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Temporal Coupled-Mode Theory and the
Presence of Non-Orthogonal Modes in Lossless

Multimode Cavities
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Abstract—We develop a general temporal coupled-mode theory
for multimode optical resonators. This theory incorporates a
formal description of a direct transmission pathway, and is
therefore capable of describing Fano interference phenomena in
multimode cavities. Using this theory, we prove a general criterion
that governs the existence of nonorthogonal modes. The presence
of nonorthogonal modes creates interesting transport properties
which can not be obtained in normal resonator systems. We vali-
date our theory by comparing its predictions with first-principles
finite-difference time-domain simulations and obtaining excellent
agreement between the two.

Index Terms—Electromagnetic coupling, filters, optical modula-
tion, optical switches, resonance.

I. INTRODUCTION

THE MODE of a resonator structure is typically defined as
the eigenmode of its time-evolution operator [1], [2]. In a

closed cavity when both gain and loss are absent, the time-evo-
lution operator is unitary, and the eigenmode of the cavity forms
an orthogonal basis. Such an orthogonal basis is commonly used
as a starting point for either coupled-mode theory [1], or as the
basis for quantization in quantum electrodyanamics. In the pres-
ence of cavity gain or loss, the time-evolution operator is no
longer unitary in general. Consequently, the resonator eigen-
modes may no longer be orthogonal but rather may form a bi-or-
thogonal basis [2]. For laser cavities where gain is present, the
presence of nonorthogonal modes leads to the Petermann excess
noise factor that have been extensively studied both theoretically
and experimentally in the past decade [3]–[6].

In addition to the use of optical resonator structure as a laser
cavity, high quality factor resonances have also been commonly
used in filters for many optical information processing appli-
cations. In these applications, the optical resonator is typically
coupled with several input/output ports to allow frequency-se-
lective energy transfer between the ports, and the spectral line-
shapes of the energy transfer are of critical interests. When the
material loss inside the optical resonator can be neglected, the
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Fig. 1. Schematic of an optical resonator system coupled with multiple ports.
The arrows indicate the incoming and outgoing waves. The dashed lines are
reference planes for the phase of wave amplitudes in the ports.

overall multiport system, as shown in Fig. 1, is lossless, and can
be described in terms of a unitary S-matrix that relates the am-
plitudes between the output waves and input waves in all the
ports. When only a single optical mode is present in the cavity,
the S-matrix can be readily calculated using standard temporal
coupled mode theory, which relates the amplitudes in the input
and output ports to the amplitudes of the mode inside the cavity
[7]. In the case where more than one optical mode are present,
however, since the cavity by itself couples to the ports and is
therefore an open cavity structure, there is a possibility that the
optical modes inside the cavity can only be described in terms of
nonorthogonal basis functions. The presence of such nonorthog-
onality should strongly affect the possible forms of the -ma-
trix, and the transmission and reflection spectra of the overall
system. To the best of our knowledge, however, a formalism that
allows one to calculate the transmission and reflection proper-
ties of a multimode cavity that supports nonorthogonal modes
have never been proposed and studied in details.

In this paper, we develop a general temporal coupled mode
theory of a multimode optical resonator. This theory incorpo-
rates a formal description of a direct transmission pathway and
is therefore capable of describing Fano interference [8]–[10] for
the multimode cavity system. Using this theory, we prove a gen-
eral criterion that governs the existence of nonorthogonal modes
in the cavity. In a simple case where only two-modes are present,
we provide a detailed derivation of the spectral lineshapes that
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are associated with nonorthogonal modes. We compare the pre-
dictions of these lineshapes with first-principle finite-difference
time-domain (FDTD) simulations in photonic crystal structures
and show that the theoretical prediction indeed produces the cor-
rect lineshapes as seen in the simulation. Both theory and simu-
lations indicate that in the presence of nonorthogonal modes, it
is possible to generate very sharp transmission peaks even which
can potentially be of importance for switching or sensing appli-
cations.

The paper is organized as follows. In Section II, we present a
detailed derivation for the general coupled mode theory appli-
cable to a system with arbitrary number of ports and resonances.
In Section III, we then apply the theory to a two-mode, two-
port system to highlight the essential differences in the trans-
port properties between the orthogonal and the nonorthogonal
systems. And finally, in Section IV, we present first principles
FDTD simulations which completely validate our theoretical
analysis.

II. THEORY

A. General Discussions and Summary of the Main Results

We develop our theory based upon the coupling of modes
in a time-dependent formalism for optical resonators [7]. As a
starting point, we consider a closed optical cavity system that
possesses modes coupling with each other. The dynamic equa-
tions for resonance amplitudes can be written in the following
form:

(1)

where is a matrix which represents resonance frequen-
cies and the coupling between modes. In general, the cavity
modes are coupled and the amount of coupling is determined by
the overlap integral of the modes, which determines the off-di-
agonal elements of . The amplitude vector

...

represents the resonance amplitudes inside the optical cavity.
Here the resonance amplitudes are normalized such that
corresponds to the energy in the th optical mode of the res-
onator. When there is no gain or loss in the closed system, the en-
ergy is conserved. The matrix is therefore Hermitian and can
be diagonalized by unitary transformations. The eigenmodes of
the matrix form an orthogonal basis. Now, let us imagine that
we couple the -mode resonator system as described by (1), to

ports (Fig. 1). The incoming wave from the ports can then
couple into the resonator. At the same time, the amplitude inside
the resonator can also decay into the ports. For such a system,
the dynamic equations in general can be written as [11]

(2)

(3)

where both and matrices are Hermitian matrices, and
represent the resonance frequencies and the decay, respectively.
The resonant mode is excited by the incoming waves

...

from ports 1 to , with the coupling matrix

...
...

. . .
...

The resonant mode, once excited, coupled with the outgoing
waves

...

at the ports with the coupling matrix

...
...

. . .
...

Here we assume that all eigenvalues of the matrix
have negative real parts. Thus, all the resonance in the cavity
can decay into the ports. (Those modes that do not couple into
the ports obviously do not contribute to the resonant transport
process. While this might appear to be a trivial statement, we
will explicitly use this assumption in the later part of the paper.)
In addition to the resonance-assisted coupling between the ports,
the incoming and outgoing waves in the ports can also couple
through a direct pathway, as described by an scattering
matrix . The incorporation of such scattering matrix leads
to Fano interference [11].

In general, for any lossless and reciprocal system, the only
constraint on matrix is that it is unitary and symmetric. On
the other hand, since the overall system, including both the res-
onance and the ports, is energy conserving, the decay process,
as described by the matrix , results from the coupling of the
resonance to the ports. Thus, the matrices and should not
be independent but rather should be related to and . In Sec-
tions II-B–II-E, we will prove the following relations rigorously:

(4)

(5)

(6)

The proof is completely general and relies upon only time-re-
versal symmetry and energy conservation arguments.

The multimode temporal coupled mode theory as outlined
above should be useful in studying wide ranges of effects in
optical resonator systems. Here, in particular, using this theory,
we will prove in Section II-F that the resonant modes become
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Fig. 2. Schematic of an optical resonator system coupled with two physical
ports. The system possesses a mirror plane as represented by the dashed line.
Both the system and the resonator mode have even symmetry with respect to
the mirror plane.

nonorthogonal when . And therefore,
the presence of nonorthogonal modes is in fact of very general
nature in multimode optical resonator systems.

B. Proof of (4):

Equation (4) is a direct consequence of energy conservation.
To see this, we consider the scenario where the external inci-
dent wave is absent, i.e., , and at , there is a finite
amplitude in the resonance. At , the resonant mode will
decay exponentially into all the ports, and the energy of the op-
tical modes in the resonator thus varies as

(7)

where we use the fact that both and are Hermitian matrices.
(For clarity, we note that is the Hermitian adjoint of the reso-
nance amplitude .) On the other hand, since the overall system,
including both the resonator and the ports, is energy conserving,
the decaying of the resonance amplitudes are due entirely to the
creation of the outgoing waves. Hence

(8)

Comparing (7) and (8), we have

(4)

C. Concept of Independent Decay Ports

For the proof of (5) and (6), and for the discussions of the
presence of nonorthogonal modes, the concept of independent
decay ports are of essential importance. We will introduce this
concept first with a simple example. Consider a single resonance
coupling with two physical ports, as shown in Fig. 2. We assume
that the system has a mirror-plane symmetry, and that the reso-
nant mode is even with respect to the mirror plane. The decay
amplitudes from the resonance into the two ports are then always
equal. In other words, while two physical ports are present, the
decay amplitudes in these ports are correlated and are not inde-
pendent from each other due to the properties of the resonances,
and therefore are effectively identical ports. The concept of in-
dependent ports is introduced to precisely describe such corre-
lation effects between different physical ports.

In general, we define the number of independent decay ports
as

(9)

Since is an matrix, is always no greater than the
number of resonances and the number of ports [12]. Fur-
thermore, using singular value decomposition (SVD), we can
represent as [12]

(10)

Here, and are and unitary matrices respec-
tively. is an diagonal matrix. With the transformation of
(10), (3) can be rewritten as

(11)

where , , and

. If we define , and ,

we can see from (11) that the outgoing amplitudes do not
come from the resonances. Therefore, from time reversal sym-
metry, the incoming wave amplitudes should not couple
to the resonances either. Under the same transformations of
and , the matrix should become

(12)

where is an matrix. The use of the concept of indepen-
dent ports thus reduces the complexity of the temporal coupled
mode theory.

D. Proof of (5):

Using the concept of independent ports, we now set out to
prove (5), with time-reversal symmetry arguments. Let’s per-
form a time-reversal transformation for the exponential decay
process as described by (7). The time-reversed case is repre-
sented by feeding the resonator with exponentially growing
waves at complex frequencies , with amplitudes
at equal to . Such excitations cause time reversed
resonance amplitudes at to grow exponentially in time.
From (2), under a steady-state excitation with the frequencies

, the amplitude of the resonant mode is

(13)

Thus, at the complex frequencies , we have
, and therefore

(14)

Using (10) and (12), (14) can be simplified into

(15)

where is an Hermitian matrix.
On the other hand, recalling (4): , and applying

(10) to (4), we have

(16)
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Therefore, comparing (15) and (16), we have
. And immediately follows, since is an

nonsingular matrix. Hence

(17)

which proves (5). We note that this result can also be proved
using reciprocity.

E. Proof of (6):

The time-reversed excitation also has to satisfy the con-
dition that no outgoing wave shall occur upon such excitations
[11], i.e.,

(18)

Thus, the coupling constants have to satisfy a further condi-
tion

(6)

Hence, the coupling constants in general cannot be arbitrary, but
are instead related to the scattering matrix of the direct process.

F. Condition for the Existence of Nonorthogonal Modes

As an application of the temporal coupled mode theory out-
lined above, here we show that in an optical resonator system,
nonorthogonal modes will always exist when the number of in-
dependent decay ports is less than the number
of leaky optical modes. Recall that the modes of the resonator
are defined as the eigenmodes of the operator .
It is known that the eigenmodes of a matrix form an or-
thogonal basis if and only if [12]. Since
and are Hermitian, is equivalent to the re-
lation , which implies that and can be simultane-
ously diagonalized. On the other hand, since , we
have . Consequently, when the relations

and are both satisfied, some of the
eigenmodes of the matrix will have pure imaginary eigen-
values, which indicates that some modes have infinite lifetime,
and do not couple to the ports. This contradicts our initial as-
sumptions on that all eigenmodes of should decay into the
ports. Therefore, the modes in a resonator system will always
be nonorthogonal when the total number of independent decay
ports is less than the number of optical modes.

III. EXAMPLE: A SPATIALLY SYMMETRIC SYSTEM WITH TWO

MODES AND TWO PORTS

In order to highlight the fundamental differences in transport
properties between systems with orthogonal or nonorthogonal

resonant modes, we study a resonator system with two reso-
nances and two physical ports, as an example of the general
theory. Such a system is described by matrices

and

We determine both the matrix and the off-diagonal elements
of the matrix in terms of the resonance frequencies , and
the decay rates and , and subsequently obtain the transport
characteristics. Applying (4) and (6) to these matrices, and as-
suming the system has mirror symmetry, we get

(19)

(20)

(21)

where is the phase angle of . Since the system has mirror
plane symmetry, each mode will decay either symmetrically or
anti-symmetrically into the two ports, and we have

(22)

Thus, in general, we obtain

(23)

Using these equations, we now consider two cases where the
resonator modes are of different symmetry properties.

Case (1): The Two Resonances Have Opposite Symmetry: In
this case, since the two resonances have opposite symmetry, we
have

(24)

and from (21) we have [13], and therefore the modes
are orthogonal . The transmission through such a
system can then be directly determined by theory as

(25)

where the top signs are used when the first mode is even, and
the bottom signs are used when the first mode is odd.
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Fig. 3. (a) Schematic of a waveguide side-coupled to an optical resonator system. The resonator system supports two modes. (b) Theoretical transmission spectrum
through the system shown in (a). Left panels are when the resonator supports orthogonal modes and right panels are when it supports nonorthogonal modes. We
vary the frequency spacing �! between the two resonance frequencies. The width of both resonances are assumed to be 
 , and ! is the average of the two
resonance frequencies.

Case (2). The Two Resonances Have the Same Symmetry: In
this case, since the symmetry of the two resonances are the
same, the decay amplitudes in the two ports are always equal to
each other, and we have only a single independent decay port.
From our general arguments in Section II-F, the system should
possess nonorthogonal resonant modes.

Mathematically, from (6) and (22), one can show that
when both modes

are even, and when
both modes are odd. Furthermore, since the scattering matrix
is unitary, in general, we have ,
and, therefore, . Consequently

(26)

and from (21), we have

(27)

Therefore, the resonant modes indeed form a nonorthogonal
basis, since . The transmission coefficient can be de-
termined as

(28)

where the top signs are used when both modes are even, and the
bottom signs are used when both modes are odd.

Fig. 3 shows the transmission through the system with either
orthogonal or nonorthogonal modes, as determined using (25)
and (28). The system can be realized by a waveguide side cou-
pled to a resonator system, as schematically shown in Fig. 3(a).
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We assume that and . For
simplicity, we also assume that the two resonances possess the
same linewidth , and that and . And we vary the
separation of the resonance frequencies . In the case of or-
thogonal mode [Fig. 3(b), left panels], when , the trans-
mission behaves as two separate Lorentzian lineshapes, with
high transmission at and with the transmission dropping
to zero near and . As the resonance frequencies become
closer to each other, the transmission coefficient at starts
to decrease, eventually reaching zero when . In such a
case, the lineshape exhibits a flat-top reflection spectrum and the
system can be used as a filter to completely reflect a particular
wavelength channel while letting other channels pass through
[14]. As we further decrease such that , the trans-
mission at starts to increase, eventually exhibiting an
all-pass transmission characteristic when . In such a
case, there is significant delay at resonance, while the intensity
maintains 100% transmission both on and off resonance. Such
a system can be used for optical delay lines [14], [15].

In the case of nonorthogonal mode [Fig. 3(b), right panels],
the transmission behavior is significantly different. At the res-
onance frequencies and , the transmission goes to zero
regardless of the spacing between the two resonance frequen-
cies. Furthermore, when the linewidths of the two resonances
are same, the transmission peaks at with 100% intensity.
(The frequency of this transmission peak, in general, is depen-
dent upon the linewidth of the resonance when the linewidths
are not equal, but always occur between the two resonance fre-
quencies.) The width of such transmission peak is dependent
upon the frequency spacing of the two modes and can be infini-
tesimal when the two frequencies are close to each other. Thus,
we can achieve narrow-bandwidth behavior in the transmission,
where the bandwidth can be tuned by changing the relative po-
sition of the resonance frequencies. This could be potentially
important for optical switching and sensing applications.

IV. NUMERICAL VALIDATION OF THE THEORY

To validate the theoretical analysis, we compare the theoret-
ical results derived in Section III to FDTD simulations of passive
photonic crystal systems with two resonant modes. An example
of a system that possesses orthogonal modes is shown in Fig. 4.
The crystal consists of a square lattice of dielectric rods. In the
crystal, a waveguide is introduced by removing one row of di-
electric rods. Also, two identical single-mode cavities are cre-
ated on the same side of the waveguide by reducing the radius of
two rods. Since there is a mirror plane symmetry, the overall res-
onator system possesses even and odd modes, each of which can
be approximated as a linear superposition of the two modes in
the single-mode cavities. Thus, the two resonator modes are or-
thogonal. The simulation results as reported previously indeed
show excellent agreements with the analytic theory using or-
thogonal modes. In particular, all-pass transmission character-
istics has been observed [15].

Here, we focus our attention on the case of nonorthogonal
modes. We again consider a photonic crystal waveguide struc-
ture with a square lattice of dielectric rods. The dielectric con-
stant of the rods is 11.56, and the rods have radii of , where

Fig. 4. Schematic of a two-dimensional photonic crystal structure. The gray
circles correspond to dielectric rods. The crystal consists of a square lattice of
dielectric rods of radius 0:2a, where a is the lattice constant, with dielectric
constant of 11.56. A waveguide is formed by removing one row of dielectric
rods. On the same side of the waveguide, there are two identical single-mode
cavities of radius 0:05a and dielectric constant 4.2. This system is described in
terms of an orthogonal mode model.

Fig. 5. (a) Schematic of a two-dimensional photonic crystal structure with
dielectric rods of radius 0:2a and dielectric constant 11.56. A waveguide is
formed by removing one row of dielectric rods. One resonator is formed by
reducing the radius of a rod three periods from the waveguide to 0:05a. The
second dielectric rod resonator is placed on the opposite side of the waveguide
two periods away, by replacing the rod with a rod of radius 0:05a and dielectric
constant 12.4. This system is described in terms of a nonorthogonal mode
model, since both modes have even symmetry with respect to the mirror
plane perpendicular to the waveguide. (b) Transmission spectrum through the
waveguide structure. Solid line is the analytic theory and the open circles are
FDTD simulations. (c) Resonance amplitudes of the two resonances. Note that
the two resonances are not distinguishable since the frequency difference is
smaller than the resonance linewidth.

is the lattice constant. We put two single-mode cavities on the
opposite side of the waveguide as shown in Fig. 5(a). One cavity
is formed by reducing the radius of a rod located at three periods
from the waveguide to . The second cavity is created by
replacing a rod at two periods away from the waveguide, with
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a rod of radius and dielectric constant 12.4. Each of the
two point defects is chosen to support a monopole mode [16],
and thus both modes possess an even field pattern with respect
to the mirror plane, in consistency with case (2) described in the
previous section. Since the number of independent decay ports
is less than the total number of leaky resonance, the modes are
nonorthogonal. In the simulation, the cavity modes are excited
with a temporal Gaussian pulse entering from the left side of the
waveguide, and we record the transmission function response at
the right end of the waveguide and the amplitudes in the cav-
ities. The transmission spectrum is shown in Fig. 5(b), which
clearly shows zero intensity at two frequencies, and a peak that
reaches 100%, between these two frequencies. To compare the
FDTD results to the analytic theory, we extract the resonance
frequencies and the width of the optical modes by analyzing
the temporal decaying tail of the resonant modes after the pulse
has passed through. The spectrum of resonance amplitudes are
shown in Fig. 5(c). In the figure, only a single peak is present,
since the frequency difference between the two resonances is
smaller than the resonance linewidth. However, by analyzing
the temporal decay of the field amplitude using a filter-diago-
nalization method on a Fourier basis [17], we are able to obtain
two distinct resonance frequencies and their linewidths. Using
this information, we compare the theoretical transmission spec-
trum with FDTD results shown in Fig. 5(b) and obtain excellent
agreement between the two. (In using (28), and ,
since the direct transmission, i.e., the transmission coefficient
for the wave inside the waveguide in the absence of the cavities,
is 100%.)

The theory can also be applied to general cases where the
matrix is not an identity matrix, in which case Fano inter-
ference occurs. As an example, we consider the transmission
spectrum for light normally incident upon a single slab pho-
tonic crystal slab structure, as shown in Fig. 6(a). The slab is
constructed by introducing a periodic array of air holes into a
high-index guiding layer [18]. The dielectric constant is chosen
to be 12, which approximates to that of silicon at optical fre-
quencies. The radius of air holes is , where is the lattice
constant, and the thickness of the slab is . For this structure, a
modal analysis reveals the existence of two modes with frequen-
cies in close proximity to each other, as shown in Fig. 6(b). Both
modes possess odd symmetry with respect to the mirror plane
at the center of the slab. The transmission through the system
is shown in Fig. 6(c). The open circled spectrum is the FDTD
result and the solid line is the spectrum predicted by analytic
theory. To determine the parameters for the theory plot, we ob-
tain the resonance frequency and the width by Fourier transform
of the temporal decaying tail of the resonances, and determine

with the model of a uniform dielectric slab with an effective
dielectric function [18]. We again see excellent agreement be-
tween the theory and the FDTD results. Thus, the FDTD results
completely validate our coupled mode theory analysis.

V. SUMMARY

We introduced a general temporal coupled-mode theory for
optical resonators. Using this theory, we prove a general crite-
rion for the existence of nonorthogonal modes in passive optical

Fig. 6. (a) Schematic of a photonic crystal slab structure. The arrow represents
the direction of incident light. The structure has thickness of 1a, and dielectric
constant of 12. Within the slab, there are air holes of radius 0:2a. (b) Resonance
amplitude of two modes in the structure that are excited by normally uincident
light. The two modes both have odd symmetry with respect to the mirror plane
parallel to the slab. (c) Transmission spectrum upon normally incident light.
Solid line is the analytic theory and the open circles are FDTD simulations.

resonator systems. We note that this theory can be extended to
include both radiation loss and material loss in a phenomenolog-
ically standard way [7], by introducing additional decay in the
diagonal elements of the matrix. The matrix now consists
of two parts: , which describe the decay of resonance due
to coupling to the ports, and , which represents coupling
to a continuum of radiation modes. The result in (4) is now ex-
pressed in only, and thus the existence of nonorthogonal
modes is unaffected. We expect such theory to be important for
any optical devices that employ multimode resonator systems,
including applications such as optical sensors and switches.
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