ,)f Iho valtl_'S ill the' s+'IUil'-

ing For exa,nph.. +:onsi, l,_r the s+,tniring ,5"/,,::_ =

if0,t].,...,, ,.,,,+0,li+ ++rfu+'.:.+yconstr;+!ntsot,'ing
['_I" Tit'-+ pt'efer,mce '¢attt,_. of a solution will b¢. the min-

inltm_, of all the preference values asociated with the
,listances selected by this solution in all constraints.
am[ the best soluti<ms will be those with the maxi-

mal value. Another example is the semiring Sc+p =
{{f,dse. true }. ',/. ,_, f_zlse, true), which is related to solv-
ing classical constraint problems [71. Here there are
only two prefer+race values: true and fals'e, the prefer-

ence value of a complete solution will be determined by
the logical and of all the local preferences, and the best

solutions will be those with preference value true <since
true is better than false in the order induced by logi-
cal or). This semiring thus recasts the classical TCSP
framework into a TCSPP.

Given a constraint network, it is often useful to find

the corresponding minimal network in which the con-
stramts are as explicit as possible. This task is nor-
really performed by enforcing various levels of local con-
sistency. For TCSPPs. in particular, we can define a
notion of path consistent.> Given two soft constraints.

{It. It) and (/e. re), and a semiring S. we define:

• the intersection of two soft constraints T1 = (I1, fl}
and T_ = (/e. f,.), written 7"1Os T.,. as the soft con-
straint (It @ I..,. f). where

- It +/2 returns the pairwise intersection of in-
tervals in It and [_,. and

- f(a) = ft(a) x f,_(a) for all a E It :- I.,:

• the composition of two soft constraints Tt = (It. ft)
and 7"_ = (&. re), written Tt :Ds T._,. is the soft con-
straint Y = (It 2/'_,f). where

- r E I1 9 I2 if and only if there exists a value
tt E It and t., E I= such that r = tl + t2, and

- f(a) = _{ft(at) x f_.(a.,.)]a = at +a,.,at E
It,a+. _ h}

A path-induced constraint on variables Xi and Xj is

RLJp,,t_= +sgk(T,k ® T_ i), i.e., the result of performing

%s on each way of composing paths of size two between
i and j. A constraint T 0 is path-consistent if and only

_ RPath R P_th AifT 0 C --0 , ie.,T 0 is at least as strict as -w "
TCSPP is path-consistent if and only if all its constraints
are path-consistent.

If the multiplicative operation of the semiring is idem-
potent, then it is easy to prove that applying the op-

eration T,j := Tij _s (Tik ®s Tkj) to any constraint
T 0 of a TCSPP returns an equivalent TCSPP. More-
over, under the same condition, applying this operation
to a set of constraints returns a final TCSPP which is

a[w;tvs th,' simt,' ut,l,.t,,.wl,'ntly ,)l" tit,' ,,r,l,'r _d' +,pldi,'a-
tt,>n-'. Th_ls ;my "I'CSPP can I,,, tr:t[tsfi_rnt,,¢[ into +in

,._tltival,,ttt path-,',msist,.nt "['('5P[ + l)v ;q)[)tying th,+ op-
,,rittitJn It,+, := "[',+_+.(/',, ' ['+e) t,, all ('()nstt'aints T+_ tln-
til n(> chang,' ,J,'(',n-, in anv ('_)nstraittt.. This algorithm,
whi<'h we call I/>;tth. iS pt'Ov,'tt tl) 1., p,>lynontial for TC-

SP'+ (th;tt is. TC'SI'Ps with tit,, s,:nm'ing S,:,_,): its cont-
ph>xiLv is ()(,:+/?+). wlu:re ,+is the number of variables
an,[ R is the rang,, of the constraints [41

General TCSPPs ow.+r the setniring ._q,:+_ are NP-
complete; thus applying Path is insufficient to solve
them. On the other hand. with STPPs over the same

semiring that cuin<:i, te with STPs. applying Path is suf-
ficient to solve them In the retnaining sections, we prove
complexity t-+,sttlts for both gon,,ral TCSPPs aml STPPs.
an,[ also of some subclasses of problems identified by

specific semirings, or preference functions with a certain
shape.

3 Solving TCSPPs and STPPs are

NP-hard

As noted above, solving TCSPs are NP-hard [4]. Since
the addition of preference functions can only" make the

problem of finding the optimal solutions more complex,
it is obvious that TCSPPs are NP-hard _s well.

We turn our attention to the complexity of general
STPPs. We recall that STPs are polynon_ially solvable
[4], thus one might speculate that the same is true for
STPPs. However+ it is possible to show that in general.
STPPs fall into the class of NP-hard problems.

Theorem 1 (complexity of STPPs) General
STPPs are NP-hard problems.

Proof:

We prove this result by reducing an arbitrary TCSP to

an STPP. Thus. consider any TCSP, and take any of its
constraints, say" [ = {[at, btJ ..... [a=, b,d}. We will no,,"
obtain a corresponding soft temporal constraint contain-
ing just one interval (thus belonging to an STPP). The
semiring that we will use for the resulting STPP is the

classical one: S_,p = <{false, true}, V, A, false, true).
Thus the only two allowed preference values are false

and true (or 0 and 1). Assuming that the intervals in I
are ordered such that ai <_ a,+t for i E {1 ..... n - 1}.
the interval of the soft constraint is just [at,b_]. The
preference function will give value 1 to values in I and
0 to the others. Thus we have obtained an STPP whose

set of solutions with value 1 (which are the optimal so-
lutions, since 0 <s 1 in the chosen semiring) coincides
with the set of solutions of the given TCSP. Since find-
ing the set of solutions of a TCSP is NP-hard, it follows
that the problem of finding the set of optimal solutions
to an STPP is NP-hard. rn

2These properties are trivial extensions of corresponding
properties for classical CSPs, proved in [2].





-I Linear and [Iorizontal Preference
Functions
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lit this .,cction, we inq',J_t,tc+, two exantl)h,s t)f classes of
pr+'ft,rpn<'t.' ["tlm:titJn+s which d++fin , tr;tt'table :-+;qbc[asses of
ST P Ps.

When the preference functions of an STPP are lin-

(,at'. and the s(,nfiring chosen is such that its two oper-
ations maintain such linearity when applie, l to the ini-
tial preference functions, it can be seen that the given
STPP can be written as a linear programnung problem.
solving which is tractable [3i. Thus, consi, h'r any given
TCSPP. For any pair of variables +\" and _, take each

interval for the constraint over X and Y, say [a,b], with
associated linear preference function f. The informa-
tion given by" each of such intervals can be represented
by the following inequalities and equation: X - !'" _< b,
}•- X < -a, and f = ct(X- Y) +c2. Then if we choose
t,he fuzz> • semiring (([0, 1J, max rain, O, 1)), we have the
inequality _" _< f for each preference function f in the
problem, and max(t') as the overall goal. If instead we
choose the semiring /,Tv. +, rain, +,x,,, 0). where we want
to minimize the sum of the preference levels, we have
V = fl +..++...-f,, and rnin(V). In both cases the

resulting set of formulas constitutes a linear program-
ruing problem, solving which is tractable.

Linear preference fimctions are expressive enough for
many cases, but there are also several situations in which
we need preference functions which are not linear. A
typical example arises when we want to state that the
distance between two variables must be as close as pos-
sible to a single value. Then. unless this value is one of
tile extremes of the interval, the preference function is
convex, but not linear.

Another case is one in which preferred values are as
dose _ possible to a single distance value, but in which
there are some subintervals where all values have the

same preference• In this case, the preference criteria de-

fine a step Junction, which is not convex.
A class of function which includes linear, convex, and

also some step functions will be called horizontal func-
tions. Horizontal functions are so-called because if one

draws a horizontal line anywhere in the cartesian plane
defined by the function, the set of X such that f(X)
is not below the line forms _m interval. Figure 1 shows
examples of horizontal and non-horizontal functions.

More formally, a horizontal Junction is one such that,
for all Y, the set {X such that I(X) _> Y} forms an in-
terval. It is easy to see that horizontal functions include
linear ones, as well as convex and some step functions.
For example, the close to k criteria cannot be coded into

a linear preference function, but it can be specified by a
horizontal preference function, which could be f(x) = x
forx<kandf(x) =2k-x forx>k.

Horizontal functions are closed under the operations of
intersection and composition defined in Section 2, when

(d)

_/ '\ / "N
\

(g) <h> (i)

Figure I: Examples of horizontal flmctions (a/-(f) and non-
horizontal functions (g)-(i)

certain semirings are chosen• For example, this happens
with the fuzzy' semirmg, where tile intersection performs
the rain, and composition performs the maz operation.
The closure proofs follow.

Theorem 2 (closure under intersection) The
property of functions being horizontal is preserved under
intersection. That is. given two horazontal fanctions
ft and f2 which return values over a totally-ordered
semiring, let f be defined as f(a) = ft(a) × f2(a), where
x is the multiplicative operation of the semirm 9. Then
f is a horizontal fitnction as well.

Proof: From the definition of horizontal flmctions.

it suffices to prove that, for any given y, the set
S = {x : f(x) _> y} identifies an interval. If S is empty',
then it identifies the empty interval. In the following we
assume S to be not empty.

{x: f(.r) _> y} = {x: ft(x) x fz(.r) > y}
= {x: > y}

( x is a lower bound operator since it is assumed to be
idempotent)

= {x: It(x) > y ,', 12(-r) _ y}

= {x: • fro, A e b _J}
(since each of ft and f2 is horizontal)

= [max(at, a2), min(bt, b_,)]

rn

Theorem 3 (closure under composition) The
property of functwns being horizontal is preserved under
composition. That is, given a totally-ordered semiring
with an idempotent multiplicative operation x and
binary additive operation + (or _ over an arbitrary
set of elements), let fl and f.,. be horizontal functions
which return values over the semiring. Define f as

f(a) = Y_b+c=a(ft(b) x f2(c)). Then f is a horizontal
function as well.

Proof: Again, from the definition of horizontal
functions, it suffices to prove that, for any given y,

the set S = {x : f(x) _> y} identifies an interval. If ,5"
is empty, then it identifies the empty interval. In the
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(_itt('_' -+-is axt ,tl)p,'r t)<),tn,l o[>er;ttor)

= {.,:: ]'l(,L) :< f.,(,') > V tbr so,x,. ,L ;m,t ,'
such that £ = u + z.,}

= {.r:rnin(ft(,z),f,(u)) i" g for some u a.n,l ,'
such that.r = u + u}

:< is a h)wm' hound operator sin,'e it is assHnte(l to be
idempotent 1

= {.,: : f_(,,) _>v/', k (c) > v,
for some u + _' = x}

= {,:': ,, __ [,,_, bt] A _'_ :,z._,,b_],
for some u + _' = .r and son>' at.bt.a-.,, b.,}

(since each of fl and f.., is horizontal)

= [aL + <,, bL+ b:_]
[]

These results imply that appplying the Path algorithm
to an STPP with only horizontal preference functions,
and whose underlying semiring contains a nmltiplicative
operation that is idempotent, will result in a network
whose induced soft constraints also contain horizontal

preference functions. These results will be applied in
the next section.

5 Solving STPPs with Horizontal

Functions is Tractable

We will now prove that STPPs with horizontal prefer-

ence functions and an underlying semiring with an idem-
potent multip[icative operation can be solved tractably.

First, we describe a way of transforming an arbitrary
STPP with horizontal preference functions into a STI 5.
Given such an STPP and an underlying semiring with ,4
the set of preference values. Let y E .4 and (I, f) be a

soft constraint defined on variables X_, A"a in the STPP,
where f is horizontal. Consider the interval defined by
{x : x E I A f(z) >_ g} (because f is horizontal, this set
defines an interval for any choice of g). Let this interval

define a constraint on the same pair Xi, X,. Performing
this transformation on each soft constraint in the original
STPP results in an STP, which we refer to as STP_.
(Notice that not every choice of g will yield an STP that
is solvable.) Let opt be the highest preference value (in

the ordering induced by the semiring) such that STPopt
h_ a solution. We will now prove that the solutions of
STPopt are the optimal solutions of the given STPP.

Theorem 4 Consider any 3TPP with horizontal pref-
erence functions over a totally-ordered semiring with x

idempotent. Take opt as the highest y such that STP_
has a solution. Then the solutions of STPopt are the
optimal solutions of the STPP.

Proof: First we prove that every solution of STPopt
is an optimal solution of STPP. Take any solution of

.b"l'f',,,_. >nv t "['Ills llthl;tHli/dl, Ht t. I1, lh,' ()rigllt;tl

S'['PP, ha_s v:,lll,' ,'st/it) = ]'l(ll)"< ... "_ f,,[t,,), wh,,r,!

t, is the ,list;tlt,h' +'1 -- 4,, t;H" ;tll :assigntttcnt t,() tht' vat'i-

;tl>l,'s X,, .V,. {,',, ,'j) -- t ].\.. %, ;tlHI f, iS th,' t)rl,f_,r,!n,,e

flin<'r.il)n ,tss.,'i,t,,,l with tit,, soft ((mstraizlt ([,, f,}, with

I'j -- _'_ _: [_. N_)w )tSSllllll' f(Jr fh_> t)ln'i)()so of contra-

_li('t.ion that t is n,_r _)l)/imad in STPP. That is, t[l_!r,.' is

;m,)th,,r instantiation t' slt('h that +',d(t') > +',d(t). Since
u,d(t') = ft(t;) .... :< f,,(t:,), t,y mouotonicitv of the ×,

w(, can have ,,z/(t') > ,'hi(t) _)nly if each of the f,(t',)
is gr(,ater than thecorrespon(lingf,(t,). Bur this means

that we can take the smallest s_v:h value f,(t{), call it w',
and construct STP,:... [t is <tsy to see that STP'. has
at le_kst one solution, t'. thmefore opt is not the highest
value of g. contra_licting our assumption.

Next we prove that every optimal solution of the STPP

is a solution of ._TPopt Take .my t optimal for STPP.
and assume it is not a solution of STPo_t. This means
that, for some constraint, f(&) < opt. Therefore. if we

compute ual(t) in STPP. we have that ual(t) < opt.
Then take any solution t' of STPo_t (there are some. by
construction of STPovt). If we compute ual(t') in STPP,
since × = glb (we assume × idempotent), we have that
val(t') >_ opt. thus t was not optimal as initially assumed.

This result implies that finding an optimal solution
of the given STPP with horizontal preference functions
reduces to a two-step search process consisting of iter-

atively choosing a w. then solving STP=.. until STPo;t
is found. Under certain conditions, both phases can be
performed in polynomial time. and hence the entire pro-
cess can be tractable.

The first phase can be conducted naively' by trying ev-
ery possible "chop" point y and checking whether STP;
has a solution. A binary search is also possible. Under
certain conditions, it is possibh, to seo that the numb,_r
of chop points is also polynomial, namely:

• if the semiring has a finite number of elements.
which is at most exponential in the number n of vari-

ables of the given STPP, then a polynomial number
of checks is enough using binary search.

• if the semiring has a countably infinite number of
elements, and the preference functions never go to
infinity, then let l be the highest preference level
given by the functions. If the number of values not
above 1 is at most exponential in ,z, then again we
can find opt in a polynomial number of steps.

The second ph_e, solving the induced STP_, can be
performed by transforming the graph associated with
this STP into a distance graph, then solving two single-
source shortest path problems on the distance graph[4I.

If the problem has a solution, then for each event it is
possible to arbitrarily pick a time within its time bounds,
and find corresponding times for the other events such
that the set of times for all the events satisfy the inter-

val constraints. The complexity of this phase is O(en)
(using the Bellman-Ford algorithm [3]).
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sltrprisutgly. _+,n,,ral TC_PP_ ar+' NP-har, l. Hwr,, are
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ally solv:dd_, hnp,_rtant s_mt'c,,s ,ff tta.ct:ut_tlity in<;tu,h'
th,, :-,hal., _>frh,, I,_utporal pr_'fet'etu'e ftLnCtU>ns, awl the

,'ht,tc_. _ff th,. qut,l.rlyin_ semirin_ for consi.ructin_ a.ml
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6 Related work

The merging of temporal CSPs with soft constraints was
first proposed in [I0], where it was used within a frame-
work for re,'ksoning about recurring events. The fr_.tme-
work proposed m[ll] contains a representation of local

preferences that is sinfi[ar to the one proposed here. but
us_,s [o,:al search, rather than constraint propagation, as

the primary mechanism for finding good complete so-
lutions, an([ no guarantee of optimality can be demon-
strated.

Finally, the property that characterizes horizontal
preference functions, viz., the convexity of the inter-
val above an}" horizontal line drawn in the Cartesian
plane around the function, is reminiscent of the notion
of row-convexity, used in characterizing constraint net-
works whose global consistency, and hence tractabiiity

in solving, can be determined by applying local (path)
consistency [12]. There are a number of ways to view

this connection. One way is to note that the row con-
vex condition for the 0-1 matrix representation of binary

constraints prohibits a row in which a sequence of ones
is interrupted by one or more zeros. Replacing the ones
in the matrix by" the preference value for that pair of do-
main elements, one can generalize the definition of row
convexity to prohibit rows in which the preference values
decrease then increase. This is the intuitive idea under-

lying the behavior of horizontal preference flmctions.

[4I 11. D,,cht,'r, I. *[,'Ui. awl .I. P,'arl. l,'ullJ,,rid ,'_,n-
strai,tt n<.'tworks. Artdiciat hm,llig,'n,','. V<>l.-19,

199 I. pp. 6 t-95.
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satisfactiotL. At ./o,u'n,d, 58, 1992.
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tions. ,.trt+]icUd [ntellagence. 8( l):99 -118. 1977.

[7] A.K. Mackworth. Constraint s,ttisfa(:tion. In Stu-
art C. Shapiro, editor, Encgclopedm of A[ (second
ed_twn), volume 1, pages 285-293. John Wiley &
Sons, 1992.

[SJ T. Schiex. Possibilistic constraint satisfaction prob-
lems. or "how to handle soft constraints?". In

Proc. 8th Conf. of Uncertamtg in .4L pages 269-
275, 1992.

[9] T. Schiex, H. Fargier, and G. Verfaille. Valued Con-
straint Satisfaction Problems: Hard and Easy Prob-

lems. In Proc. IJCAI95. pages 631-637. Morgan
Kaufmann, 1995.

[10] R. Morris, and L. Khatib. Reasoning about Re-
curring Events: Satisfaction and Optimization. In
Computational Intelligence, 16(2). 2000.

[11] G. Rabideau, B. Engelhardt and S. Chien. Using
Generic Preferences to Incrementally Improve Plan
Quality. In Proceedings of the 2nd NASA Inter-
national Workshop on Planning and Schedtzhng /or

Space, 11-16, March. 2000.

[12] P. Van Beek, and R. Dechter. On the Minimality
and GIobaI Consistency of Row-Convex Constraint
Networks. In Journal of the ACM. 42, 543-561,
1995.

7 Summary

We have defined a formalism for characterizing prob-
lems involving temporal constraints over the distances
and duration of certain events, as well as preferences

over such distances. This formalism merges two existing
frameworks: temporal CSPs and soft constraints, and
inherits from them their generality, and also allows for
a rigorous examination of computational properties that
result from the merger.
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