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Abstract: Temporal Action Proposal Generation (TAPG) is a promising but challenging task with
a wide range of practical applications. Although state-of-the-art methods have made significant
progress in TAPG, most ignore the impact of the temporal scales of action and lack the exploitation
of effective boundary contexts. In this paper, we propose a simple but effective unified framework
named Temporal Context Modeling Network (TCMNet) that generates temporal action proposals.
TCMNet innovatively uses convolutional filters with different dilation rates to address the temporal
scale issue. Specifically, TCMNet contains a BaseNet with dilated convolutions (DBNet), an Action
Completeness Module (ACM), and a Temporal Boundary Generator (TBG). The DBNet aims to
model temporal information. It handles input video features through different dilated convolutional
layers and outputs a feature sequence as the input of ACM and TBG. The ACM aims to evaluate
the confidence scores of densely distributed proposals. The TBG is designed to enrich the boundary
context of an action instance. The TBG can generate action boundaries with high precision and high
recall through a local–global complementary structure. We conduct comprehensive evaluations on
two challenging video benchmarks: ActivityNet-1.3 and THUMOS14. Extensive experiments demon-
strate the effectiveness of the proposed TCMNet on tasks of temporal action proposal generation and
temporal action detection.

Keywords: temporal action proposal generation; temporal action detection; boundary context; action
completeness module; temporal boundary generator

1. Introduction

Temporal action detection is one of the most fundamental tasks in video understanding,
which is aimed at not only classifying every action instance in each video, but also looking
for their accurate temporal locations. In general, the temporal action detection task is
composed of two subtasks: temporal action proposal generation and action classification.
Although current action recognition methods [1,2] can achieve convincing classification
accuracy, the performance of temporal action detection is still unsatisfactory on mainstream
benchmarks. Object detection aims to find as many tight bounding box locations and
classes of objects as possible. With the continuous in-depth research of many works, a
quite number of recent methods [3–5] have achieved remarkable progress and superior
performance. Akin to object proposals for object detection in images, temporal action
proposal has a crucial impact on the quality of action detection. As a result, more and
more works are therefore devoted to improving the quality of temporal action proposals.
Temporal Action Proposal Generation (TAPG) gradually became a research focus in video
understanding tasks. TAPG is not only used for temporal action detection, but is also
the core of several downstream tasks such as video recommendation, video captioning,
and summarization.

Proposals generated by a robust TAPG method usually have two essential properties:
(1) The generated temporal proposals should cover ground-truth action instances accurately
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and exhaustively, and have flexible durations and accurate boundaries. (2) The generated
temporal proposals should be precisely evaluated so that redundant proposals can be
effectively suppressed. Existing TAPG methods can be roughly divided into two categories.
The first category follows a top-down fashion. Such methods generate proposals by
predefining sliding windows [6] or designing a set of regularly distributed anchors [7] of
different scales for each video segment. The generated proposals are then evaluated by
a binary classifier. However, as sliding windows and anchors are defined manually, the
generated proposals are doomed to have imprecise boundaries. Under this circumstance,
more and more researchers begin to study bottom-up TAPG methods. By using local clues
on the video sequence to evaluate each temporal location, these types of approaches can
generate more precise boundaries and more flexible durations.

Although recent methods have made significant progress in TAPG, they still have
unresolved problems. (1) The duration of ground-truth action instances varies, typically
ranging from seconds to minutes. However, existing methods use a fixed temporal receptive
field for all action instances and thus ignore the temporal scale issue of action instances.
(2) Most of the existing methods only exploit the local details around the boundaries to
predict starting and ending time, but do not pay much attention to the global context in the
video sequence. Figure 1 shows the diversity of ground-truth action instances’ durations
on two challenging video benchmarks: ActivityNet-1.3 and THUMOS14.

Figure 1. Diversity of a ground-truth action instance’s durations on THUMOS14 and ActivityNet-1.3
benchmarks: (a) ground-truth action instance’s durations on THUMOS14; (b) ground-truth action
instance’s durations on ActivityNet-1.3.

Motivated by the above observations, we propose a Temporal Context Modeling
Network (TCMNet) to efficiently model video action instances with different durations
and make full use of global context to generate more accurate temporal boundaries. In
our framework, a BaseNet named DBNet takes the extracted video features as input and
provides a shared feature sequence for subsequent modules. To efficiently model video
action instances with different durations, DBNet contains multiple convolution layers with
different dilated rates. These convolution filters have different receptive fields that are
most effective at a specific temporal scale. An Action Completeness Module (ACM) is
designed to take the shared feature sequence as input and generate action completeness
maps to evaluate densely distributed proposals. A Temporal Boundary Generator (TBG)
is designed to generate temporal boundaries with high precision and high recall. The
TBG contains a local branch and a global branch. The local branch consists of only two
temporal convolution layers. It focuses on the local abrupt background-to-action (action-
to-background) change in the input feature sequence and generates rough boundaries
with high recall but low precision. The global branch generates temporal boundaries
with high precision but low recall by using our improved contextual U-shaped network
structure. It uses multiple temporal convolutional layers followed by down-sampling steps



Electronics 2022, 11, 2674 3 of 16

to extract semantic information from different granularities. To restore the resolution of the
temporal feature sequence, the up-sampling operation is repeated multiple times and the
features of the same resolution are fused. All in all, the contributions of our work can be
summarized fourfold:

(1) We propose a Temporal Context Modeling Network (TCMNet) for temporal action
proposal generation. TCMNet adopts multiple dilated temporal convolutions. Each of
them is most effective for action instances with a specific duration, to obtain different
receptive fields. The responses of all temporal convolutions are fused to generate
more reliable temporal action proposals.

(2) To achieve the complete action proposal generation, we embed an improved U-
shaped network in the temporal boundary generator. Therefore, TCMNet can improve
performance by leveraging the global context for boundary detection through local–
global structures.

(3) We propose a pooling operation to obtain more useful deep semantic information and
an aggregation function to achieve adaptive fusion of semantic features. The pooling
operation and the aggregation function are embedded in the U-shaped network to
reduce the disturbance of noise.

(4) We conduct extensive experiments on the THUMOS14 and ActivityNet-1.3 bench-
marks. The results show that TCMNet can achieve significant proposal generation
performance. Combined with the existing action classifiers, TCMNet can also achieve
remarkable temporal action detection performance compared with other approaches.

2. Related Works
2.1. Temporal Anchoring Methods

With the continuous development of deep learning networks [8,9], great progress
has been made in video analysis tasks. Temporal action detection is a key part of video
analysis tasks, and extracting high-quality temporal proposals is crucial for action detection.
Temporal proposals have different time spans to align with action instances. However,
fixed-size features must be extracted from each proposal to be fed to fully connected
layers for proposal evaluation [10]. Bottom-up methods [11,12] first obtain the boundary
candidates and then use 1D RoI pooling to estimate all possible combinations. Multi-scale
anchor methods [13] extend image detection to temporal action localization. They generate
class-agnostic proposals by jointly classifying and regressing a fixed set of multi-scale
anchors at each location. Anchor-free methods [14] directly predict the confidence score,
the center offset, and the length of time through the center point feature. Continuous
representation [15] proposes modeling action segments by maximizing the confidence
scores in a 2D function. It enables a more flexible and efficient data sampling space.

2.2. Action Recognition

Action recognition is a fundamental and important task in the video understanding
area, and deep learning models have recently achieved significant performance promotion
in the action recognition task. Ref. [16] uses human boxes and key points to represent
instance-level features, and the action region features of this framework are used as the
input of the temporal action head network, which makes the framework more discrimina-
tive. The author of [17] proposed a multi-scale feature extraction method used to extract
richer feature information. At the same time, a multi-task learning model is introduced.
It can further improve classification accuracy by sharing data among multiple tasks. Due
to the continuous development of deep models in the field of action recognition, some
works [18,19] begin to solve the difficult problems of deep models in real-life applications,
so those deep models can be used in practice.

2.3. Temporal Action Proposal Generation

Temporal action proposal generation (TAPG) aims to generate proposals with precise
temporal action boundaries and confidence in untrimmed videos. Existing proposal gener-
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ation methods are mainly divided into two branches: top-down and bottom-up methods.
Top-down methods mainly generate proposals based on sliding windows or uniformly
distributed anchors, and then use a binary classifier to evaluate the generated proposals.
SCNN [6] first uses sliding windows of different scales to generate some proposals with
a fixed overlap rate. TURN [20] draws on the classic algorithm Faster R-CNN [21] in
object detection. It generates proposals through uniformly distributed anchors. GTAN [22]
introduces Gaussian kernels to dynamically optimize the temporal scale of each action
proposal. Those methods are inspired by the achievements of anchor-based object detectors
in still images; they discretize the proposal task into a classification task where multiple
predefined anchors with different lengths are used as classes and a class that best fits the
ground-truth action length is regarded as a ground-truth class for training.

As for the bottom-up methods [23–26], they generate proposals by locating temporal
boundaries and then combining the boundaries in a certain strategy. TAG [27] designs
a temporal watershed algorithm to generate proposals but lacks confidence scores for
retrieval. On the basis of TAG, BSN [11] utilizes a temporal evaluation module to locate
temporal boundaries and adopts a proposal evaluation module to regress the confidence of
proposals. However, BSN is inefficient because it conducts proposal feature construction
and confidence evaluation procedure for each proposal, respectively. To solve this problem,
BMN [28] designs a boundary-matching (BM) mechanism for the confidence evaluation of
densely distributed proposals. Bottom-Up-TAL [12] introduces two regularization terms
to mutually regularize the learning procedure. Jointly optimizing these two terms, the
entire framework is aware of potential constraints during an end-to-end optimization
process. Considering that proposals generated by the methods using only local clues are
susceptible to noise. TSI [29] leverages temporal context for boundary detection with
the local–global-complementary structure to improve performance. TSI also designs a
scale-invariant loss function to improve detection performance for short actions. RTD-
Net [30] adopts Transformer architecture to directly generate action proposals in untrimmed
videos. It models dependencies between proposals from a global perspective and avoids
non-maximum suppression post-processing through simple but efficient design.

2.4. Temporal Action Detection

Temporal action detection can be divided into two types of methods. One is the one-
stage method, which aims to localize an action and predict its class simultaneously. The
other is the two-stage approach, which works by classifying proposals and detecting them.
As one-stage methods, PBRNet [31] and AFSD [14] skip the proposal generation by directly
detecting action instances in untrimmed videos. P-GCN [32] exploits the proposal–proposal
relations for temporal action detection in videos. G-TAD [33] adaptively incorporates multi-
level semantic context into video features and casts temporal action detection as a sub-graph
localization problem to localize actions in video graphs. As for two-stage temporal action
detection methods, TCANet [34] and RCL [15] adopt the progressive boundary refinement
method to achieve precise boundaries and reliable confidence of proposals, thus improving
the efficiency of action detection.

3. Methodology
3.1. Problem Definition

We are given an untrimmed video sequence V = {vt}lv
t=1, where vt denotes the

t-th frame in the video sequence and lv is the length of the video. The temporal an-
notation set corresponding to the video V is composed of a set of action instances
ψg =

{
ϕg,n = (ts

n, te
n)
}Ng

n=1, where Ng is the number of ground-truth action instances and
ts
n and te

n are the starting and ending time of action instance ϕg,n. TAPG aims to predict

proposals ψp =
{

ϕp,n = (ts
n, te

n, pn)
}Np

n=1 to cover ψg with high recall and high temporal
overlap, where pn is action completeness score of predicted proposal ϕp,n, and it will be
further used for proposal ranking.
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3.2. Feature Encoding

We employ two-stream networks to encode raw video sequence and generate a visual
feature sequence. Specifically, given an untrimmed video V containing lv frames, we
can extract a visual feature sequence F = { fi}ls

i=1 by concatenating the output of the last
FC-layer in the two-stream networks, where ls denote the length of visual feature F. Like
previous works [11,24,28,29], we extract features at regular frame interval δ to reduce
computational cost; thus ls = lv/δ.

3.3. Temporal Context Modeling Network (TCMNet)

TCMNet is designed to generate densely distributed proposals directly in a unified
network. It generates action completeness maps that represent the confidence of densely
distributed proposals and local–global boundary probability sequences that represent
boundary information simultaneously. The framework of TCMNet is illustrated in Figure 2,
which contains three main modules: BaseNet with dilated convolutions (DBNet), Action
Completeness Module (ACM) and Temporal Boundary Generator (TBG). DBNet can be
seen as the backbone of TCMNet, which aims to handle the input video features through
different dilated convolutional layers to better model the temporal information. It receives
the video feature sequence as input and outputs a feature sequence as the input to ACM
and TBG. ACM generates action completeness maps of dense proposals through Boundary-
Matching (BM) layers proposed in BMN [28]. In addition, dilated convolutional layers are
embedded in ACM to obtain different receptive fields. TBG contains a local branch and
a global branch. The local branch focuses on local sudden changes in the input feature
sequence and generates rough boundaries with high recall. The global branch extracts
contextual features and generates high-precision boundaries through our improved U-
shaped architecture.

Figure 2. The framework of our method. TCMNet contains three main modules: BaseNet with dilated
convolutions (DBNet) handles the extracted features for temporal relationship modeling. Action
Completeness Module (ACM) evaluates the confidence of densely distributed proposals. Temporal
Boundary Generator (TBG) generates high-recall and high-precision boundaries.

3.3.1. DBNet

In order to faithfully detect boundaries, each action instance in the video sequence
needs to have the appropriate temporal receptive fields. However, the duration of different
action instances in the video generally varies widely, so it is impossible to find a one-for-all
temporal receptive field. As a natural solution, we embed a set of convolutional filters with
different dilation rates in BaseNet and name it DBNet. The goal of DBNet is to receive the
two-stream video feature sequence F as input and output a feature sequence FBaseNet shared
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by ACM and TBG. As shown in Figure 3, we embed a dilated convolutional layer consisting
of several different dilated convolutional filters after the traditional temporal convolution.
The outputs from all dilated convolutions are simply averaged, returning fused contextual
information. Note that a skip connection is inserted after the average operation, such that
the dilated convolutions are reinforced to focus on learning the residual. This is written as

FBaseNet = dc(conv2(dc(conv1(F)))), (1)

dc =
1

Nconv

Nconv

∑
i=1

convi(F) + F, (2)

where conv1 and conv2 denote two traditional temporal convolutions and dc(·) denotes the
dilated convolutional layer. By combining convolutions with different dilation rates, DBNet
can better model the temporal relationship of action instances with different durations.

Figure 3. Architecture of DBNet. d1, d2 and d3 are the dilation rates of temporal 1D convolutions.

3.3.2. Action Completeness Module (ACM)

The ACM module receives the shared feature sequence generated by DBNet as input
and outputs action completeness maps to evaluate the confidence score of dense proposals.
To achieve this goal, we adopt the Boundary-Matching (BM) mechanism proposed in
BMN [28]. As shown in Figure 4, the BM layer can transfer temporal feature sequence
FBaseNet ∈ RC×D to proposal feature maps MF ∈ RD×T×128×32, where T is the length of the
feature sequence and D is the maximum duration of proposals. The proposal feature maps
are then fed into several 2D convolutional and dilated convolutional layers to generate
new feature maps M

′
F ∈ RD×T×128. After going through the ACM module, each proposal

is predicted as two confidence scores, which are supervised by the IoU classification loss
and the IoU regression loss.
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Figure 4. The architecture of Action Completeness Module (ACM). ACM evaluates the completeness
of all densely distributed proposals.

3.3.3. Temporal Boundary Generator (TBG)

The goal of TBG is to accurately evaluate the start and end probabilities of all temporal
locations in untrimmed videos. These boundary probability sequences are then used to
generate proposals in the post-processing stage. Previous methods treat the boundary
as a kind of local information but do not pay enough attention to global context or deep
semantic features, which makes the detection of the boundary vulnerable to noise [35]. To
remedy this defect, we follow the structural details of TSI [29] to accurately detect temporal
boundaries through a local–global complementary architecture. The architecture of TBG
is shown in Figure 5. The local branch in TBG contains only two temporal convolutional
layers. This branch focuses on local abrupt changes and generates a rough boundary
with high recall but low precision to cover all actual start/end points. Inspired by the
UNet [36] used in image segmentation, the global branch is designed to represent the action
boundary through a U-shaped contextual architecture. The global branch uses multiple
temporal convolutional layers followed by down-sampling to extract semantic information
from different granularities. In order to restore the resolution of the temporal feature
sequence, the up-sampling operation is repeated multiple times, and the features of the
same resolution are adaptively fused.

Figure 5. The architecture of Temporal Boundary Generator (TBG). TBG contains local and global
branches to generate high-recall and high-precision boundaries. Pool stands for the down-sample
operation and

Electronics 2022, 11, x FOR PEER REVIEW  8  of  18 
 

 

remedy this defect, we follow the structural details of TSI [29] to accurately detect tem‐

poral boundaries through a local–global complementary architecture. The architecture of 

TBG is shown in Figure 5. The local branch in TBG contains only two temporal convolu‐

tional layers. This branch focuses on local abrupt changes and generates a rough bound‐

ary with high recall but low precision to cover all actual start/end points. Inspired by the 

UNet [36] used in image segmentation, the global branch is designed to represent the ac‐

tion boundary through a U‐shaped contextual architecture. The global branch uses multi‐

ple temporal convolutional layers followed by down‐sampling to extract semantic infor‐

mation from different granularities. In order to restore the resolution of the temporal fea‐

ture sequence, the up‐sampling operation is repeated multiple times, and the features of 

the same resolution are adaptively fused. 

Conv1D (3, 128)

Conv1D (3, 256)

Pool, /2

Pool, /2

Conv1D (3, 128)

Conv1D (3, 512)

Upsample, ×2

Conv1D (3, 256)

Upsample, ×2

Upsample, ×2

ff

f

Conv1D (3, 128) Conv1D (1, 2)

Conv1D (1, 2)

Global Branch：High precision, Low recall

Local Branch：Low precision, High recall

f Aggregation Function

Sigmoid

Sigmoid

T
em

p
or

al
 f

ea
tu

re
 s

eq
u

en
ce

 

Figure 5. The architecture of Temporal Boundary Generator (TBG). TBG contains local and global 

branches to generate high‐recall and high‐precision boundaries. Pool stands for the down‐sample 

operation and ○f   stands for aggregation function. 

Unlike the TBD proposed in TSI [29], we argue that: (1) Deep semantic features ob‐

tained through temporal max pooling during down‐sampling are not enough because the 

fine‐grained temporal information critical for localizing boundaries is lost. Therefore, as 

shown in Figure 6a, we design a new pooling method called Pool, which uses both aver‐

age‐pooling and max‐pooling operations to generate two different temporal context de‐

scriptors. The two descriptors are then forwarded to the shared MLP to produce our deep 

semantic features, written as 

max ( )F MaxPool X ,  avg ( )F AvgPool X ,  (3) 

 avg max( ) ( )Pool MLP F MLP F ,  (4) 

where + is element‐wise addition. (2) Semantic features of different granularities contrib‐

ute to boundary detection differently, so it is not the most appropriate way to concatenate 

semantic features directly. Therefore, as shown in Figure 6b, we design an aggregation 

function to achieve adaptive fusion of the same resolution features. Specifically, we first 

concatenate each input feature in the channel dimension to obtain the new feature 

stands for aggregation function.

Unlike the TBD proposed in TSI [29], we argue that: (1) Deep semantic features
obtained through temporal max pooling during down-sampling are not enough because
the fine-grained temporal information critical for localizing boundaries is lost. Therefore,
as shown in Figure 6a, we design a new pooling method called Pool, which uses both
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average-pooling and max-pooling operations to generate two different temporal context
descriptors. The two descriptors are then forwarded to the shared MLP to produce our
deep semantic features, written as

Fmax = MaxPool(X), Favg = AvgPool(X), (3)

Pool = MLP(Favg) + MLP(Fmax), (4)

where + is element-wise addition. (2) Semantic features of different granularities contribute
to boundary detection differently, so it is not the most appropriate way to concatenate
semantic features directly. Therefore, as shown in Figure 6b, we design an aggregation
function to achieve adaptive fusion of the same resolution features. Specifically, we first
concatenate each input feature in the channel dimension to obtain the new feature

Fupsample
TBG =

[
f upsample
1 ‖ f upsample

2 ‖ . . . ‖ f upsample
n

]
, (5)

where ‖ denotes concatenation and f upsample
1 , . . . , f upsample

n are semantic features of different

granularities. Then, we feed Fupsample
TBG into squeeze-excitation architecture consisting of several

temporal convolutions to explicitly model the channel relationship; the channel scaling factor
in the squeeze-excitation architecture is denoted as r. Then, we normalize the output using
the Softmax function to get the weight of semantic features with different granularity.

α = [α1 ‖ α2 ‖ . . . ‖ αn], (6)

where α1, . . . ,αn denote the weight of semantic features of different granularities. Finally,

we can get the feature of adaptive fusion, written by Fupsample
TBG =

n
∑

i=1
( f upsample

i · αi).

Figure 6. Details of the down-sample operation and aggregation function: (a) Architecture of Pool;
(b) Architecture of Aggregation Function.
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4. Training and Inference
4.1. Training of TCMNet
4.1.1. Label Assignment

For each action instance ϕg,n = (ts
n, te

n) in the annotation ψg, its starting region and
ending region are defined as rs = [ts − d/10, ts + d/10] and re = [te − d/10, te + d/10],
respectively, where d = te − ts is the duration of ϕg,n. Then, by computing the maximum
overlap ratio of each temporal interval with rs, we can obtain Gs =

{
gs

tn

}
as the starting

label of TBG. The ending label Ge =
{

ge
tn

}
can be obtained through the same label assign-

ment process. For ACM, we follow the definition in BMN [28] to get the label of the action
completeness map Gc =

{
gc

i,j

}
.

4.1.2. Loss of ACM

ACM outputs action completeness map pc with two channels. The training loss is
defined as regression loss Lreg and binary classification loss Lcls, respectively:

LACM = Lcls(Pcls
c , Gc) + β · Lreg(Preg

c , Gc), (7)

where L2 loss is adopted as Lreg and SI loss proposed in TSI [29] is adopted as Lcls.

4.1.3. Loss of TBG

TBG outputs the starting and ending probability sequence of local and global branches,
denoted as Ps

l , Pe
l , Ps

g, Pe
g, respectively. We follow BMN [28] to adopt binary logistic loss Lbl

as starting and ending losses to supervise the boundary prediction with Gs, Ge, denoted as

LTBG =
1
2
(Lbl(Ps

l , Gs) + Lbl(Pe
l , Ge) + Lbl(Ps

g, Gs) + Lbl(Pe
g, Ge)), (8)

4.1.4. The Training Objective of TCMNet

The multi-task loss function of TCMNet consists of TBG loss, ACM loss and the L2
regularization term, which is defined as:

L = LTBG + β · LACM + λ · L2(θ), (9)

where weight term β and λ are set to 1 and 0.0001 separately to ensure different modules
are trained evenly, and L2(θ) is the L2 regularization term.

4.2. Inference of TCMNet
4.2.1. Proposal Selection

To ensure the diversity of proposals and guarantee high recall, we only use the local
starting and ending probability sequences of TBG for proposal selection. When temporal
locations in the probability sequences satisfy (1) local peak of boundary probabilities
or (2) probabilities higher than 0.5·max(P), these temporal locations are regarded as the
starting and ending locations. Then, we match all starting and ending locations to generate
redundant candidate proposals ψp.

4.2.2. Score Fusion and Proposal Suppression

To generate a more reliable confidence score, for each proposal ϕ, we multiply its
boundary probability by the confidence score to generate the final confidence score p f ,

p f = pstart · pend · pc, (10)

where pstart =
√

ps
l · ps

g is the starting probability, pend =
√

pe
l · pe

g is the ending probability

and pc is the action completeness score, which is the fusion of the classification score and
the regression score, written by pc = pcls

c · p
reg
c . Then, we need Soft-NMS [37] to suppress
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redundant proposals to retrieve the final high-quality proposals. After the Soft-NMS step,
we employ a confidence threshold to get the final sparse candidate proposals.

5. Experimental Results and Discussion
5.1. Datasets and Settings
5.1.1. ActivityNet-1.3 and THUMOS14

The ActivityNet-1.3 [38] dataset consists of 19,994 untrimmed videos with annotations
for the action proposal task. The dataset has 200 action categories and is divided into
training, validation and test sets by a ratio of 2:1:1. The THUMOS14 [39] dataset contains
200 annotated untrimmed validation videos with 20 action categories and 213 annotated
untrimmed test videos with 20 action categories. We train TCMNet on the validation set
and evaluate it on the test set.

5.1.2. Implementation Details

For video representation, we adopt two-stream networks TSN [40] and I3D [41] for feature
encoding. During THUMOS14 feature extraction, the frame strides of I3D and TSN are set to
8 and 5, respectively. For ActivityNet-1.3, the sampling frame stride is 16. On ActivityNet-1.3,
the feature sequence is rescaled to 100 by linear interpolation. On the THUMOS dataset, the
length of the sliding window is set to 128 and the overlap ratio is set to 0.5. When training
TCMNet, we use Adam for optimization. The batch size is set to 8. The learning rate is set to
0.001 for the first seven epochs, and we decay it to 0.0001 for the other two epochs.

5.2. Temporal Action Proposal Generation

Following previous works, we compute the average recall (AR) under different average
numbers of proposals (AN) and the area under the AR versus the AN curve for each video,
denoted by AR@AN and AUC, to evaluate the quality of generated proposals. We use tIoU
thresholds set [0.5:0.05:0.95] on ActivityNet-1.3 and [0.5:0.05:1.0] on THUMOS14 [10].

5.2.1. Comparison with State-of-the-Art Methods on ActivityNet-1.3

Table 1 illustrates the performance of our proposal generation method compared
with other state-of-the-art methods on the validation set of the ActivityNet-1.3 dataset.
It should be pointed out that due to the limitations of experimental equipment, several
TAPG methods (DBG, TSI) that we reimplemented on ActivityNet-1.3 did not achieve
the results proposed in the original paper. As can be seen from the table, our TCMNet
outperforms other state-of-the-art proposal generation methods. Specifically, the TCMNet
outperforms BMN [28] with 0.92% and 1.07% in terms of AR@100 and AUC. In addition,
TCMNet improves AUC from 67.93% to 68.17% on the validation set compared to TSI [29].
Additionally, when AN is one, our TCMNet significantly improves AR from 32.57% to
33.69% by 1.12%. It should be pointed out that action proposal generation focuses on the
diversity of the retrieved proposals and judges the performance by the recall of top-N
proposals, while the action detection task focuses on the accuracy of the top-N proposals.
Therefore, some methods, such as DBG [23], can retrieve the actions with good diversity, but
sacrifice the accuracy of top-N proposals, which leads to lower action detection performance.
The results in Table 5 also prove this point, the performance of DBG on action detection is
much lower than other methods.

5.2.2. Comparison with State-of-the-Art Methods on THUMOS14

We also compare the performance of our method with other state-of-the-art methods
on the THUMOS14 dataset, as shown in Table 2. Due to the excellent performance achieved
by I3D and TSN in action recognition tasks, we use them in our TCMNet to extract features.
For a fair comparison, we also re-implement BMN [28] and TSI [29] using the same TSN
and I3D features through publicly available code. As can be seen from the table, our
method using TSN_GTAD or I3D_PGCN video features outperforms BMN [28] and TSI [29]
significantly when the proposal number is set within [50,100,200,500,1000]. Specifically,
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(1) based on the I3D_PGCN features, when the number of proposals varies from 50 to 1000,
our method outperforms TSI by 2.09%, 1.63%, 1.58%, 1.18% and 0.93%. (2) Based on the
TSN_GTAD features, when the number of proposals varies from 50 to 1000, our method
outperforms TSI by 2.39%, 1.29%, 0.84%, 0.72% and 0.40%.

5.3. Ablation Study

In this section, we comprehensively evaluate our proposed TCMNet on the THUMOS14
dataset. We use I3D_PGCN feature as the visual feature sequence for ablation experiments.

5.3.1. Effectiveness and Efficiency of Modules in TCMNet

We conduct ablation studies using different architectural settings to verify the effec-
tiveness and efficiency of each module proposed in TCMNet. The evaluation results shown
in Table 3 indicate that: (1) Integrating convolutional filters with different dilation rates ef-
fectively achieves different temporal receptive fields optimized for specific-duration actions.
(2) Unlike TSI [29] which employs max pooling for down-sampling, our proposed pooling
operation for down-sampling can obtain fine-grained temporal information critical for
localizing boundaries. (3) By further utilizing aggregation functions in TBG, deep semantic
information of different granularities can be adaptively fused to reduce the impact of noise.
(4) Finally, by integrating all the separated modules into an end-to-end framework, we can
obtain competitive performance gains.

5.3.2. Study on Channel Scaling Factor r in TBG

Drawing on the idea in SENet [42], we explicitly model the weight of each feature
channel through the squeeze-excitation architecture. We then use this weight to enhance
useful channels and suppress channels that are not useful for boundary detection. The
parameter r in the TBG module needs to be adjusted during the experiment, where the
range of r is 1, 2, 4 and 8. In Table 4, we notice that without channel dimension reduction,
the average recall (AR) under different average number of proposals (AN) drops severely,
and AR@AN also drops as r exceeds a certain range. A reasonable explanation is that when
the value of r is too large, the intermediate representation vector will lose key information,
but when r is too small, the action-independent information contained in the intermediate
representation vector will dominate. We finally adopt r = 2 by default for all experiments,
with which we obtained the best results for AR@AN.

5.3.3. Effectiveness of Locating Actions with Different Durations

To further verify the effectiveness of locating actions with different durations, we
follow the details of TSI [29] and conduct several ablation experiments, which are shown
in Table 5. We divide the dataset into three groups according to the value of s (s stands
for the scale of ground truth): small-scale actions that 0 ≤ s < 0.06, middle-scale actions
in which 0.06 ≤ s < 0.65, and large-scale actions in which 0.65 ≤ s ≤ 1.0. Each of these
subsets has almost the same amount of ground truth to ensure fair comparisons. We then
evaluate the methods on each sub-dataset. As can be seen from the table, TCMNet has a
better performance on actions of different durations.

5.3.4. Visualization of Qualitative Results

We also visualize qualitative results. The top five proposal predictions of BMN [28] and
TCMNet on the ActivityNet-1.3 dataset are shown in Figure 7 The demonstrated canoeing
video has three ground-truth action instances. However, due to the excessive learning for
long actions, BMN may regard two individual action instances as only one and predict more
proposals with a long duration. Additionally, the temporal boundary of BMN is also not
accurate enough because it only treats boundaries as local clues and does not pay enough
attention to the global context. Compared with BMN, our proposed method can retrieve three
action instances independently with higher overlap and more accurate boundaries.
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Figure 7. Qualitative results of BMN [28] and TCMNet on an example from the ActivityNet-1.3. The
proposals shown are the top five predictions for corresponding ground truths.

5.4. Temporal Action Proposal Detection

In this section, we put the proposals into a temporal action detection framework
to evaluate its detection performance. We adopt Mean Average Precision (mAP) as an
evaluation metric for the temporal action detection task. On THUMOS14, mAP with tIoU
thresholds set [0.3:0.1:0.7] are calculated. On ActivityNet-1.3, mAP with tIoU thresholds set
{0.5,0.75,0.95} and average mAP with tIoU thresholds set [0.5:0.05:0.95] are reported [10].

For ActivityNet-1.3, we first use TCMNet to generate a set of action proposals for
each video and keep the top 100 proposals for subsequent detection. Then, we adopt the
top video-level classification result provided by CUHK [43] as the detection result. The
experimental results are shown in Table 6; we can see that our method outperforms TSI by
1.53%, 1.42% and 0.94% when tIoU varies from 0.5 to 0.95 and achieves the mAP of 34.03%.
Furthermore, compared to recent methods, TCMNet can achieve state-of-the-art results at
tIoU = 0.5 and tIoU = 0.95.

For THUMOS14, we first use TCMNet to generate 200 temporal proposals per video.
Then, we use the top two video-level classification results generated by UntrimmedNet [44]
classifier to generate classification results for each proposal. As can be seen from Table 7,
TCMNet achieves the best results at tIoU 0.6 (44.8%) and 0.7 (32.1%). Specifically, our
TCMNet outperforms TSI by 3.8%, 4.9%, 4.9%, 5.2% and 4.4% when tIoU varies from 0.3 to
0.7. These results indicate that proposals generated by TCMNet are more accurate.

Table 1. Comparison between TCMNet and other state-of-the-art temporal action proposal generation
methods on the validation set of ActivityNet-1.3 in terms of AR@AN and AUC. “re” denotes re-
implementation by ourselves.

Method BSN [11] MGG [45] BMN [28] DBG (re) [23] TSI (re) [29] RTD-Net [30] TCMNet

AR@1 (val) (%) 32.17 - - 30.52 32.57 33.05 33.69
AR@100 (val) (%) 74.16 74.56 75.01 76.04 75.99 73.21 75.93

AUC (val) (%) 66.17 66.54 67.10 68.13 67.93 67.10 68.17
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Table 2. Comparison between TCMNet and other state-of-the-art temporal action proposal generation
methods on THUMOS14 in terms of AR@AN. Results with “*” are reported based on I3D_PGCN
features and results with “ˆ” are reported based on TSN_GTAD features.

Method Feature @50 (%) @100 (%) @200 (%) @500 (%) @1000
(%)

MGG [45] 2-Stream 39.93 47.75 54.65 61.36 64.06
BSN [11] 2-Stream 37.46 46.06 53.21 60.64 64.52
BMN [28] 2-Stream 39.36 47.72 54.70 62.07 65.49
BMN* [28] I3D_PGCN 37.03 44.12 49.49 54.27 -
BMNˆ [28] TSN_GTAD 40.61 49.79 57.40 65.75 70.72
BSN++ [24] 2-Stream 42.44 49.84 57.61 65.17 66.83

TSI [29] 2-Stream 42.30 50.51 57.24 63.43 -
TSI* [29] I3D_PGCN 39.12 47.79 55.02 63.88 67.81
TSIˆ [29] TSN_GTAD 40.93 50.23 57.88 66.46 71.95

TCANet [34] 2-Stream 42.05 50.48 57.13 63.61 66.88
RapNet [46] 2-Stream 40.35 48.23 54.29 61.41 64.47

RTD-Net* [30] I3D_PGCN 41.52 49.32 56.41 62.91 -
ABN [47] 2-Stream 40.87 49.09 56.24 63.53 67.29
TCMNet * I3D_PGCN 41.21 49.42 56.60 65.06 68.74
TCMNet ˆ TSN_GTAD 43.32 51.52 58.72 67.18 72.35

Table 3. Ablation study on the performance of the proposed module on the THUMOS14 dataset,
measured by AR@AN. “f” is the proposed feature aggregation function.

Module @50 (%) @100 (%) @200 (%) @500 (%)

TSI [29] 39.12 47.79 55.02 63.88
+DBNet 41.02 49.11 56.24 64.10
+ACM 39.64 48.24 55.28 63.86

+TBG (w/o f) 39.91 48.13 55.63 64.03
+TBG 40.35 48.80 56.11 64.07

+DBNet and ACM and TBG 41.21 49.42 56.60 65.06

Table 4. Analysis of hyperparameter settings on THUMOS14 dataset, measured by AR@AN. r is the
channel scaling factor in TBG.

Scaling Factor r @50 (%) @100 (%) @200 (%) @500 (%)

1 40.66 48.79 55.83 64.22
2 41.21 49.42 56.60 65.06
4 40.92 49.29 56.42 64.47
8 40.89 49.19 56.26 64.12

Table 5. Effectiveness of locating actions with different durations on the ActivityNet-1.3 validation
set. s stands for the scale of ground truth.

Method AUC (%) 0.0 ≤ s < 0.06 (%) 0.06 ≤ s < 0.65 (%) 0.65 ≤ s ≤ 1.0 (%)

BMN [28] 67.10 36.53 70.43 94.48
DBG [23] 68.13 39.07 72.18 93.08
TSI [29] 67.93 39.25 71.06 94.59

TCMNet 68.17 40.24 71.55 94.71
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Table 6. Temporal action detection results on the validation set of the ActivityNet-1.3 in terms of
mAP at different tIoU thresholds. “re” denotes that this method is re-implemented by ourselves.

Method 0.5 (%) 0.75 (%) 0.95 (%) Average (%)

BSN [11] 46.45 29.96 8.02 30.03
BMN [28] 50.07 34.78 8.29 33.85
DBG [23] 42.59 26.24 6.56 29.72

TSI (re) [29] 49.32 32.84 8.40 32.64
P-GCN [32] 48.26 33.16 3.27 31.11
G-TAD [33] 50.36 35.02 9.02 34.09

RTD-Net [30] 47.21 30.68 8.61 30.83
TCMNet 50.85 34.26 9.34 34.03

Table 7. Temporal action detection results on the test set of THUMOS14 in terms of mAP at different
tIoU thresholds. “re” denotes that this method is re-implemented by ourselves.

Method 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%)

BMN [28] 56.0 47.4 38.8 29.7 20.5
P-GCN [32] 60.1 54.3 45.5 33.5 19.8
PBRNet [31] 58.5 54.6 51.3 41.8 29.5
TSI (re) [29] 63.6 57.7 49.9 39.6 27.7
PcmNet [25] 61.5 55.4 47.2 37.5 27.3
TCANet [34] 60.6 53.2 44.6 36.8 26.7

AFSD [14] 67.3 62.4 55.5 43.7 31.1
ABN [47] 59.9 54.0 46.1 37.0 25.6
RCL [15] 70.1 62.3 52.9 42.7 30.7
TCMNet 67.4 62.6 54.8 44.8 32.1

6. Conclusions

In this paper, we proposed a Temporal Context Modeling Network (TCMNet) for
generating temporal action proposals. TCMNet effectively achieved different temporal
receptive fields optimized for specific-duration actions by embedding convolutional layers
containing different dilation rates. To predict precise action boundaries, the Temporal
Boundary Generator (TBG) module improved the local–global complementary architec-
ture in TSI. TBG obtained useful deep semantic information by embedding the proposed
pooling operation and achieved an adaptive fusion of semantic features through an aggre-
gation function to reduce noise disturbance. Extensive experiments on ActivityNet-1.3 and
THUMOS14 datasets demonstrated the effectiveness of our method in terms of temporal
action proposal and detection performance. In the beginning, we considered that the con-
textual information exploited in previous work was often characterized by the similarity
between frames (or proposals) at the semantic feature level, without taking into account
the temporal location contextual interactions between frames (or proposals). Temporal
location contextual interactions are valuable prior knowledge. Therefore, we tried to embed
position encoding in the temporal action proposal generation framework, but we did not
achieve the desired effect. A possible reason is that fixed sinusoidal position encoding can
only provide relative distance information without direction. In future work, we will try
to augment feature representations with directed temporal positional encoding for more
precise localization of actions.
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