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Conventional computers based on the von Neumann architecture perform computation by

repeatedly transferring data between their physically separated processing and memory

units. As computation becomes increasingly data centric and the scalability limits in terms of

performance and power are being reached, alternative computing paradigms with collocated

computation and storage are actively being sought. A fascinating such approach is that of

computational memory where the physics of nanoscale memory devices are used to perform

certain computational tasks within the memory unit in a non-von Neumann manner. We

present an experimental demonstration using one million phase change memory devices

organized to perform a high-level computational primitive by exploiting the crystallization

dynamics. Its result is imprinted in the conductance states of the memory devices. The

results of using such a computational memory for processing real-world data sets show that

this co-existence of computation and storage at the nanometer scale could enable ultra-

dense, low-power, and massively-parallel computing systems.
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I
n today’s computing systems based on the conventional von
Neumann architecture (Fig. 1a), there are distinct memory
and processing units. The processing unit comprises the

arithmetic and logic unit (ALU), a control unit and a limited
amount of cache memory. The memory unit typically comprises
dynamic random-access memory (DRAM), where information is
stored in the charge state of a capacitor. Performing an operation
(such as an arithmetic or logic operation), f, over a set of data
stored in the memory, A, to obtain the result, f(A), requires a
sequence of steps in which the data must be obtained from the
memory, transferred to the processing unit, processed, and stored
back to the memory. This results in a significant amount of data
being moved back and forth between the physically separated
memory and processing units. This costs time and energy, and
constitutes an inherent bottleneck in performance.

To overcome this, a tantalizing prospect is that of transitioning
to a hybrid architecture where certain operations, such as f, can be
performed at the same physical location as where the data is
stored (Fig. 1b). Such a memory unit that facilitates collocated
computation is referred to as computational memory. The
essential idea is not to treat memory as a passive storage entity,
but to exploit the physical attributes of the memory devices to
realize computation exactly at the place where the data is stored.
One example of computational memory is a recent demonstra-
tion of the use of DRAM to perform bulk bit-wise operations1

and fast row copying2 within the DRAM chip. A new class of
emerging nanocale devices, namely, resistive memory or mem-
ristive devices with their non-volatile storage capability, is parti-
cularly well suited for computational memory. In these devices,
information is stored in their resistance/conductance states3–6.
An early proposal for the use of memristive devices for in-place
computing was the realization of certain logical operations using
a circuit based on TiOx-based memory devices7. The same
memory devices were used simultaneously to store the inputs,
perform the logic operation, and store the resulting output.
Subsequently, more complex logic units based on this initial
concept have been proposed8–10. In addition to performing
logical operations, resistive memory devices, when arranged in a
cross-bar configuration, can be used to perform matrix–vector
multiplications in an analog manner. This exploits the multi-level
storage capability as well as Ohm’s law and Kirchhoff’s law.
Hardware accelerators based on this concept are now becoming
an important subject of research11–17. However, in these appli-
cations, the cross-bar array of resistive memory devices serves as a
non-von Neumann computing core and the results of the com-
putation are not necessarily stored in the memory array.

Besides the ability to perform logical operations and
matrix–vector multiplications, another tantalizing prospect of

computational memory is that of realizing higher-level compu-
tational primitives by exploiting the rich dynamic behavior of its
constituent devices. The dynamic evolution of the conductance
levels of those devices upon application of electrical signals can be
used to perform in-place computing. A schematic illustration of
this concept is shown in Fig. 1c. Depending on the operation to
be performed, a suitable electrical signal is applied to the memory
devices. The conductance of the devices evolves in accordance
with the electrical input, and the result of the computation is
imprinted in the memory array. One early demonstration of this
concept was that of finding factors of numbers using phase
change memory (PCM) devices, a type of resistive memory
devices18–20. However, this procedure is rather sensitive to device
variabilities and thus experimental demonstrations were confined
to a small number of devices. Hence, a large-scale experimental
demonstration of a high-level computational primitive that
exploits the memristive device dynamics and is robust to device
variabilities across an array is still lacking.

In this paper, we present an algorithm to detect temporal
correlations between event-based data streams using computa-
tional memory. The crystallization dynamics of PCM devices is
exploited, and the result of the computation is imprinted in the
very same memory devices. We demonstrate the efficacy and
robustness of this scheme by presenting a large-scale experi-
mental demonstration using an array of one million PCM devices.
We also present applications of this algorithm to process real-
world data sets such as weather data.

Results
Dynamics of phase change memory devices. A PCM device
consists of a nanometric volume of phase change material
sandwiched between two electrodes. A schematic illustration of a
PCM device with mushroom-type device geometry is shown in
Fig. 2a)21. In an as-fabricated device, the material is in the crys-
talline phase. When a current pulse of sufficiently high amplitude
is applied to the PCM device (typically referred to as the RESET
pulse), a significant portion of the phase change material melts
owing to Joule heating. When the pulse is stopped abruptly, the
molten material quenches into the amorphous phase because of
the glass transition. In the resulting RESET state, the device will
be in the low conductance state as the amorphous region blocks
the bottom electrode. The size of the amorphous region is cap-
tured by the notion of an effective thickness, ua that also accounts
for the asymmetric device geometry22. PCM devices exhibit a rich
dynamic behavior with an interplay of electrical, thermal and
structural dynamics that forms the basis for their application as
computational memory. The electrical transport exhibits a strong
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field and temperature dependence23. Joule heating and the ther-
mal transport pathways ensure that there is a strong temperature
gradient within the PCM device. Depending on the temperature
in the cell, the phase change material undergoes structural
changes, such as phase transitions and structural relaxation24,25.

In our demonstration, we focus on a specific aspect of the PCM
dynamics: the crystallization dynamics capturing the progressive
reduction in the size of the amorphous region due to the phase
transition from amorphous to crystalline (Fig. 2b). When a
current pulse (typically referred to as the SET pulse) is applied to
a PCM device in the RESET state such that the temperature
reached in the cell via Joule heating is high enough, but below the
melting temperature, a part of the amorphous region crystallizes.
At the nanometer scale, the crystallization mechanism is
dominated by crystal growth due to the large
amorphous–crystalline interface area and the small volume of
the amorphous region24. The crystallization dynamics in such a
PCM device can be approximately described by

dua

dt
¼ �vg Tintð Þ; ð1Þ

where vg denotes the temperature-dependent growth velocity of
the phase change material; Tint= Rth(ua)Pinp + Tamb is the
temperature at the amorphous–crystalline interface, and uað0Þ ¼
ua0 is the initial effective amorphous thickness24. Tamb is the
ambient temperature, and Rth is the effective thermal resistance
that captures the thermal resistance of all possible heat pathways.
Experimental estimates of Rth and vg are shown in Figs. 2c, d,
respectively24. From the estimate of Rth as a function of ua, one
can infer that the hottest region of the device is slightly above the
bottom electrode and that the temperature within the device
decreases monotonically with increasing distance from the
bottom electrode. The estimate of vg shows the strong
temperature dependence of the crystal growth rate. Up to approx.
550 K, the crystal growth rate is negligible whereas it is maximum
at ~750 K. As a consequence of Eq. 1, ua progressively decreases

upon the application of repetitive SET pulses, and hence the low-
field conductance progressively increases. In subsequent discus-
sions, the RESET and SET pulses will be collectively referred to as
write pulses. It is also worth noting that in a circuit-theoretic
representation, the PCM device can be viewed as a generic
memristor, with ua serving as an internal state variable26–28.

Statistical correlation detection using computational memory.
In this section, we show how the crystallization dynamics of PCM
devices can be exploited to detect statistical correlations between
event-based data streams. This can be applied in various fields
such as the Internet of Things (IoT), life sciences, networking,
social networks, and large scientific experiments. For example,
one could generate an event-based data stream based on the
presence or absence of a specific word in a collection of tweets.
Real-time processing of event-based data streams from dynamic
vision sensors is another promising application area29. One can
also view correlation detection as a key constituent of unsu-
pervised learning where one of the objectives is to find correlated
clusters in data streams.

In a generic formulation of the problem, let us assume that
there are N discrete-time binary stochastic processes arriving at a
correlation detector (see Fig. 3a). Let Xi= {Xi(k)} be one of the
processes. Then Xi(k) is a random variable with probabilities

P Xi kð Þ ¼ 1½ � ¼ p ð2Þ

P XiðkÞ ¼ 0½ � ¼ 1� p; ð3Þ

for 0≤ p≤ 0.5. Let Xj be another discrete-time binary stochastic
process with the same value of parameter p. Then the correlation
coefficient of the random variables Xi(k) and Xj(k) at time instant
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k is defined as

c ¼ Cov XiðkÞ;XjðkÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var XiðkÞ½ �Var XjðkÞ
� �

q : ð4Þ

Processes Xi and Xj are said to be correlated if c> 0 and
uncorrelated otherwise. The objective of the correlation detection
problem is to detect, in an unsupervised manner, an unknown
subset of these processes that are mutually correlated.

As shown in Supplementary Note 1 and schematically
illustrated in Fig. 3b, one way to solve this problem is by
obtaining an estimate of the uncentered covariance matrix
corresponding the processes denoted by

R̂ij ¼
1

K

X

K

k¼1

XiðkÞXjðkÞ: ð5Þ

Next, by summing the elements of this matrix along a row or
column, we can obtain certain numerical weights corresponding
to the processes denoted by Ŵi ¼

PN
j¼1 R̂ij. It can be shown

that if Xi belongs to the correlated group with correlation
coefficient c> 0, then

E Ŵi

� �

¼ N � 1ð Þp2 þ pþ Nc � 1ð Þcp 1� pð Þ: ð6Þ

Nc denotes the number of processes in the correlated group. In
contrast, if Xi belongs to the uncorrelated group, then

E Ŵi

� �

¼ N � 1ð Þp2 þ p: ð7Þ

Hence by monitoring Ŵi in the limit of large K, we can
determine which processes are correlated with c> 0. Moreover, it
can be seen that with increasing c and Nc, it becomes easier to
determine whether a process belongs to a correlated group.

We can show that this rather sophisticated problem of
correlation detection can be solved efficiently using a computa-
tional memory module comprising PCM devices by exploiting the
crystallization dynamics. By assigning each incoming process to a
single PCM device, the statistical correlation can be calculated
and stored in the very same device as the data passes through the
memory. The way it is achieved is depicted schematically in
Fig. 3c: At each time instance k, a collective momentum,
MðkÞ ¼ PN

j¼1 XjðkÞ, that corresponds to the instantaneous sum
of all processes is calculated. The calculation of M(k) incurs little
computational effort as it just counts the number of non-zero
events at each time instance. Next, an identical SET pulse is
applied potentially in parallel to all the PCM devices for
which the assigned binary process has a value of 1. The
duration or amplitude of the SET pulse is chosen to be a linear
function of M(k). For example, let the duration of the pulse
δtðkÞ ¼ CMðkÞ ¼ C

PN
j¼1 XjðkÞ. For the sake of simplicity, let us

assume that the interface temperature, Tint, is independent of the
amorphous thickness, ua. As the pulse amplitude is kept constant,
vgðTintÞ ¼ G, where G is a constant. Then from Eq. 1, the
absolute value of the change in the amorphous thickness of the ith

phase change device at the kth discrete-time instance is

δuai kð Þ ¼ δtðkÞvgðTintÞ ¼ CG
X

N

j¼1

XjðkÞ: ð8Þ
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The total change in the amorphous thickness after K time steps
can be shown to be

Δuai Kð Þ ¼ P

K

k¼1

δuai kð ÞXi kð Þ

¼ CG
P

K

k¼1

P

N

j¼1

XiðkÞXj kð Þ

¼ CG
P

N

j¼1

P

K

k¼1

Xi kð ÞXj kð Þ

¼ KCG
P

N

j¼1

R̂ij

¼ KCGŴi:

ð9Þ

Hence, from Equations 6 and 7, if Xi is one of the correlated
processes, then Δuai will be larger than if Xi is one of the
uncorrelated processes. Therefore by monitoring Δuai or the
corresponding resistance/conductance for all phase change
devices we can determine which processes are correlated.

Experimental platform. Next, we present experimental demon-
strations of the concept. The experimental platform (schemati-
cally shown in Fig. 4a) is built around a prototype PCM chip that
comprises 3 million PCM devices. More details on the chip are
presented in the methods section. As shown in Fig. 4b), the PCM

array is organized as a matrix of word lines (WL) and bit lines
(BL). In addition to the PCM devices, the prototype chip inte-
grates the circuitry for device addressing and for write and read
operations. The PCM chip is interfaced to a hardware platform
comprising two field programmable gate array (FPGA) boards
and an analog-front-end (AFE) board. The AFE board provides
the power supplies as well as the voltage and current reference
sources for the PCM chip. The FPGA boards are used to
implement the overall system control and data management as
well as the interface with the data processing unit. The experi-
mental platform is operated from a host computer, and a Matlab
environment is used to coordinate the experiments.

An extensive array-level characterization of the PCM devices
was conducted prior to the experimental demonstrations. In one
experiment, 10,000 devices were arbitrarily chosen and were first
RESET by applying a rectangular current pulse of 1 μs duration
and 440 μA amplitude. After RESET, a sequence of SET pulses of
50 ns duration were applied to all devices, and the resulting device
conductance values were monitored after the application of each
pulse. The map between the device conductance and the number
of pulses is referred to as accumulation curve. The accumulation
curves corresponding to different SET currents are shown in
Fig. 4c. These results clearly show that the mean conductance
increases monotonically with increasing SET current (in the
range from 50 and 100 μA) and with increasing number of SET
pulses. From Fig. 4d, it can also be seen that a significant
variability is associated with the evolution of the device
conductance values. This variability arises from inter-device as
well as intra-device variability. The intra-device variability is
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traced to the differences in the atomic configurations of the
amorphous phase created via the melt-quench process after each
RESET operation30,31. Besides the variability arising from the
crystallization process, additional fluctuations in conductance
also arise from 1/f noise32 and drift variability33.

Experimental demonstration with a million processes. In a first
demonstration of correlation detection, we created the input data
artificially, and generated one million binary stochastic processes
organized in a two-dimensional grid (Fig. 5a). We arbitrarily
chose a subset of 95,525 processes, which we mutually correlated
with a relatively weak instantaneous correlation coefficient of 0.1,
whereas the other 904,475 were uncorrelated. The objective was
to see if we can detect these correlated processes using the
computational memory approach. Each stochastic process was
assigned to a single PCM device. First, all devices were RESET by
applying a current pulse of 1 μs duration and 440 μA amplitude.
In this experiment, we chose to modulate the SET current while
maintaining a constant pulse duration of 50 ns. At each time
instance, the SET current is chosen to be equal to 0:002�MðkÞ μA,
where MðkÞ ¼ PN

j¼1 XjðkÞ is equal to the collective momentum.
This rather simple calculation was performed in the host com-
puter. Alternatively, it could be done in one of the FPGA boards.
Next, the on-chip write circuitry was instructed to apply a SET
pulse with the calculated SET current to all PCM devices for
which Xi(k)= 1. To minimize the execution time, we chose not to
program the devices if the SET current was less than 25 μA. The

SET pulses were applied sequentially. However, if the chip has
multiple write circuitries that can operate in parallel, then it is
also possible to apply the SET pulses in parallel. This process of
applying SET pulses was repeated at every time instance. The
maximum SET current applied to the devices during the
experiment was 80 μA.

As described earlier, owing to the temporal correlation between
the processes, the devices assigned to those processes are expected
to go to a high conductance state. We periodically read the
conductance values of all PCM devices using the on-chip read
circuitry and the on-chip analog-to-digital convertor (ADC). The
resulting map of the conductance values is shown in Fig. 5b. Also
shown is the corresponding distribution of the conductance
values (Fig. 5c). This distribution shows that we can distinguish
between the correlated and the uncorrelated processes. We
constructed a binary classifier by slicing the histogram of Fig. 5c
according to some threshold, above which processes are labeled
correlated and below which processes are labeled uncorrelated.
The threshold parameter can be swept across the domain,
resulting in an ensemble of different classifiers, each with its own
statistical characteristics (e.g., precision and recall). The area
under the precision-recall curve (AUC) is an excellent metric for
quantifying the performance of the classifier. The AUC is 0.93 for
the computational memory approach compared to 0.095 for a
random classifier that simply labels processes as correlated with
some arbitrary probability. However, the performance is still
short of that of an ideal classifier with AUC equal to one and this
is attributed to the variability and conductance fluctuations
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discussed earlier. However, it is remarkable that in spite of these
issues, we are able to perform the correlation detection with
significantly high accuracy. Note that there are several applica-
tions, such as sensory data processing, where these levels of
accuracy would be sufficient. Moreover, we could improve the
accuracy by using multiple devices to interface with a single
random process and by averaging their conductance values. This
concept is also illustrated in the experimental demonstration on
weather data that is described next. The conductance fluctuations
can also be minimized using concepts such as projected phase
change memory34.

Note that the correlations need to be detected within a certain
period of time. This arises from the finite conductance range of
the PCM devices. There is a limit to the ua and hence the
maximum conductance values that the devices can achieve. The
accumulation curves in Fig. 4d clearly show that the mean
conductance values begin to saturate after the application of a
certain number of pulses. If the correlations are not detected
within a certain amount of time, the conductance values
corresponding to the correlated processes saturate while those
corresponding to the uncorrelated processes continue to increase.
Once the correlations have been detected, the devices need to be
RESET, and the operation has to be resumed to detect subsequent
correlations. The application of shorter SET pulses is one way to
increase this time period. The use of multiple devices to interface
with the random processes can also increase the overall
conductance range.

As per Eq. 6, we would expect the level of separation between
the distributions of correlated and uncorrelated groups to
increase with increasing values of the correlation coefficient.
We could confirm experimentally that the correlated groups
can be detected down to very low correlation coefficients such as
c= 0.01 (Supplementary Note 2, Supplementary Movie 1 and
Supplementary Movie 2). We also quantified the performance of
the binary classifier by obtaining the precision-recall curves and
could show that in all cases, the classifiers performed significantly
better than a baseline, random classifier (Supplementary Fig. 2).
Experiments also show that there is a potential for this technique
to be extended to detect multiple correlated groups having
different correlation coefficients (Supplementary Note 3).

Experimental demonstration with weather data. A second
demonstration is based on real-world data from 270 weather
stations across the USA. Over a period of 6 months, the rainfall
data from each station constituted a binary stochastic process that
was applied to the computational memory at one-hour time steps.
The process took the value 1 if rainfall occurred in the preceding
one-hour time window, else it was 0 (Fig. 5d). An analysis of the
uncentered covariance matrix shows that several correlated
groups exist and that one of them is predominant. As expected,
also a strong geographical correlation with the rainfall data exists
(Fig. 5e). Correlations between the rainfall events are also
reflected in the geographical proximity between the correspond-
ing weather stations. To detect the predominant correlated group
using computational memory, we used the same approach as
above, but with 4 PCM devices interfacing with each weather
station data. The four devices were used to improve the accuracy.
At each instance in time, the SET current was calculated to be
equal to 0:0013 ´MðkÞ μA. Next, the PCM chip was instructed to
program the 270 × 4 devices sequentially with the calculated SET
current. The on-chip write circuitry applies a write pulse with the
calculated SET current to all PCM devices for which Xi(k)= 1.
We chose not to program the devices if the SET current was less
than 25 μA. The duration of the pulse was fixed to be 50 ns, and
the maximum SET current applied to the devices was 80 μA. The

resulting device conductance map (averaged over the four devices
per weather station) shows that the conductance values corre-
sponding to the predominant correlated group of weather stations
are comparably higher (Fig. 5f).

Based on a threshold conductance value chosen to be 2 μS, we
can classify the weather stations into correlated and uncorrelated
weather stations. This conductance threshold was chosen to get
the best classifier performance (see Supplementary Note 2). We
can also make comparisons with established unsupervised
classification techniques such as k-means clustering. It was seen
that, out of the 270 weather stations, there was a match for 245
weather stations. The computational memory approach classified
12 stations as uncorrelated that had been marked correlated by
the k-means clustering approach. Similarly, the computational
memory approach classified 13 stations as correlated that had
been marked uncorrelated by the k-means clustering approach.
Given the simplicity of the computational memory approach, it is
remarkable that it can achieve this level of similarity with such a
sophisticated and well-established classification algorithm (see
Supplementary Note 4 for more details).

Discussion
The scientific relevance of the presented work is that we have
convincingly demonstrated the ability of computational memory
to perform certain high-level computational tasks in a non-von
Neumann manner by exploiting the dynamics of resistive mem-
ory devices. We have also demonstrated the concept experi-
mentally at the scale of a million PCM devices. Even though we
programmed the devices sequentially in the experimental
demonstrations using the prototype chip, we could also program
them in parallel provided there is a sufficient number of write
modules. A hypothetical computational memory module per-
forming correlation detection need not be substantially different
from conventional memory modules (Supplementary Note 5).
The main constituents of such a module will also be a memory
controller and a memory chip. Tasks such as computingM(k) can
easily be performed in the memory controller. The memory
controller can then convey the write/read instructions to the
memory chip.

In order to gain insight into the potential advantages of a
correlation detector based on computational memory, we have
compared the hypothetical performance of such a module with
that of various implementations using state-of-the-art computing
hardware (Supplementary Note 6). For this study, we have
designed a multi-threaded implementation of correlation detec-
tion, an implementation that can leverage the massive parallelism
offered by graphical processing units (GPUs), as well as a scale-
out implementation that can run across several GPUs. All
implementations were compiled and executed on an IBM Power
System S822LC system. This system has two POWER8 CPUs
(each comprising 10 cores) and 4 Nvidia Tesla P100 graphical
processing units (attached using the NVLink interface). A
detailed profiling of the GPU implementation reveals two key
insights. Firstly, we find that the fraction of time computing the
momentum M(k) is around 2% of the total execution time.
Secondly, we observe that the performance is ultimately limited
by the memory bandwidth of the GPU device. We then proceed
to estimate the time that would be needed to perform the same
task using a computational memory module: we determine the
time required to compute the momentum on the memory con-
troller, as well as the additional time required to perform the in-
memory part of the computation. We conclude that by using such
a computational memory module, one could accelerate the task of
correlation detection by a factor of 200 relative to an imple-
mentation that uses 4 state-of-the-art GPU devices. We have also
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performed power profiling of the GPU implementation, and
conclude that the computational memory module would provide
a significant improvement in energy consumption of two orders
of magnitude (Supplementary Note 6).

An alternative approach to using PCM devices will be to design
an application-specific chip where the accumulative behavior of
PCM is emulated using complementary metal-oxide semi-
conductor (CMOS) technology using adders and registers (Sup-
plementary Note 7). However, even at a relatively large 90 nm
technology node, the areal footprint of the computational phase
change memory is much smaller than that of CMOS-only
approaches, even though the dynamic power consumption is
comparable. By scaling the devices to smaller dimensions and by
using shorter write pulses, these gains are expected to increase
several fold35,36. The ultra-fast crystallization dynamics and non-
volatility ensure a multi-time scale operating window ranging
from a few tens of nanoseconds to years. These attributes are
particularly attractive for slow processes, where the leakage of
CMOS would dominate the dynamic power because of the low
utilization rate.

It can be shown that a single-layer spiking neural network can
also be used to detect temporal correlations30. The event-based
data streams can be translated into pre-synaptic spikes to a
synaptic layer. On the basis of the synaptic weights, the post-
synaptic potentials are generated and added to the membrane
potential of a leaky integrate and fire neuron. The temporal
correlations between the pre-synaptic input spikes and the
neuronal-firing events result in an evolution of the synaptic
weights due to a feedback-driven competition among the
synapses. In the steady state, the correlations between the indi-
vidual input streams can be inferred from the distribution of the
synaptic weights or the resulting firing activity of the postsynaptic
neuron. Recently, it was shown that in such a neural network,
PCM devices can serve as the synaptic elements37,38. One could
argue that the synaptic elements serve as some form of compu-
tational memory. Even though both approaches aim to solve the
same problem, there are some notable differences. In the neural
network approach, it is the spike-timing-dependent plasticity rule
and the network dynamics that enable correlation detection. One
could use any passive multi-level storage element to store the
synaptic weight. Also note that the neuronal input is derived
based on the value of the synaptic weights. It is challenging to
implement such a feedback architecture in a computational
memory unit. Such feedback architectures are also likely to be
much more sensitive to device variabilities and nonlinearities and
are not well suited for detecting very low correlations37,39.

Detection of statistical correlations is just one of the compu-
tational primitives that could be realized using the crystallization
dynamics. Another application of crystallization dynamics is that
of finding factors of numbers, which we referred to in the
introduction20. Assume that a PCM device is initialized in such a
way that after the application of X number of pulses, the con-
ductance exceeds a certain threshold. To check whether X is a
factor of Y, Y number of pulses are applied to the device, re-
initializing the device each time the conductance exceeds the
threshold. It can be seen that if after the application of Y pulses,
the conductance of the device is above the threshold, then X is a
factor of Y. Another fascinating application of crystallization
dynamics is to realize matrix–vector multiplications. To multiple
an N ×N matrix, A, with a N × 1vector, x, the elements of the
matrix and the vector can be translated into the durations and
amplitudes of a sequence of crystallizing pulses applied to an
array of N PCM devices. It can be shown that by monitoring the
conductance levels of the PCM devices, one obtains a good esti-
mate of the matrix–vector product (Supplementary Note 8). Note
that such an approach consumes only N devices compared to the

existing approach based on the Kirchhoff’s circuit laws that
requires N ×N devices.

In addition to the crystallization dynamics, one could also
exploit other rich dynamic behavior in PCM devices, such as the
dynamics of structural relaxation. Whenever an amorphous state
is formed via the melt-quench process, the resulting unstable glass
state relaxes to an energetically more favorable ideal glass
state25,40–42 (Supplementary Note 9). This structural relaxation,
which codes the temporal information of the application of write
pulses, can be exploited to perform tasks such as the detection of
rates of processes in addition to their temporal correlations
(Supplementary Note 9). It is also foreseeable that by further
coupling the dynamics of these devices, we can potentially solve
even more intriguing problems. Suggestions of such memcom-
puting machines that could solve certain non-deterministic
polynomial (NP) problems in polynomial (P) time by exploit-
ing attributes, such as the inherent parallelism, functional poly-
morphism, and information overhead are being actively
investigated43,44. The concepts presented in this work could also
be extended to the optical domain using devices such as photonic
PCM45. In such an approach, optical signals instead of electrical
signals will be used to program the devices. These concepts are
also not limited to PCM devices: several other memristive device
technologies exist that possess sufficiently rich dynamics to serve
as computational memory46. However, it is worth noting that
PCM technology is arguably the most advanced resistive memory
technology at present with a very well-established multi-level
storage capability21. The read endurance is assumed to be
unlimited. There are also recent reports of more than 1012

RESET/SET endurance cycles47. Note that in our experiments, we
mostly apply only the SET pulses, and in this case the endurance
is expected to be substantially higher.

To summarize, the objective of our work was to realize a high-
level computational primitive or machine-learning algorithm
using computational memory. We proposed an algorithm to
detect temporal correlations between event-based data streams
that exploits the crystallization dynamics of PCM devices. The
conductance of the PCM devices receiving correlated inputs
evolves to a high value, and by monitoring these conductance
values we can detect the temporal correlations. We performed a
large-scale experimental demonstration of this concept using a
million PCM devices, and could successfully detect weakly cor-
related processes in artificially generated stochastic input data.
This experiment demonstrates the efficacy of this concept even in
the presence of device variability and other non-ideal behavior.
We also successfully processed real-world data sets from weather
stations in the United States and obtained classification results
similar to the k-means clustering algorithm. A detailed com-
parative study with respect to state-of-the-art von Neumann
computing systems showed that computational memory could
lead to orders of magnitude improvements in time/energy-to-
solution compared to conventional computing systems.

Methods
Phase change memory chip. The PCM devices were integrated into the chip in
90 nm CMOS technology32. The phase change material is doped Ge2Sb2Te2 (d-
GST). The bottom electrode has a radius of approx. 20 nm and a length of approx.
65 nm, and was defined using a sub-lithographic key-hole transfer process48. The
phase change material is approx. 100 nm thick and extends to the top electrode.
Two types of devices are available on-chip. They differ by the size of their access
transistor. The first sub-array contains 2 million devices. In the second sub-array,
which contains 1 million devices, the access transistors are twice as large. All
experiments in this work were done on the second sub-array, which is organized as
a matrix of 512 word lines (WL) and 2048 bit lines (BL). The selection of one PCM
device is done by serially addressing a WL and a BL. A single selected device can be
programmed by forcing a current through the BL with a voltage-controlled current
source. For reading a PCM cell, the selected BL is biased to a constant voltage of
200 mV. The resulting read current is integrated by a capacitor, and the resulting
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voltage is then digitized by the on-chip 8-bit cyclic ADC. The total time of one read
is 1 μs. The readout characteristic is calibrated by means of on-chip reference poly-
silicon resistors.

Generation of 1M random processes and experimental details. Let Xr be a
discrete binary process with probabilities P(Xr(k) = 1)= p and P(Xr(k) = 0)= 1 − p.
Using Xr as the reference process, N binary processes can be generated via the
stochastic functions39

θ ¼ P XiðkÞ ¼ 1 XrðkÞj ¼ 1ð Þ ¼ pþ
ffiffi

c
p

1� pð Þ ð10Þ

ϕ ¼ P XiðkÞ ¼ 1 XrðkÞj ¼ 0ð Þ ¼ p 1�
ffiffi

c
p� �

ð11Þ

P XiðkÞ ¼ 0ð Þ ¼ 1� P XiðkÞ ¼ 1ð Þ: ð12Þ

It can be shown that E(Xi(k))= p and Var(Xi(k))= p(1 − p). If two processes Xi

and Xj are both generated using Eqs. 10–12, then the expectation of their product is
given by:

E Xi kð ÞXj kð Þ
� �

¼ P Xi kð Þ ¼ 1;Xj kð Þ ¼ 1
� �

¼
P

v2f0;1g
P Xi kð Þ ¼ 1;Xj kð Þ ¼ 1 Xr kð Þj ¼ v
� �

P Xr kð Þ ¼ vð Þ:

Conditional on the value of the process Xr, the two processes Xi and Xj are
statistically independent by construction, and thus the conditional joint probability
P(Xi(k)= 1, Xj(k) = 1|Xr(k) = v) can be factorized as follows:

E XiðkÞXjðkÞ
� �

¼
P

v2f0;1g
P XiðkÞ ¼ 1 XrðkÞj ¼ vð ÞP XjðkÞ ¼ 1 XrðkÞj ¼ v

� �

P XrðkÞ ¼ vð Þ

¼ θ2pþ ϕ2ð1� pÞ

¼ p2 þ cpð1� pÞ;

where the final equality is obtained by substituting the preceding expressions for θ
and ϕ, followed by some simple algebraic manipulation. It is then straightforward
to show that the correlation coefficient between the two processes is equal to c as
shown below:

Cov XiðkÞXjðkÞ
� �

¼ E XiðkÞXjðkÞ
� �

� E XiðkÞð ÞE XjðkÞ
� �

¼ p2 þ cpð1� pÞ � p2

CovðXiðkÞXjðkÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXiÞVarðXjÞ
p ¼ c

ð13Þ

For the experiment presented, we chose an Xr where p= 0.01. A million binary
processes were generated. Of these, Nc= 95,525 are correlated with c> 0. The
remaining 904,475 processes are mutually uncorrelated. Each process is mapped to
one pixel of a 1000 × 1000 pixel black-and-white sketch of Alan Turing: white
pixels are mapped to the uncorrelated processes; black pixels are mapped to the
correlated processes. The seemingly arbitrary choice of Nc arises from the need to
match with the black pixels of the image. The pixels turn on and off in accordance
with the binary values of the processes. One phase change memory device is
allocated to each of the one million processes.

Weather data-based processes and experimental details. The weather data was
obtained from the National Oceanic and Atmospheric Administration (http://
www.noaa.gov/) database of quality-controlled local climatological data. It provides
hourly summaries of climatological data from approximately 1600 weather stations
in the United States of America. The measurements were obtained over a 6-month
period from January 2015 to June 2015 (181 days, 4344 h). We generated one
binary stochastic process per weather station. If it rained in any given period of 1 h
in a particular geographical location corresponding to a weather station, then the
process takes the value 1; else it will be 0. For the experiments on correlation
detection, we picked 270 weather stations with similar rates of rainfall activity.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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