
Fan et al. Vol. 20, No. 3 /March 2003/J. Opt. Soc. Am. A 569
Temporal coupled-mode theory for the Fano
resonance in optical resonators
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We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formal-
ism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input
and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-
conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure,
Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analy-
sis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations
of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function
synthesis in filter and sensor applications. © 2003 Optical Society of America
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1. INTRODUCTION
The Fano resonance line shape appears in the optical
transmission and reflection spectra for a wide variety of
structures, such as metallic or dielectric gratings1–13 and
side-coupled waveguide-cavity systems.14 The resonance
occurs from interference between a direct and a
resonance-assisted indirect pathway and typically exhib-
its a sharp asymmetric line shape with the transmission
coefficients varying from 0 to 100% over a very narrow
frequency range. Recently, Fano effects have been ex-
ploited in narrowband optical filters, polarization selec-
tors, modulators, switches; sensors5–7,10,13 and have also
been observed in photonic crystal slab structures.15,16

The theory of Fano resonance is very well developed in
metallic and dielectric grating structures. In early stud-
ies, the Fano resonance phenomenon in these structures
was attributed to the presence of leaky modes supported
by the gratings.2,3 Later, extensive theoretical and nu-
merical studies were devoted to the study of the spatial
coupling of such leaky modes to the external
waves.5–9,11,12 However, given the ubiquitous nature of
Fano effects, which are not restricted to the grating struc-
tures, it is clearly of interest to construct a theory that il-
lustrates the fundamental aspects of the interference be-
havior.

In this paper we develop a general theory of transport
processes from multiple input and output ports through a
single-mode optical resonator. The theory incorporates
the effects of both direct and indirect pathways and is
thus applicable to any single-mode resonator structure
that exhibits the Fano effect, including all the examples
cited above. We show that the coupling constants in this
theory are strongly constrained by energy-conservation
and time-reversal symmetry considerations. In particu-
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lar, in a two-port system with mirror symmetry, the cou-
pling constants are in fact completely constrained, and
the Fano line shape becomes a natural consequence. We
believe that our theory, being formulated in a general
fashion, should therefore prove to be useful for response-
function synthesis in filter and sensor applications.

2. THEORY
We develop our theory on the basis of the coupling of
modes in a time-dependent formalism for op-
tical resonators.17 The theoretical model, schematically
shown in Fig. 1, consists of a single-mode optical resona-
tor coupled with m ports, labeled 1, 2,..., m. The dynamic
equations for the amplitude a of the resonance mode can
be written as

da

dt
5 S jv0 2

1

t
D a 1 ~^ku* !us1&, (1)

us2& 5 Cus1& 1 aud&, (2)

where v0 and t are the center frequency and the lifetime
of the resonance, respectively. The amplitude a is nor-
malized such that uau2 corresponds to the energy inside
the resonator.17 The resonant mode is excited by the in-
coming waves

us1& 5 S s11

s21

]

sm1

D
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from ports 1 to m, respectively, with the coupling con-
stants

^ku* 5 S k1

k2

]

km

D .

(For compactness of presentation we adopt Dirac’s
bracket notation to describe vectors that are indexed to
the labels of the ports.) The resonant mode, once excited,
couples with the outgoing waves

us2& 5 S s12

s22

]

sm2

D
at the ports with the coupling constants

ud& 5 S d1

d2

]

dm

D .

In addition to the resonance-assisted coupling between
the ports, the incoming and outgoing waves in the ports
can also couple through a direct pathway, as described by
a scattering matrix C. The presence of the direct path-
way is an essential aspect of the Fano effect. Hence the
matrix C here must be taken to be an arbitrary scattering
matrix, i.e., any unitary and symmetric matrix.

Equations (1) and (2) represent a generalization of the
standard temporal coupled-mode theory,17 in which C is a
diagonal matrix. Our theory thus assumes the same re-
gime of validity as the standard temporal-coupled-mode
theory; i.e., this approach is strictly valid only when the
width of the resonance is far smaller than the resonance
frequency. It has been shown in Ref. 17 that in this re-
gime the coupling constants can be taken to be frequency
independent and that the frequency shift due to the expo-

Fig. 1. Schematic of an optical resonator system coupled with
multiple ports. The arrows indicate the incoming and outgoing
waves. The dashed lines are reference planes for the wave am-
plitudes in the ports.
nential decay of the mode to the ports is a second-order
effect and can be incorporated into the theory through a
renormalization of v0 .

The coefficients k, d, and C are not independent; rather,
they are related by energy-conservation and time-reversal
symmetry constraints. Below we will exploit the conse-
quence of these constraints to develop a minimum set of
parameters that completely characterize the system.
First, for externally incident excitations us1& at a fre-
quency v, we can write the scattering matrix S for the
system described by Eqs. (1) and (2) as

us2& [ Sus1& 5 FC 1
ud&^ku*

j~v 2 v0! 1 1/tG us1&. (3)

Since the scattering matrix has to be symmetric because
of time-reversal symmetry, we have

ud&^ku* 5 uk&^du* . (4)

(Thus the coefficients uk& and ud& are not independent and
must satisfy d1k

2
5 d2k

1
, etc). Also, with incoming-

wave amplitudes us1&, the amplitude of the resonant
mode is

a 5
~^ku* !us1&

j~v 2 v0! 1 1/t
. (5)

Instead of considering the case in which the resonator
is excited by externally incident waves us1&, let us now
consider an alternative situation in which the external in-
cident wave is absent, i.e., us1& 5 0, and at t 5 0 there is
a finite amplitude of the resonance. At t . 0, the reso-
nant mode decays exponentially into the two ports, as

duau2

dt
5 2S 2

t
D uau2 5 2^s2us2& 5 2uau2^dud&, (6)

which requires that

^dud& 5 2/t. (7)

Now, let us perform a time-reversal transformation for
the exponential decay process as described by Eq. (6).
The time-reversed case is represented by feeding the reso-
nator with exponentially growing waves at a complex fre-
quency v 5 v0 2 j(1/t), with amplitudes at t 5 0 equal
to us2&* . Such excitations cause a resonance amplitude
a* at t 5 0 to grow exponentially in time.17 Using Eq.
(5) at the complex frequency v 5 v0 2 j(1/t), we have

a* 5
~^kus2&!*

2/t
5

~^kud&a !*

2/t
,

and therefore

^kud& 5 2/t 5 ~^kud&!* . (8)

Combining Eqs. (4), (7), and (8), we are led to an impor-
tant conclusion:

uk& 5 ud&. (9)

The time-reversed excitation us2&* also has to satisfy
the condition that no outgoing wave shall occur upon such
excitations; i.e.,

0 5 Cus2&* 1 a* ud& 5 a* Cud&* 1 a* ud&, (10)
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Thus the coupling constants ud& have to satisfy a further
condition:

Cud&* 5 2ud&. (11)

Hence the coupling constants in general cannot be arbi-
trary but are instead related to the scattering matrix of
the direct process.

To check that Eqs. (9) and (11) indeed produce a self-
consistent temporal coupled-mode theory, we need to en-
sure that the scattering matrix S, as defined by Eq. (3), is
unitary. For this purpose, we note that

SS1 5 CC1 1
~2/t!ud&^du

~v 2 v0!2 1 ~1/t!2

1
Cud&* ^du

2j~v 2 v0! 1 ~1/t!
1

ud&^du* C1

j~v 2 v0! 1 ~1/t!
.

(12)

Taking advantage of Eq. (11) and its complex conjugate,

^du* C1 5 ~^duCT!* 5 ~Cud&* !1 5 2~ ud&!1 5 2^du,
(13)

we can indeed prove the unitary property of the matrix S:

SS1 5 CC1 1
~2/t!ud&^du

~v 2 v0!2 1 t 2 1
2ud&^du

2j~v 2 v0! 1 ~1/t!

1
2ud&^du

j~v 2 v0! 1 ~1/t!
5 CC1 5 I. (14)

Equations (1)–(14) are applicable to the general prob-
lem of a single optical mode coupled with multiple input
and output ports. Below, we will apply the general for-
malism to two-port structures. In this case, it can be
shown that once the magnitudes of the coupling constants
d1 and d2 are fixed, the phases of the coupling constants
can be determined from the scattering matrix C of the di-
rect process. The theory can be further simplified, how-
ever, when we consider structures with mirror symmetry.
For these structures, if we place the reference planes
symmetrically on each side of the structure with respect
to the mirror plane, the scattering matrix has to be such
that the two diagonal elements are equal. Thus we have
d1

2 5 d2
2. The scattering matrix for the direct transport

process also acquires a special form17:

C 5 exp~ jf !F r jt

jt r G , (15)

where r, t, and f are real constants with r2 1 t2 5 1.
Using Eqs. (7) and (11), we can determine d1 and d2 , and
consequently the scattering matrix S for the overall sys-
tem as

S 5 exp~ jf !H F r jt

jt r G
1

1/t

j~v 2 v0! 1 1/t
F2~r 6 jt ! 7~r 6 jt !

7~r 6 jt ! 2~r 6 jt !
G J .

(16)

Here the 6 sign corresponds to the case where the reso-
nant mode is even (odd) with respect to the mirror plane,
in which case d1 5 1(2)d2 . From Eq. (16), the inten-
sity reflection coefficient R is therefore

R 5
r2~v 2 v0!2 1 t2~1/t!2 7 2rt~v 2 v0!~1/t!

~v 2 v0!2 1 ~1/t!2 .

(17)

A symmetric Lorentzian line shape is reproduced only
when either r or t is zero. In all other cases, the system
exhibits a Fano asymmetric line shape. Thus our theory
directly predicts the line-shape function of the Fano phe-
nomena.

3. NUMERICAL VALIDATION OF THE
THEORY
The theoretical derivation above should be applicable to
any single-mode optical resonator system. To check the
validity of the theory, we compare the theoretical predic-
tions to first-principles simulations of one type of optical
resonance: the guided resonance in a photonic crystal
slab. For definiteness, we consider a crystal consisting of
a square lattice of air holes, each with a radius of 0.2a,
where a is the lattice constant, introduced into a dielectric
slab with a dielectric constant of 12 and a thickness of
0.55a. We find that the two lowest-frequency resonant
states at G occur at 0.37 and 0.39(c/a), where c is the
speed of light in vacuum.

We shall now focus on these resonances and investigate
their line shapes. Using finite-difference time-domain
simulations, we calculate the transmission spectra of
light that is normally incident on the slab [Fig. 2(a)].

Fig. 2. (a) Photonic crystal structure consisting of a square lat-
tice of air holes of radius 0.2a in a dielectric slab with dielectric
constant 12 and a thickness of 0.5a. The arrow indicates the
direction of the incident light. (b) The intensity transmission
spectrum through such a structure. The circles are the results
from the finite-difference time-domain simulations. The solid
curve is determined from analytic theory as represented by Eq.
(16). (c) The same plot as in (b), except that the frequency range
is now restricted to [0.36(c/a), 0.42(c/a)] to exhibit further details
of the resonance line shape.
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The simulated transmission spectrum, shown as circles in
Fig. 2(b), consists of Fano resonant line shapes superim-
posed on a smooth Fabry–Perot background.18 To com-
pare the simulations with theory, we determine from the
simulations the frequency and the width of the resonance
by studying the exponential temporal decay of the reso-
nance amplitude after the excitation. The scattering ma-
trix C for the direct transmission process is established by
fitting the background in the simulated spectrum to the
transmission coefficients through a uniform slab with the
same thickness and with an effective dielectric constant.
Using these parameters, we then calculate the theoretical
spectrum using Eq. (16) and plot it as a solid curve in Fig.
2(b) and 2(c). There is excellent agreement between
theory and simulations.

4. FINAL REMARKS
In concluding, we note that for structures in which the
resonances are sufficiently close to each other, a general
theory incorporating multiple resonances is needed.
Such a theory will be developed in future research. In
addition, while the scattering-matrix approach has been
used in the analysis of gratings4 and in the general case of
arbitrary scatters,19 and many aspects of the Fano reso-
nance can be obtained in a structure-independent fashion
by using the symmetry properties of the scattering matrix
alone (as previously reported in studies of phase-coherent
transport in mesoscopic semiconductors),20 our theory
does contain additional dynamic information about the
resonance amplitude. With this information, temporal
coupled-mode theory can be readily applied in situations
with more than one resonant mode and with nonlin-
earity17—situations in which a straightforward applica-
tion of scattering-matrix formalism alone would have
been more difficult. Thus we believe that the theory pre-
sented here should be useful for synthesizing response
functions in filter and sensor applications.
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