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Temporal Convolutional Networks 
for the Advance Prediction of ENSO
Jining Yan  1, Lin Mu2,3,6 ✉, Lizhe Wang1,6 ✉, Rajiv Ranjan4 & Albert Y. Zomaya5

El Niño-Southern Oscillation (ENSO), which is one of the main drivers of Earth’s inter-annual climate 

variability, often causes a wide range of climate anomalies, and the advance prediction of ENSO 

is always an important and challenging scientific issue. Since a unified and complete ENSO theory 
has yet to be established, people often use related indicators, such as the Niño 3.4 index and 
southern oscillation index (SOI), to predict the development trends of ENSO through appropriate 
numerical simulation models. However, because the ENSO phenomenon is a highly complex and 
dynamic model and the Niño 3.4 index and SOI mix many low- and high-frequency components, the 
prediction accuracy of current popular numerical prediction methods is not high. Therefore, this paper 

proposed the ensemble empirical mode decomposition-temporal convolutional network (EEMD-

TCN) hybrid approach, which decomposes the highly variable Niño 3.4 index and SOI into relatively 
flat subcomponents and then uses the TCN model to predict each subcomponent in advance, finally 
combining the sub-prediction results to obtain the final ENSO prediction results. Niño 3.4 index and 
SOI reanalysis data from 1871 to 1973 were used for model training, and the data for 1984–2019 were 
predicted 1 month, 3 months, 6 months, and 12 months in advance. The results show that the accuracy 
of the 1-month-lead Niño 3.4 index prediction was the highest, the 12-month-lead SOI prediction was 
the slowest, and the correlation coefficient between the worst SOI prediction result and the actual 
value reached 0.6406. Furthermore, the overall prediction accuracy on the Niño 3.4 index was better 
than that on the SOI, which may have occurred because the SOI contains too many high-frequency 
components, making prediction difficult. The results of comparative experiments with the TCN, LSTM, 
and EEMD-LSTM methods showed that the EEMD-TCN provides the best overall prediction of both 

the Niño 3.4 index and SOI in the 1-, 3-, 6-, and 12-month-lead predictions among all the methods 
considered. This result means that the TCN approach performs well in the advance prediction of ENSO 

and will be of great guiding significance in studying it.

El Niño-Southern Oscillation (ENSO) is a sea surface temperature and air pressure shock that occurs in the 
equatorial Paci�c Ocean1. It is a sea-air interaction phenomenon at low latitudes, which is manifested by the El 
Niño-La Niña transition in the ocean and the “southern oscillation” (SO) in the atmosphere. El Niño refers to 
the warming phenomenon that occurs in the tropical Paci�c every 2–7 years, while the cooling phenomenon is 
called La Niña2. El Niño and La Niña are closely related to SO, which is the inverse-change phenomenon of the 
pressure �eld in the tropical east Paci�c and tropical east Indian Ocean. �e ENSO is one of the main drivers of 
Earth’s inter-annual climate variability. It o�en causes a wide range of climate anomalies, triggering a variety of 
meteorological disasters and causing huge economic property damage in a�ected areas3.

Scientists from all over the world pay close attention to the ENSO event and provide various explanations for 
its causes, including self-sustained oscillatory theory, equatorial high-frequency zonal wind forcing theory, etc. 
However, a uni�ed, complete ENSO theory has yet to be established, with the prediction and understanding of 
ENSO progression still presenting a challenge to scientists4. �erefore, people o�en use related indicators to pre-
dict the development trends of ENSO through appropriate numerical simulation models.

In general, the commonly used ENSO indexes include the Niño .3 4 index5, oceanic niño index (ONI)6, south-
ern oscillation index (SOI)7, sea-surface temperature (SST) index8, wind index9, and outgoing longwave radiation 
(OLR) indexes10. Each index is a comprehensive re�ection of complex climate change factors, and people try to 
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reveal the underlying complex climate change characteristics by studying the change law of the index. For exam-
ple, the Niño .3 4 index and ONI track the SST anomalies in the east-central tropical Paci�c between 5 S − 5 N and 
170 W− 120 W, namely, Niño .3 4 region, wind index measures the movement of air �ow in the upper and lower 

branches of the Paci�c Walker circulation, and the OLR index indicates the extent of convection across the trop-
ical Paci�c. However, ENSO is a very complex phenomenon, it is di�cult to use a uni�ed index to characterize the 
ENSO phenomenon in di�erent parts of the world. In general, the Niño .3 4 index and the ONI are the most 
commonly used indexes to de�ne El Niño and La Niña events in the sea, and the SOI is the oldest indicator of the 
ENSO state in the atmosphere11, which constitute the two important and highly-related components of ENSO. In 
addition, because the ONI is the three-month running mean of SST anomalies in the Niño .3 4 region12, that is, the 
ONI is the three-month-moving-average of the Niño .3 4 index. Hence, in this paper, we choose the Niño .3 4 
index as an indicator of ENSO events in the ocean and the SOI as a measure of ENSO events in the atmosphere.

For the numerical simulation models used for ENSO prediction, three general approaches exist: 
statistics-based methods, ML-based methods, and a hybrid approach, i.e., the statistics-ML method.

•	 �e statistical ENSO prediction methods leverage the collation, induction, and analysis of historical ENSO 
indexes to realize the analysis and prediction of ENSO phenomena. Typical methods include the Holt-Win-
ters (HW) method and the autoregressive integrated moving average (ARIMA) method. �e HW method is 
a statistical short-term method13 that has been used to forecast time series with seasonal patterns and repet-
itive forms and uses a technique called “exponential smoothing” that reduces �uctuations in the time-series 
data, thus providing a clearer view of their fundamentals14. In 2014, Mike and Ray used the HW method 
to make 1-step-ahead and 12-step-ahead forecasts of the Niño region 3 SST index from January 1933 to 
December 2012. �e �nal predicted out-of-sample root mean square errors of the HW model were 0.303 and 
1.309, respectively. Hence, they introduced an improved HW model called the dynamic seasonality model 
(DSM) to alleviate the shortcomings of the HW method unsuitable for periodically stationary time series15. 
�e ARIMA aims to describe the autocorrelations in time-series data. In 2011, Matthieu et al. developed a 
time-series analysis method using the ARIMA to investigate temporal correlations between the monthly 
Plasmodium falciparum case numbers and ENSO as measured by the SOI at the Cayenne General Hospital 
between 1996 and 2009. �e results showed a positive in�uence of El Niño at a lag of three months on Plas-
modium falciparum cases (p < 0.001), and the incorporation of SOI data in the ARIMA model reduced the 
Akaike information criterion (AIC)16 by 4%7. However, the ARIMA cannot return an estimate of the seasonal 
component17. To undertake further analysis based on the seasonal component, ARIMA models may not be 
the best choice.

•	 �e ML-based ENSO prediction methods are realized by learning and mining the historical ENSO index 
features and establishing a prediction model for ENSO prediction. Commonly used methods include support 
vector regression (SVR)18,19, arti�cial neural networks (ANNs)20,21, long short-term memory (LSTM)22,23, 
and so on24. For example, in 2009, Silestre and William used a Bayesian neural network (BNN) and SVR, two 
non-linear regression methods, to forecast the tropical Paci�c SST anomalies at lead times ranging from 3 to 
15 months using the sea-level pressure (SLP) and SST as predictors. �e results showed that the BNN model 
gave better overall forecasts than did SVR. In 2011, Ravi et al. selected the Niño 1 + 2, Niño 3, Niño 3.4, and 
Niño 4 indexes as predictors of the Indian summer monsoon rainfall index (ISMRI) using an ANN model for 
prediction. �e results suggested that the ANN model had better predictive skills than all the linear regression 
models investigated, implying that the relationship between the Niño indexes and the ISMRI is essentially 
non-linear in nature25. In 2017, Zhang et al.26 adopted LSTM to predict the SST of the Bohai Sea. �e compar-
ative experimental results with SVR showed that the LSTM network achieved better prediction performance. 
In 2018, Cli�ord et al. took an approach based on using various complex network metrics extracted from 
climate networks with an LSTM neural network to forecast ENSO phenomena. �e preliminary experiments 
showed that training an LSTM model on a network-metrics time-series data set provides great potential 
for forecasting ENSO phenomena multiple longer steps in advance27. However, the following problems still 
exist: (i) Although SVR does not involve non-linear optimization and cannot generate multiple minimums, 
as well as having good robustness to outliers28, the overall prediction e�ect of SVR is generally worse than 
ANNs29, and (ii) ANNs and LSTM both have great potential to forecast ENSO phenomena multiple steps in 
advance27 but become complex and extremely time-consuming as the number of network layers increases. 
Recent results, however, indicate that LSTM cannot handle the ultra-long-term dependency problem well.

•	 �e typical practice of the hybrid (statistics-ML-based) approach is to use statistical theory to decompose 
time-series data; use ML methods to �lter, analyse, and predict the decomposition; and �nally merge the 
prediction results of each decomposition part. �e commonly used combination algorithms include ARI-
MA-ANNs and ensemble empirical mode decomposition (EEMD)-convolutional long short-term memory 
(ConvLSTM). For example, in 2016, Patil and Deo30 combined numerical estimations and the ANN tech-
nique to predict the SST. �ey achieved accurate SST predictions of daily, weekly, and monthly values over 
�ve time steps in the future at six di�erent locations in the Indian Ocean. In 2018, Peter et al. proposed 
a hybrid model that combines the classical ARIMA technique with an ANN to improve El Niño predic-
tions. �e 6-month-lead prediction results of the hybrid model gave slightly better forecasts than those of 
the National Centers for Environmental Prediction (NCEP), and the 12-month-lead prediction had similar 
predictive power to that of shorter-lead-time predictions31. In 2019, Yuan et al. proposed an e�ective neural 
network model, EEMD-ConvLSTM, which was based on ConvLSTM and EEMD32, to predict the North 
Atlantic oscillation (NAO) index. �e experimental results showed that EEMD-ConvLSTM not only had the 
highest reliability according to the evaluation metrics but could also better capture the variation trends of the 
NAO index data33. However, the prediction results of these methods o�en depend largely on the statistical 
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decomposition model. If the statistical decomposition model can separate the components of the time-series 
data well and then select an excellent time-series prediction algorithm, it will deliver better prediction results.

However, the ENSO phenomenon is a highly complex and dynamic model involving di�erent aspects of the 
ocean and the atmosphere over the tropical Paci�c34, and the variation trends over time are non-linear. �e statis-
tical method tends to have a poor �tting e�ect on non-linear data sets and is not ideal for complex pattern recog-
nition and knowledge discovery. �e ML-based methods, especially those based on deep-level networks, tend to 
be complex and computationally time-consuming and are not very predictive of very-long-term-sequence ENSO 
indexes. In addition, for the long time-series Niño .3 4 index and SOI data, they not only have the characteristics 
of approximately periodic interannual changes but also a large amount of high-frequency random noise due to 
seasonal changes, which seriously reduces the numerical simulation models’ forecasting ability. Hence, it is still 
di�cult to predict ENSO event at lead times of more than one year5. �erefore, choosing a novel time-series anal-
ysis model that can accurately predict the ENSO state at lead times of more than one year will be of great 
signi�cance.

�e temporal convolutional network (TCN), as a variant of the convolutional neural network (CNN), employs 
casual convolutions and dilations; hence, it is suitable for sequential data with temporality and large receptive 
�elds. In addition, the CNN has been reported to predict the ENSO phenomenon and achieve good results5. 
However, the inherent shortcomings of the CNN, including the �xed-size input vector and inconsistent input and 
output sizes, limit its application in time-series prediction. Furthermore, the TCN has a simple network structure 
and outperforms canonical recurrent networks, such as the recurrent neural network (RNN) and LSTM net-
works, in terms of the accuracy and e�ciency of time-series data analysis. In addition, the ensemble empirical 
mode decomposition (EEMD) not only can decompose high-frequency time series into some adaptive orthogo-
nal components, called intrinsic mode functions (IMFs), but also has the advantages of noise-assistance and 
overcoming the drawbacks of mode mixing in conventional empirical mode decomposition (EMD)35. EEMD can 
be used to decompose the high-frequency time-series Niño .3 4 index and SOI data into multiple adaptive orthog-
onal components to improve the prediction accuracy of the model. Therefore, this paper proposes the 
EEMD-TCN hybrid approach, which is used to decompose the highly variable ENSO indexes (Niño .3 4 index 
and SOI) into relatively �at subcomponents, and then uses the TCN model to predict each subcomponent in 
advance, �nally combining the sub-prediction results to obtain the �nal ENSO prediction results.

Results
Data. To verify the e�ectiveness of our proposed EEMD-TCN-based ENSO prediction approach, we selected 
the Niño .3 4 index36 and SOI reanalysis data from 1871 to 2019 for long time-series prediction experiments. �e 
Niño .3 4 index and SOI reanalysis data were both downloaded from the o�cial website of the NOAA37. In addi-
tion, to fully verify the robust performance of the model for long-term ENSO index prediction while eliminating 
the possible in�uence of oceanic memory in the training period on the ENSO in the validation period, the data 
from 1871 to 1973 were used to train the model, and the data from 1984 to 2019 were used for testing.

Niño 3.4 index prediction results and discussion. During the model-training process, we set the max-
imum number of training sessions to 7000 and compared the trend of the training loss with the training times. 
�e result was that for any one of the IMFs, as the number of training sessions increased, the loss value gradually 
decreased and stabilized a�er 2000 training sessions. �erefore, we believed that the TCN model a�er 2000 train-
ing sessions was stable and could be used for Niño .3 4 index prediction. In the model prediction process, we cal-
culated the Pearson correlation coe�cient (PCC) and the root mean square error (RMSE) between the resulting 
predicted and actual values38 to evaluate the predictive performance of the model. �e PCC is a measure of the 
linear correlation between the predicted value and the actual value, while the RMSE tries to measure their di�er-
ences. �e PCC and RMSE can well measure the homogeneous and heterogeneous relationship between the 
predicted value and the actual value and are one of the frequently used combinations to evaluate the predictive 
performance of a model. �e formulas for calculating the PCC and RMSE are as follows:
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where m is the length of the time-series, p is the prediction results and p  is its mean value, o represents the actual 
value and o represents its mean value.

We conducted 1-, 3-, 6-, and 12-month-lead Niño .3 4 index prediction experiments, and the resulting predic-
tion results, as well as their evaluation results, are shown in Figs. 1 and 2.

From Figs. 1 and 2, (1) all the predicted Niño .3 4 index curves almost had the same growth trend and turning 
points as those of the actual curve; (2) with the increase in advance prediction time, the RMSE gradually increased 
and the PCC gradually decreased overall, but they did not maintain strict linear variation characteristics; (3) the 
RMSE values of the 3- and 6-month-lead-predictions were signi�cantly higher, while the PCC values were signif-
icantly lower, which was in line with the phenomenon of “spring forecast obstacles” in dynamic forecasting; (4) 
the curve obtained from the one-month-lead prediction had the highest degree of coincidence with the actual 
Niño .3 4 index, the RMSE was 0.2337, and the corresponding PCC was 0.9658; (5) the curve obtained from the 
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12-month-lead prediction matched the actual curve the least, the RMSE was 0.5142, and the corresponding PCC 
was 0.8297; although the accuracy of the predicted results in the 12-month-lead case was relatively low, the same 
growth trend and turning point as for the actual curve could still be maintained; (6) with the increase in the 
advance prediction time, the forecasting deviation in some years slightly increased, such as in 1987, 1998, 2003, 
2009, 2016, etc.; this may be due to the extreme El Niño and La Niña events in these years, which posed huge 
challenges to the predictive models; and (7) in terms of the Niño .3 4 index advance prediction alone, the predic-
tion accuracy of the EEMD-TCN method was similar to or slightly better than that of the previous research5, 
which re�ected the e�ectiveness of the TCN in Niño .3 4 index prediction.

SOI prediction results and discussion. Based on the Niño .3 4 index prediction experience, we also set the 
maximum number of training sessions to 7000 in the SOI prediction experiment. Figures 3 and 4 show the �nal 
predicted and evaluated results.

From Figs. 3 and 4, (1) the �tting degree between the predicted and actual SOI curves of the one-month-lead 
prediction was the highest, and the predicted SOI curve almost had the same growth trend and turning points as 
those of the actual curve; (2) the RMSE of the one-month-lead prediction was 0.6180, and its corresponding PCC 
was 0.8556; (3) with the increase in the advance prediction time, the PCC gradually decreased, but the RMSE curve 
showed a tortuous trend, which may be due to the in�uence of the phenomenon of “spring forecast obstacles” in 
dynamical forecasting; (4) the accuracy of the 12-month-lead prediction was the worst, with an RMSE value of 
0.9403 and a PCC value of 0.6406; and (5) as a whole, the prediction accuracy of the EEMD-TCN approach on the 

Figure 1. Predicted and actual values of the EEMD-TCN-based Niño .3 4 index for di�erent month lead times.

Figure 2. �e RMSE and PCC values between the predicted and actual values in the EEMD-TCN-based Niño 
.3 4 index prediction.
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SOI was worse than that on the Niño .3 4 index, which may be due to the signi�cant di�erence between the two in 
the frequency domain (Fig. 5). �e Niño .3 4 index has signi�cant interannual quasi-period peaks within 3 to 6 
years. �ese peaks occur because the equatorial Kelvin waves and Ross Bay waves that determine the El Niño phe-
nomenon in the ocean take approximately 2 years to complete adjustments in the Paci�c Basin. �e SOI, which is 
the response of the El Niño phenomenon to the atmosphere, has similar interannual quasi-period peaks to those 
of the Niño .3 4 index. However, because the speci�c heat capacity of the atmosphere is small, the thermodynamic 
properties of the sea-level pressure field are affected not only by the underlying ocean but also by the 
high-frequency changes at the seasonal scale39. �erefore, the frequency spectrum of the SOI is signi�cantly 
stronger than that of the Niño .3 4 index. �at is, the SOI data change more drastically than do the Niño .3 4 index 
data, and this high-frequency random noise severely reduces the model’s ability to predict the SOI data. Although 
the EEMD method was used to decompose high-frequency components into low-frequency subcomponents, it 
still cannot reach the prediction level of the Niño .3 4 index. However, the PCC value of the worst forecast still 
exceeded 0.5, which strongly proves the e�ectiveness of the EEMD-TCN model in SOI advance prediction.

Evaluation and discussion
To e�ectively evaluate the performance of our proposed “�rst EEMD and then TCN prediction” ENSO prediction 
approach, fully verifying the key role of EEMD decomposition in ENSO prediction, we carried out comparative 
experiments with the TCN, LSTM, and EEMD-LSTM. All comparative experimental data, as well as the training 
set and test set assignments, were the same as those of the EEMD-TCN-based ENSO prediction experiment. 

Figure 3. Predicted and actual values of the EEMD-TCN-based SOI for di�erent month lead times.

Figure 4. �e RMSE and PCC values between the predicted and actual values in the EEMD-TCN-based SOI 
prediction.
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6SCIENTIFIC REPORTS |         (2020) 10:8055  | https://doi.org/10.1038/s41598-020-65070-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figures 6 and 7 show the �nal Niño .3 4 index and SOI results predicted by the classic TCN approach, Figs. 8 and 
9 are the results predicted by the classical LSTM model, and Figs. 10 and 11 show the �nal Niño .3 4 index and SOI 
results predicted by the EEMD-LSTM approach. For the TCN, LSTM and EEMD-LSTM comparative experi-
ments, the number of iterations was still set to 7000, consistent with the number of EEMD-TCN iterations. In 
addition, the RMSE and PCC values of the predicted results of each comparative experiment were also calculated, 
as shown in Fig. 12.

From the aforementioned comparison experiments, the following can be concluded.

•	 As shown in Fig. 6, compared with the “�rst EEMD and then TCN prediction” method, the prediction result 
of the Niño .3 4 index obtained by the pure TCN model is relatively poor. Especially at the points where there 
are strong El Niño or La Niña phenomena, there are large prediction errors, and the error becomes increas-
ingly obvious as the advance prediction time increases.

•	 From Fig. 7, the SOI prediction results obtained by using the TCN were worse than those obtained by the 
EEMD-TCN algorithm, regardless whether considering a one-month-lead forecast or a 12-month-lead fore-
cast. �is result may be due to the high-frequency components contained in the SOI time series, which lower 
the prediction accuracy of the pure TCN model, further con�rming our hypothesis that the EEMD-TCN 
technique can e�ectively improve the prediction accuracy achieved on high-frequency variation time series.

Figure 5. �e frequency spectrum of the Niño .3 4 index and SOI. �e horizontal axis represents the frequency, 
and the vertical axis represents the amplitude corresponding to the frequency. �e components of the SOI in the 
high-frequency range are signi�cantly stronger than those of the Niño .3 4 index.

Figure 6. Predicted and actual values of the TCN-based Niño .3 4 index for di�erent month lead times.

https://doi.org/10.1038/s41598-020-65070-5
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•	 As shown in Figs. 8 and 10, EEMD can also e�ectively improve the prediction accuracy of the LSTM model 
for the Niño .3 4 index, especially at those times when there are strong El Niño or La Niña phenomena. How-
ever, compared with the TCN model, the overall performance of the LSTM model for the Niño .3 4 index 
prediction is worse, which can also be veri�ed from the RMSE and PCC values of the prediction results of the 
two (Fig. 12).

•	 On the basis of Figs. 9 and 11, for the overall SOI prediction accuracy, EEMD-LSTM is better than the LSTM 
model. However, as a whole, the SOI prediction accuracies obtained by the LSTM and EEMD-LSTM models 
are worse than the Niño .3 4 index accuracies. �is outcome is consistent with the prediction results of the 

Figure 7. Predicted and actual values of the TCN-based SOI for di�erent month lead times.

Figure 8. LSTM-based Niño .3 4 index predicted and actual value curves.
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EEMD-TCN and TCN models, which were determined on the basis of the high-frequency characteristics of 
the SOI data itself.

•	 In Fig. 12, the longer the advance forecasting time, the more obvious the advantages of EEMD, no matter 
whether the TCN model or LSTM model is used. �erefore, the conclusion is that decomposing a time series 
that mixes low- and high-frequency components into sub-components containing a single frequency and 
making separate predictions can e�ectively improve the accuracy of long-term advance prediction.

•	 As shown in Fig. 12, for the 1-, 3-, 6-, and 12-month-lead EEMD-TCN-based Niño .3 4 index and SOI predic-
tion, the RMSE values were the smallest and the PCC values were the highest compared with the correspond-
ing results of the TCN, LSTM, and EEMD-LSTM methods. In addition, for the same test and validation data 
set and with the same number of training iterations, the LSTM model takes approximately 8 times longer than 

Figure 9. LSTM-based SOI predicted and actual value curves.

Figure 10. EEMD-LSTM-based Niño .3 4 index predicted and actual value curves.
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the TCN model on an RTX 2080Ti GPU. In other words, the EEMD-TCN was the best model for ENSO 
advance prediction in terms of the prediction accuracy and e�ciency.

Conclusions and Future Work
In view of the low accuracy of the current popular ENSO prediction methods, and considering Niño .3 4 index 
and SOI reanalysis data containing many low- and high-frequency components, we proposed adopting a “�rst 
EEMD and then TCN prediction” hybrid approach, which decomposes the highly variable Niño .3 4 index and 
SOI into relatively �at subcomponents and then uses the TCN model to predict each subcomponent in advance, 

Figure 11. EEMD-LSTM-based SOI predicted and actual value curves.

Figure 12. RMSE and PCC comparison of predicted and actual values of Niño .3 4 index and SOI obtained 
using the TCN, EEMD-TCN, LSTM, and EEMD-LSTM methods.

https://doi.org/10.1038/s41598-020-65070-5
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�nally combining the sub-prediction results to obtain the �nal ENSO prediction results. �e Niño .3 4 index and 
SOI reanalysis data from 1871 to 1973 were used for model training, and the data for 1984–2019 were predicted 
1 month, 3 months, 6 months, and 12 months in advance. �e results show that for both the Niño .3 4 index and 
SOI reanalysis data, the accuracy of the 1-month-lead prediction was the highest, and the 12-month-lead predic-
tion was the slowest. Speci�cally, for Niño .3 4 index advance prediction, the curve obtained by the one-month-lead 
prediction had the highest degree of coincidence with the actual value, the RMSE was 0.2337, and the corre-
sponding PCC was 0.9658; the curve predicted by the 12-month-lead prediction matched the actual curve the 
least, the RMSE was 0.5142, and the corresponding PCC was 0.8297; and for the SOI advance prediction, the 
RMSE of the one-month-lead prediction was 0.6180, and its corresponding PCC was 0.8556, while the accuracy 
of the 12-month-lead prediction was the worst, with an RMSE value of 0.9403 and a PCC value of 0.6406. 
Furthermore, the overall prediction accuracy on the Niño .3 4 index was better than that on the SOI, which may 
have occurred because the SOI contains too many high-frequency components, causing the prediction to be dif-
�cult. �e results of comparative experiments with the TCN, LSTM, and EEMD-LSTM methods showed that the 
EEMD-TCN provided the best overall prediction of both the Niño .3 4 index and SOI in 1-, 3-, 6-, and 
12-month-lead predictions among all the methods considered. In particular, the TCN not only had higher pre-
diction accuracy for the time-series data but also had a simpler network structure and higher operating e�ciency 
than those of the popular LSTM network.

However, at those times when there are strong El Niño or La Niña phenomena, the prediction errors of both 
the Niño .3 4 index and SOI were relatively large, and the errors became increasingly obvious as the advance pre-
diction time increased. In addition, the proposed EEMD-TCN approach could not overcome the “spring forecast 
obstacles” in dynamic forecasting, and the correlation coe�cients between the 3- and 6-month-lead predicted 
results and actual values were signi�cantly reduced. Recently, several studies40–42 used the physical-empirical 
model and/or statistical-dynamic model to improve the prediction of climate signals such as ENSO and Arctic 
Oscillation. �e methods used in these studies consider both physical mechanism and numerical simulation, 
providing a new idea to improve the prediction accuracy of our EEMD-TCN model. �erefore, attempts to 
improve the prediction accuracy at time points with strong El Niño or La Niña phenomena, as well as overcoming 
the “spring forecast obstacles”, will be carried out in future research.

Methods
TCN. For the analysis of time-series data, the most commonly used neural network is the RNN33. RNN can 
employ the internal memories to process input time series, which is di�erent from the traditional back-prop-
agation (BP) neural network. However, the RNN model is generally not directly used for long-term memory 
calculation; thus, the improved RNN model known as LSTM was proposed43. LSTM can process sequences with 
thousands or even millions of time points, and has good processing ability even for long time series containing 
many high- and low-frequency components44. However, the latest research shows that the TCN, one of the mem-
bers of the convolutional neural network (CNN)45 family, shows better performance than LSTM in processing 
very long sequences of inputs46.

�e typical characteristics of TCN includes: (1) It can take a sequence of any length and output it as a sequence 
of the same length with the input, just like using an RNN; and (2) the convolution is a causal convolution, which 
means that there is no information “leakage” from future to past. To reach the first goal, the TCN uses a 
one-dimensional, fully convolutional network (1D FCN) architecture46. �at is, each hidden layer will be padded 
zero to maintain the same length with the input layer. To achieve the second point, the causal convolution, where 
an output at time t is convolved only with elements from time t and earlier in the previous layer, is adopted. In 
short, TCN is the sum of 1D FCN and causal convolutions.

FCN. Unlike the classic CNN, which uses a fully connected layer a�er the convolutional layer to obtain a 
�xed-length feature vector, the FCN uses the deconvolutional layers for the last convolutional layers47. �at is, all 
the hidden layers in the neural network are convolutional layers, hence why it is named a “fully convolutional” 
network (Fig. 13).

�e FCN can accept input images of any size, and its output has the same size as that of the input images 
thanks to the upsampling a�er the last convolutional layers, that is, deconvolution. �erefore, a prediction can be 
generated for each input pixel while preserving the spatial information in the original input image46. If the input 
images become 1D series data, then the FCN becomes a 1D FCN. Because the input and output of the FCN have 
the same size, the 1D FCN can produce an output with the same length as that of the input.

Causal convolutions. For sequence modelling, the main purpose is to predict some corresponding outputs 

… yy , ,
T0

 at each time according to an input sequence … xx , , t0 . If y
t
 depends only on … xx , , t0  and not on any 

future inputs …+ xx , ,t 1 T, then the goal is to �nd a network F that minimizes the di�erence between the predic-
tion and the actual outputs. �at is, min L y y f x x{ [( , , ), ( , , )]}T T0 0… … , where L represents the loss between the 
actual outputs and predictions.

�e ordinary CNN is not suitable for addressing sequence problems because the input image size of a CNN 
must be �xed48,49; thus, a causal convolution was used. However, it is very challenging to directly apply a simple 
causal convolution to deal with long time series problems, because it can only look back at a history with a linear 
size in the depth of the network. To eliminate this problem, the dilated convolution, which enables an exponen-
tially large receptive �eld50, is employed. �e same points between the simple causal convolution and the dilated 
convolution are that both of them have the same size of the convolutional kernel and the same number of param-
eters, and the di�erence is that the dilated convolution has a dilation rate parameter to indicate the size of the 
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dilation51. More formally, for a 1D sequence input ∈ RX n and a �lter … − →k Rf: {0, , 1} , the dilated convo-
lution operation F on elements s of the sequence is de�ned as follows.
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where d denotes the dilation factor, d is the �lter size, and − ⋅d is  accounts for the direction of the past. 
Figure 14 illustrates the architectural elements in a TCN.

As shown in Fig. 14, when d = 1, the dilated convolution becomes a simple convolution; if we choose larger 
�lter sizes k and increase the dilation factor d, the receptive �eld of the TCN can be increased. �erefore, we can 
use these methods to address long-sequence problems.

Figure 13. �e di�erence between the CNN and FCN (the transforming of fully connected layers into 
convolutional layers by an FCN enables a classi�cation net to output a heatmap).

Figure 14. A dilated causal convolution with dilation factors d = 1, 2, 4 and a �lter size k = 3.
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Residual connections. In addition, as the length of the time series increases, the TCN receptive �eld widens, 
resulting in the number of network layers and the number of �lters per layer increasing, as the TCN receptive �eld 
depends on the network depth n, �lter size k, and dilation factor d.

However, the major issue for very deep networks is exploding and/or vanishing gradients; the TCN model 
uses a generic residual module instead of a convolutional layer to avoid these problems. Figure 15 shows the 
residual block for a TCN.

In Fig. 15, the TCN model has two layers, i.e., a dilated causal convolution and non-linearity (ReLU), as well 
as weight normalization in between. In addition, a spatial dropout was added a�er each dilated convolution for 
regularization, and an additional ×1 1 convolution was adopted to ensure that the element-wise addition ⊕ 
received tensors of the same shape to resolve the di�erence in input and output widths.

EEMD. EEMD is an improved version of EMD that e�ectively overcomes the drawbacks of mode mixing in 
conventional EMD. Its principle is to add the normal distribution of white noise to the original signal subjected 
to EMD decomposition, then to use the spectral characteristics of the white noise uniform distribution to o�set 
the speci�c spectrum loss of the original signal, and �nally to eliminate the modal aliasing inherent in EMD35. 
A�er EEMD, the original high-volatility time series can be divided into some adaptive orthogonal components, 
called IMFs, which cannot maintain the original characteristics but greatly reduce the annualized volatility. 
Figure 16 shows the original Niño .3 4 index and SOI series, as well as their EEMD-decomposed components. It 
can be seen that a�er EEMD, each IMF component of the Niño .3 4 index and SOI series contains only one fre-
quency component, which can e�ectively improve the prediction accuracy of the model.

EEMD-TCN-based ENSO index series prediction. A�er the original Niño .3 4 index and SOI series were 
decomposed into multiple IMFs components, each single component could be predicted using the TCN model 
and combined to obtain the �nal prediction result. For the TCN-based single component prediction, the core 
problem is to determine the network parameters, including the dilation factor d, the �lter size k, and the mini-
mum network depth n46, based on data characteristics to obtain accurate time-series prediction results.

Dilation factor. �e dilation factor d generally increases as the depth n of the network increases. �eir relation-
ship can be expressed by the following formula52:

= ≤ ≤d i n2 ,1 (4)i
i

where i represents the i-th layer and n represents the total number of dilated causal convolutional layers.

Figure 15. TCN residual block.
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Filter size. �e �lter size, also known as the convolutional kernel size, varies with the dilation factor d, and their 
relationship can be expressed by the following formula53:

⁎

k d k i n k N( 1) 1, 1 , (5)i i i1 1= ∗ − + ≤ ≤ ∈+

where i represents the i-th layer and n represents the total number of dilated causal convolutional layers. In gen-
eral, the initial size of the filter is =k 21  by default, but it can be set to other values depending on the data 
situation.

Minimum network depth. In the TCN model, the minimum depth of the TCN directly a�ects the receptive �eld, 
which is determined by the following formula:

= ∗ ∗receptiveField nb stacks of residual block k d_ _ _ _ (6)n1

where nb stacks of residual block_ _ _ _  is the number of stacks of residual blocks to use, which is set to 1 by default, 

k1 is the initial size of the �lter, and dn is the dilation factor of the n-th dilated causal convolutional layer; n repre-
sents the total number of dilated causal convolutional layers. �erefore, it is necessary to comprehensively con-
sider the length of the input sequence and the size of the receptive �eld to obtain a reasonable minimum network 
depth.
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