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Abstract

Our aim is to investigate ontology-based data access over temporal data with validity time and on-
tologies capable of temporal conceptual modelling. To this end, we design a temporal description logic,
TQL, that extends the standard ontology language OWL 2 QL, provides basic means for temporal con-
ceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data
instances with validity time.

1 Introduction
One of the most promising and exciting applications of description logics (DLs) is to supply ontology
languages and query answering technologies for ontology-based data access (OBDA), a way of query-
ing incomplete data sources that uses ontologies to provide additional conceptual information about the
domains of interest and enrich the query vocabulary. The current W3C standard language for OBDA
is OWL 2 QL , which was built on the DL-Lite family of DLs [Calvanese et al., 2006; 2007]. To an-
swer a conjunctive query q over an OWL 2 QL ontology T and instance data A, an OBDA system first
‘rewrites’ q and T into a new first-order query q′ and then evaluates q′ over A (without using the ontol-
ogy). The evaluation task is performed by a conventional relational database management system. Finding
efficient and practical rewritings has been the subject of extensive research [Pérez-Urbina et al., 2009;
Rosati and Almatelli, 2010; Kontchakov et al., 2010; Chortaras et al., 2011; Gottlob et al., 2011; König
et al., 2012]. Another fundamental feature of OWL 2 QL, supplementing its first-order rewritability, is the
ability to capture basic conceptual data modelling constructs [Berardi et al., 2005; Artale et al., 2007].

In applications, instance data is often time-dependent: employment contracts come to an end, parlia-
ments are elected, children are born. Temporal data can be modelled by pairs consisting of facts and their
validity time; for example, givesBirth(diana,william, 1982). To query data with validity time, it would be
useful to employ an ontology that provides a conceptual model for both static and temporal aspects of the
domain of interest. Thus, when querying the fact above, one could use the knowledge that, if x gives birth
to y, then x becomes a mother of y from that moment on:

♦P givesBirth v motherOf, (1)

where ♦P reads ‘sometime in the past.’ OWL 2 QL does not support temporal conceptual modelling and,
rather surprisingly, no attempt has yet been made to lift the OBDA framework to temporal ontologies and
data.

Temporal extensions of DLs have been investigated since 1993; see [Gabbay et al., 2003; Lutz et
al., 2008; Artale and Franconi, 2005] for surveys and [Franconi and Toman, 2011; Gutiérrez-Basulto and
Klarman, 2012; Baader et al., 2012] for more recent developments. Temporalised DL-Lite logics have
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been constructed for temporal conceptual data modelling [Artale et al., 2010]. But unfortunately, none of
the existing temporal DLs supports first-order rewritability.

The aim of this paper is to design a temporal DL that contains OWL 2 QL, provides basic means for
temporal conceptual modelling and, at the same time, ensures first-order rewritability of conjunctive queries
(for suitably defined data instances with validity time).

The temporal extension TQL of OWL 2 QL we present here is interpreted over sequences I(n), n ∈ Z,
of standard DL structures reflecting possible evolutions of data. TBox axioms are interpreted globally, that
is, are assumed to hold in all of the I(n), but the concepts and roles they contain can vary in time. ABox
assertions (temporal data) are time-stamped unary (for concepts) and binary (for roles) predicates that hold
at the specified moments of time. Concept (role) inclusions of TQL generalise OWL 2 QL inclusions
by allowing intersections of basic concepts (roles) in the left-hand side, possibly prefixed with temporal
operators ♦P (sometime in the past) or ♦F (sometime in the future). Among other things, one can express in
TQL that a concept/role name is rigid (or time-independent), persistent in the past/future or instantaneous.
For example, ♦F♦P Person v Person states that the concept Person is rigid, ♦P hasName v hasName
says that the role hasName is persistent in the future, while givesBirth u ♦P givesBirth v ⊥ implies that
givesBirth is instantaneous. Inclusions such as ♦P Start u ♦F End v Employed represent convexity (or
existential rigidity) of concepts or roles. However, in contrast to most existing temporal DLs, we cannot
use temporal operators in the right-hand side of inclusions (e.g., to say that every student will eventually
graduate: Student v ♦F Graduate).

In conjunctive queries (CQs) over TQL knowledge bases, we allow time-stamped predicates together
with atoms of the form (τ < τ ′) or (τ = τ ′), where τ, τ ′ are temporal constants denoting integers or
variables ranging over integers.

Our main result is that, given a TQL TBox T and a CQ q, one can construct a union q′ of CQs such
that the answers to q over T and any temporal ABoxA can be computed by evaluating q′ overA extended
with the temporal precedence relation < between the moments of time in A. For example, the query
motherOf(x, y, t) over (1) can be rewritten as

motherOf(x, y, t) ∨ ∃t′
(
(t′ < t) ∧ givesBirth(x, y, t′)

)
.

Note that the addition of the transitive relation < to the ABox is unavoidable: without it, there exists no
first-order rewriting even for the simple example above [Libkin, 2004, Cor. 4.13].

From a technical viewpoint, one of the challenges we are facing is that, in contrast to known OBDA
languages with CQ rewritability (including fragments of datalog± [Calı̀ et al., 2012]), witnesses for ex-
istential quantifiers outside the ABox are not independent from each other but interact via the temporal
precedence relation. For this reason, a reduction to known languages appears to be impossible and a novel
approach to rewriting has to be found. We also observe that straightforward temporal extensions of TQL
lose first-order rewritability. For example, query answering over the ontology {Student v ♦FGraduate}
is shown to be non-tractable.

2 TQL: a Temporal Extension of OWL 2 QL
Concepts C and roles S of TQL are defined by the grammar:

R ::= ⊥ | Pi | P−i ,

B ::= ⊥ | Ai | ∃R,
C ::= B | C1 u C2 | ♦PC | ♦FC,

S ::= R | S1 u S2 | ♦PS | ♦FS,

where Ai is a concept name, Pi a role name (i ≥ 0), and ♦P and ♦F are temporal operators ‘sometime in
the past’ and ‘sometime in the future,’ respectively. We call concepts and roles of the form B and R basic.
A TQL TBox, T , is a finite set of concept and role inclusions of the form

C v B, S v R,
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which are assumed to hold globally (over the whole timeline). Note that the ♦F/P -free fragment of TQL
is an extension of the description logic DL-LiteHhorn [Artale et al., 2009] with role inclusions of the form
R1 u · · · u Rn v R; it properly contains OWL 2 QL (the missing role constraints can be safely added to
the language).

A TQL ABox, A, is a (finite) set of atoms Pi(a, b, n) and Ai(a, n), where a, b are individual constants
and n ∈ Z a temporal constant. The set of individual constants in A is denoted by ind(A), and the set of
temporal constants by tem(A). A TQL knowledge base (KB) is a pair K = (T ,A), where T is a TBox
and A an ABox.

A temporal interpretation, I, is given by the ordered set (Z, <) of time points and standard (atemporal)
interpretations I(n) = (∆I , ·I(n)), for each n ∈ Z. Thus, ∆I 6= ∅ is the common domain of all I(n),
a
I(n)
i ∈ ∆I , AI(n)i ⊆ ∆I and P I(n)i ⊆ ∆I × ∆I . We assume that aI(n)i = a

I(0)
i , for all n ∈ Z. To

simplify presentation, we adopt the unique name assumption, that is, aI(n)i 6= a
I(n)
j for i 6= j (although

the obtained results hold without it). The role and concept constructs are interpreted in I as follows, where
n ∈ Z:

⊥I(n) = ∅ (for both concepts and roles),

(P−i )I(n) = {(x, y) | (y, x) ∈ P I(n)i },
(∃R)I(n) = {x | (x, y) ∈ RI(n), for some y},

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)2 ,

(♦PC)I(n) = {x | x ∈ CI(m), for some m < n},
(♦FC)I(n) = {x | x ∈ CI(m), for some m > n},

(S1 u S2)I(n) = S
I(n)
1 ∩ SI(n)2 ,

(♦PS)I(n) = {(x, y) | (x, y) ∈ SI(m), for some m < n},
(♦FS)I(n) = {(x, y) | (x, y) ∈ SI(m), for some m > n}.

The satisfaction relation |= is defined by taking

I |= Ai(a, n) iff aI(n) ∈ AI(n)i ,

I |= Pi(a, b, n) iff (aI(n), bI(n)) ∈ P I(n)i ,

I |= C v B iff CI(n) ⊆ BI(n), for all n ∈ Z,

I |= S v R iff SI(n) ⊆ RI(n), for all n ∈ Z.

If all inclusions in T and atoms inA are satisfied in I, we call I a model of K = (T ,A) and write I |= K.
A conjunctive query (CQ) is a (two-sorted) first-order formula q(~x,~s) = ∃~y,~t ϕ(~x, ~y,~s,~t), where

ϕ(~x, ~y,~s,~t) is a conjunction of atoms of the form Ai(ξ, τ), Pi(ξ, ζ, τ), (τ = σ) and (τ < σ), with ξ,
ζ being individual terms—individual constants or variables in ~x, ~y—and τ , σ temporal terms—temporal
constants or variables in ~t, ~s. In a positive existential query (PEQ) q, the formula ϕ can also contain ∨. A
union of CQs (UCQ) is a disjunction of CQs (so every PEQ is equivalent to an exponentially larger UCQ).

Given a KB K = (T ,A) and a CQ q(~x,~s), we call tuples ~a ⊆ ind(A) and ~n ⊆ tem(A) a certain
answer to q(~x,~s) over K and write K |= q(~a, ~n), if I |= q(~a, ~n) for every model I of K (understood as a
two-sorted first-order model).

Example 1 Suppose Bob was a lecturer at UCL between times n1 and n2, after which he was appointed
professor on a permanent contract. To model this situation, we use individual names, e1 and e2, to repre-
sent the two events of Bob’s employment. The ABox will contain n1 < n2 and the atoms lect(bob, e1, n1),
lect(bob, e1, n2), prof(bob, e2, n2 + 1). In the TBox, we make sure that everybody is holding the corre-
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sponding post over the duration of the contract, and include other knowledge about the university life:

♦P lect u ♦F lect v lect, ♦P prof v prof,

∃lect v Lecturer, ∃prof v Professor,

Professor v ∃supervisesPhD, Professor v Staff,

♦P supervisesPhD u ♦F supervisesPhD v supervisesPhD,

etc.

We can now obtain staff who supervised PhDs between times k1 and k2 by posing the following CQ:

∃y, t
(
(k1 < t < k2) ∧ Staff(x, t) ∧ supervisesPhD(x, y, t)

)
.

The key idea of OBDA is to reduce answering CQs over KBs to evaluating FO-queries over relational
databases. To obtain such a reduction for TQL KBs, we employ a very basic type of temporal databases.
With every TQL ABoxA, we associate a data instance [A] which contains all atoms fromA as well as the
atoms (n1 < n2) such that ni ∈ Z with min tem(A) ≤ ni ≤ max tem(A) and n1 < n2. Thus, in addition
to A, we explicitly include in [A] the temporal precedence relation over the convex closure of the time
points that occur in A. (Note that, in standard temporal databases, the order over timestamps is built-in.)
The main result of this paper is the following:

Theorem 2 Let q(~x,~s) be a CQ and T a TQL TBox. Then one can construct a UCQ q′(~x,~s) such that,
for any consistent KB (T ,A) such that A contains all temporal constants from q, any ~a ⊆ ind(A) and
~n ⊆ tem(A), we have (T ,A) |= q(~a, ~n) iff [A] |= q′(~a, ~n).

Such a UCQ q′(~x,~s) is called a rewriting for q and T . We begin by showing how to compute rewritings
for CQs over KBs with empty TBoxes.

For an ABox A, we denote by AZ the infinite data instance which contains the atoms in A as well as
all (n1 < n2) such that n1, n2 ∈ Z and n1 < n2. It will be convenient to regard CQs q(~x,~s) as sets of
atoms, so that we can write, e.g., A(ξ, τ) ∈ q. We say that q is totally ordered if, for any temporal terms
τ, τ ′ in q, at least one of the constraints τ < τ ′, τ = τ ′ or τ ′ < τ is in q and the set of such constraints is
consistent (in the sense that it can be satisfied in Z). Clearly, every CQ is equivalent to a union of totally
ordered CQs (note that the empty union is ⊥).

Lemma 3 For every UCQ q(~x,~s), one can compute a UCQ q′(~x,~s) such that, for any ABoxA containing
all temporal constants from q and any ~a ⊆ ind(A), ~n ⊆ tem(A), we have

AZ |= q(~a, ~n) iff [A] |= q′(~a, ~n).

Proof. We assume that every CQ q0 in q is totally ordered. In each such q0, we remove a bound temporal
variable t together with the atoms containing t if at least one of the following two conditions holds:

– there is no temporal constant or free temporal variable τ with (τ < t) ∈ q0, and for no temporal
term τ ′ and atom of the form A(ξ, τ ′) or P (ξ, ζ, τ ′) in q0 do we have (τ ′ < t) or (τ ′ = t) in q0;

– the same as above but with < replaced by >.

It is readily checked that the resulting UCQ is as required. q

Example 4 Suppose T = {♦FC v A, ♦PA v B} and q(x, s) = B(x, s). Then, for any A, a ∈ ind(A),
n ∈ tem(A), we have (T ,A) |= q(a, n) iff AZ |= q′(a, n), where

q′(x, s) = B(x, s) ∨ ∃t
(
(t < s) ∧A(x, t)

)
∨ ∃t, r

(
(t < s) ∧ (t < r) ∧ C(x, r)

)
.

Note, however, that q′ is not a rewriting for q and T . Take, for example, A = {C(a, 0)}. Then (T ,A) |=
B(a, 0) but [A] 6|= q′(a, 0). A correct rewriting is obtained by replacing the last disjunct in q′ with
∃r C(x, r); it can be computed by applying Lemma 3 to q′ and slightly simplifying the result.
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In view of Lemma 3, from now on we will only focus on rewritings over AZ.
The problem of finding rewritings for CQs and TQL TBoxes can be reduced to the case where the

TBoxes only contain inclusions of the form

B1 uB2 v B, ♦FB1 v B2, ♦PB1 v B2,

R1 uR2 v R, ♦FR1 v R2, ♦PR1 v R2.

We say that such TBoxes are in normal form.

Theorem 5 For every TQL TBox T , one can construct in polynomial time a TQL TBox T ′ in normal form
(possibly containing additional concept and role names) such that T ′ |= T and, for every model I of T ,
there exists a model of T ′ that coincides with I on all concept and role names in T .

Suppose now that we have a UCQ rewriting q′ for a CQ q and the TBox T ′ in Theorem 5. We obtain a
rewriting for q and T simply by removing from q′ those CQs that contain symbols occurring in T ′ but not
in T . From now on, we assume that all TQL TBoxes are in normal form. The set of role names in T and
with their inverses is denoted by RT , while |T | is the number of concept and role names in T .

We begin the construction of rewritings by considering the case when all concept inclusions are of the
form C v Ai, so existential quantification ∃R does not occur in the right-hand side. TQL TBoxes of this
form will be called flat. Note that RDFS statements can be expressed by means of flat TBoxes.

3 UCQ Rewriting for Flat TBoxes
Let K = (T ,A) be a KB with a flat TBox T (in normal form). Our first aim is to construct a model CK of
K, called the canonical model, for which the following theorem holds:

Theorem 6 For any consistent KB K = (T ,A) with flat T and any CQ q(~x,~s), we have K |= q(~a, ~n) iff
CK |= q(~a, ~n), for all tuples ~a ⊆ ind(A) and ~n ⊆ Z.

The construction uses a closure operator, cl, which applies the rules (ex), (c1)–(c3), (r1)–(r3) below
to a set, S, of atoms of the form R(u, v, n), A(u, n), ∃R(u, n) or (n < n′); cl(S) is the result of (non-
recursively) applying those rules to S,

cl0(S) = S, cli+1(S) = cl(cli(S)), cl∞(S) =
⋃
i≥0

cli(S).

(ex) If R(u, v, n) ∈ S then add ∃R(u, n), ∃R−(v, n) to S;

(c1) if (B1 uB2 v B) ∈ T and B1(u, n), B2(u, n) ∈ S, then add B(u, n) to S;

(c2) if (♦PB v B′) ∈ T , B(u,m) ∈ S for some m < n and n occurs in S, then add B′(u, n) to S;

(c3) if (♦FB v B′) ∈ T , B(u,m) ∈ S for some m > n and n occurs in S, then add B′(u, n) to S;

(r1) if (R1 uR2 v R) ∈ T and R1(u, v, n), R2(u, v, n) are in S, then add R(u, v, n) to S;

(r2) if (♦PR v R′) ∈ T , R(u, v,m) ∈ S for some m < n and n occurs in S, then add R′(u, v, n) to S;

(r3) if (♦FR v R′) ∈ T , R(u, v,m) ∈ S for some m > n and n occurs in S, then add R′(u, v, n) to S.

Note first that K = (T ,A) is inconsistent iff ⊥ ∈ cl∞(AZ). If K is consistent, we define the canonical
model CK of K by taking ∆CK = ind(A), a ∈ ACK(n) iff A(a, n) ∈ cl∞(AZ), and (a, b) ∈ P CK(n)

iff P (a, b, n) ∈ cl∞(AZ), for n ∈ Z. (As T is flat, atoms of the form ∃R(u, n) can only be added by
(ex).) This gives us Theorem 6. The following lemma shows that to construct CK we actually need only a
bounded number of applications of cl which does not depend on A:

Lemma 7 Suppose T is a flat TBox, let nT = (4 · |T |)4. Then cl∞(AZ) = clnT (AZ), for any ABox A.
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Proof. It is not hard to see that cl∞(S) can be obtained by first exhaustively applying (r1)–(r3), then (ex),
and after that (c1)–(c3). Since no recursion of (ex) is needed, it is sufficient to bound the recursion depth
for applications of (r1)–(r3) and (c1)–(c3) separately. As both behave similarly, we focus on (r1)–(r3).
One can show that it is enough to consider ABoxes with two individuals, say a and b, and it is not difficult
to find a bound for the recursion depth of the separated rule sets (r1), (r2) and, respectively, (r1), (r3);
the interesting part of the analysis is how often one has to alternate between applications of (r1), (r2) and
applications of (r1), (r3). The key observation here is that each alternation introduces a fresh cross over
(i.e., a pair (R1, R2) of roles such that there are m1,m2 ∈ Z with m1 + 1 ≥ m2, R1(a, b, n) ∈ S for all
n ≤ m1, and R2(a, b, n) ∈ S for all n ≥ m2). The number of such cross overs is bounded by |T |2, and so
the number of required alternations between exhaustively applying (r1), (r2) and (r1), (r3) is bounded by
|T |2. q

We now use Lemma 7 to construct a rewriting for any flat TBox T and CQ q(~x,~s). For a conceptC and
a role S, denote by C] and S] their standard FO-translations: e.g., (♦FA)](ξ, τ) = ∃t ((τ < t) ∧ A(ξ, t))
and (∃R)](ξ, τ) = ∃y R(ξ, y, τ). Now, given a PEQ ϕ, we set ϕ0↓ = ϕ and define, inductively, ϕ(n+1)↓

as the result of replacing every

– A(ξ, τ) with A(ξ, τ) ∨
∨

(CvA)∈T (C](ξ, τ))n↓,

– P (ξ, ζ, τ) with P (ξ, ζ, τ) ∨
∨

(SvP )∈T (S](ξ, ζ, τ))n↓.

Finally, we set
extTq (~x,~s) = (q(~x,~s))nT ↓.

Clearly, extTq (~x,~s) is a PEQ, and so can be equivalently transformed into a UCQ. Denote by T ⊥ the
result of replacing ⊥ with a fresh concept name, say F , in all concept inclusions and with a fresh role
name, say Q, in all role inclusions of T . Clearly (T ⊥,A) is consistent for any ABox A. Let q⊥ =
(∃x, t F (x, t)) ∨ (∃x, y, tQ(x, y, t)). By Theorem 6 and Lemma 7, we obtain:

Theorem 8 Let T be a flat TBox and q(~x,~s) a CQ. Then, for any consistent KB (T ,A), any ~a ⊆ ind(A)
and ~n ⊆ Z,

(T ,A) |= q(~a, ~n) iff AZ |= extTq (~a, ~n).

(T ,A) is inconsistent iff (T ⊥,A) |= q⊥.

Thus, we obtain a rewriting for q and T using Lemma 3.

4 Canonical Models for Arbitrary TBoxes
Canonical models for consistent KBs K = (T ,A) with not necessarily flat TBoxes T (in normal form)
can be constructed starting from AZ and using the rules given in the previous section together with the
following one:

( ) if ∃R(u, n) ∈ S and R(u, v, n) /∈ S for any v, then add R(u, v, n) to S, for some fresh individual
name v; in this case we write u n

R v.

Denote by cl1 the closure operator under the resulting 8 rules. Again,K is inconsistent iff⊥ ∈ cl∞1 (AZ). If
K is consistent, we define the canonical model CK forK by the set cl∞1 (AZ) in the same way as in Section 3
but taking the domain ∆CK to contain all the individual names in cl∞1 (AZ).

Theorem 9 For every consistent K = (T ,A) and every CQ q(~x,~s), we have K |= q(~a, ~n) iff CK |=
q(~a, ~n), for any tuples ~a ⊆ ind(A) and ~n ⊆ Z.

Example 10 Let K = (T ,A) with A = {A(a, 0)} and

T = {A v ∃R, ♦PR v Q, ∃Q− v ∃S, ♦PQ v P, ♦PS v S′}.

A fragment of the model CK is shown in the picture below:
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a
0

A

1 2

v

u1

u2

R Q Q P

S S′
S

We say that the individuals a ∈ ind(A) are of depth 0 in CK; now, if u is of depth d in CK and u n
R v,

for some n ∈ Z and R, then v is of depth d+ 1 in CK. Thus, both u1 and u2 in Example 10 are of depth 2
and v is of depth 1. The restriction of CK, treated as a set of atoms, to the individual names of depth ≤ d is
denoted by CdK. Note that this set is not necessarily closed under the rule ( ).

In the remainder of this section, we describe the structure of CK, which is required for the rewriting
in the next section. We split CK into two parts: one consists of the elements in ind(A), while the other
contains the fresh individuals introduced by ( ). As this rule always uses fresh individuals, to understand
the structure of the latter part it is enough to consider KBs of the form KRT = (T ∪ {A v ∃R}, {A(a, 0)})
with fresh A. We begin by analysing the behaviour of the atoms R′(a, u, n) entailed by R(a, u, 0), where
a 0

R u.

Lemma 11 (monotonicity) Suppose a  0
R u in CKT,R . If either m < n < 0 or 0 < n < m, then

R′(a, u, n) ∈ CKT,R implies R′(a, u,m) ∈ CKT,R ; moreover, if n < m = −|RT | or |RT | = m < n, then
R′(a, u, n) ∈ CKT,R iff R′(a, u,m) ∈ CKT,R .

The atoms R′(a, u, n) entailed by R(a, u, 0) in CKT,R via (r1)–(r3), also have an impact, via (ex), on
the atoms of the form B(a, n) and B(u, n) in CKT,R . Thus, in Example 10, R(a, v, 0) entails ∃Q(a, n), for
n > 0. To analyse the behaviour of such atoms, it is helpful to assume that T is in concept normal form
(CoNF) in the following sense: for every role R ∈ RT , the TBox T contains

∃R v A0
R, ♦F∃R v A−1R , ♦FA

−m
R v A−m−1R ,

♦P∃R v A1
R, ♦PA

m
R v Am+1

R ,

for 0 ≤ m ≤ |RT | and some concepts AiR, and

AmR v ∃R′, for |m| ≤ |RT | and R′(a, v,m) ∈ CKT,R .

∃R

A0
RA−1

RA−2
RA−3

R A1
R A2

R A3
R

(In Example 10, CK will contain the atoms A1
R(a, n) and A2

R(a, n+ 1), for n ≥ 1.) By Lemma 11, if T is
in CoNF, then we can compute the atoms B(a, n) and B(u, n) in CKT,R without using the rules (r1)–(r3).
Lemma 11 also implies that we can add the inclusions above (with fresh AiR) to T if required, thereby
obtaining a conservative extension of T ; so from now on we always assume T to be in CoNF. These
observations enable the proof of the following two lemmas. The first one characterises the atoms B(u, n)
in CKT,R :

Lemma 12 (monotonicity) Suppose a  0
R u in CKT,R . If either m < n < 0 or 0 < n < m, then

B(u, n) ∈ CKT,R implies B(u,m) ∈ CKT,R ; moreover, if either n < m = −|T | or |T | = m < n, then
B(u, n) ∈ CKT,R iff B(u,m) ∈ CKT,R .

The second lemma characterises the ABox part of CK and is a straightforward generalisation of Lemma 7:

Lemma 13 For any KB K = (T ,A) and any atom α of the form A(a, n), ∃R(a, n) or R(a, b, n), where
a, b ∈ ind(A) and n ∈ Z, we have α ∈ CK iff α ∈ clnT (AZ).

An obvious extension of the rewriting of Theorem 8 provides, for every CQ q(~x,~s), a UCQ extTq (~x,~s)
such that for all ~a ⊆ ind(A) and ~n ⊆ Z of the appropriate length,

C0K |= q(~a, ~n) iff AZ |= extTq (~a, ~n). (2)
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Moreover, for a basic concept ∃R, we find a UCQ extT∃R(ξ, τ) such that, for any a ∈ ind(A) and n ∈ Z,
∃R(a, n) ∈ CK iff AZ |= extT∃R(a, n).

We now use the obtained results to show that one can find all answers to a CQ q over a TQL KB K
by only considering a fragment of CK whose size is polynomial in |T | and |q|. This property is called the
polynomial witness property [Gottlob and Schwentick, 2011]. Denote by Cd,`K , for d, ` ≥ 0, the restriction
of CdK to the moments of time in the interval [min tem(A)− `,max tem(A) + `].

Let q(~x,~s) be a CQ. Tuples ~a ⊆ ind(A) and ~n ⊆ tem(A) give a certain answer to q(~x,~s) over
K = (T ,A) iff there is a homomorphism h from q to CK, which maps individual (temporal) terms of q to
individual (respectively, temporal) terms of CK in such a way that the following conditions hold:

– h(~x) = ~a and h(b) = b, for all b ∈ ind(A);

– h(~s) = ~n and h(m) = m, for all m ∈ tem(A);

– h(q) ⊆ CK,

where h(q) denotes the set of atoms obtained by replacing every term in q with its h-image, e.g., P (ξ, ζ, τ)
with P (h(ξ), h(ζ), h(τ)), (τ1 < τ2) with h(τ1) < h(τ2), etc.

Now, using the monotonicity lemmas for the temporal dimension and the fact that atoms of depth
> |RT | in the canonical models duplicate atoms of smaller depth, we obtain

Theorem 14 There are polynomials f1 and f2 such that, for any consistent TQL KB K = (T ,A), any
CQ q(~x,~s) and any ~a ⊆ ind(A) and ~n ⊆ tem(A), we have K |= q(~a, ~n) iff there is a homomorphism
h : q → CK such that h(q) ⊆ Cd,`K , where d = f1(|T |, |q|) and ` = f2(|T |, |q|).

We are now in a position to define a rewriting for any given CQ and TQL TBox.

5 UCQ Rewriting
Suppose q(~x,~s) is a CQ and T a TQL TBox (in CoNF). Without loss of generality we assume q to be
totally ordered. By a sub-query of q we understand any subset q′ ⊆ q containing all temporal constraints
(τ < τ ′) and (τ = τ ′) that occur in q. In the rewriting for q and T given below, we consider all possible
splittings of q into two sub-queries (sharing the same temporal terms). One is to be mapped to the ABox
part of the canonical model C(T ,A), and so we can rewrite it using (2). The other sub-query is to be mapped
to the non-ABox part of C(T ,A) and requires a different rewriting.

For every R ∈ RT , we construct the set Cd,`KT,R
, where d and ` are provided by Theorem 14. Let h be a

map from a sub-query qh ⊆ q to Cd,`KT,R
such that h(qh) ⊆ Cd,`KT,R

. Denote by Xh the set of individual terms
ξ in qh with h(ξ) = a, and let Yh be the remaining set of individual terms in qh. We call h a witness for R
if

– Xh contains at most one individual constant;

– every term in Yh is a quantified variable in q;

– qh contains all atoms in q with a variable from Yh.

Let h be a witness for R. Denote by the union of all n
R′ in Cd,`KT,R

. Clearly, is a tree order on the
individuals in Cd,`KT,R

, with root a. Let Th be its minimal sub-tree containing a and the h-images of all the
individual terms in qh. For each v ∈ Th\{a}, we take the (unique) moment g(v) with u g(v)

R v, for some
u and R, and set g(a) = 0. For A(y, τ) ∈ qh, we say that h(y) realises A(y, τ). For any P (ξ, ξ′, τ) ∈ qh,
there are u, u′ ∈ Th with u  u′ and {u, u′} = {h(ξ), h(ξ′)}; we say that u′ realises P (ξ, ξ′, τ). Let
~r be a list of fresh temporal variables ru, for u ∈ Th \ {a}. Consider the following formula, whose free
variables are ra and the temporal variables of qh:

th = ∃~r
( ∧
u v

δg(v)−g(u)(ru, rv) ∧
∧

u realises α(~ξ,τ)

δh(τ)−g(u)(ru, τ)
)
,
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where the formulas δn(t, s) say that t is at least n moments before s: that is, δ0(t, s) is (t = s) and δn(t, s)
is

∃s1, . . . , sn−1(t < s1 < · · · < sn−1 < s), if n > 0,

∃s1, . . . , s|n|−1(t > s1 > · · · > s|n|−1 > s), if n < 0.

Take a fresh variable xh and associate with h the formula

wh = ∃ra∃xh
[
extT∃R(xh, ra) ∧

∧
h(ξ)=a

(ξ = xh) ∧ th
]
.

To give the intuition behind wh, suppose that C(T ,A) |=g wh, for some assignment g. Then g maps all
terms in Xh to g(xh) ∈ ind(A) such that ∃R(g(xh), g(ra)) ∈ C(T ,A), so (g(xh), g(ra)) is the root of a
substructure of C(T ,A) isomorphic to CKT,R in which the variables from Yh can be mapped according to h.
For temporal terms, the formula th cannot specify the values prescribed by h: without ¬ in UCQs, we can
only say that τ is at least (not exactly) n moments before τ ′. However, by Lemmas 11 and 12, this is still
enough to ensure that g and h give a homomorphism from qh to C(T ,A).

Example 15 Let T be the same as in Example 10 and let

q(x, t) = ∃y, z, t′
(
(t < t′) ∧Q(x, y, t) ∧ S′(y, z, t′)

)
.

The map h = {x 7→ a, y 7→ v, z 7→ u1, t 7→ 1, t′ 7→ 2} is a witness for R, with qh = q and wh is the
following formula

∃ra∃xh
(
extT∃R(xh, ra) ∧ (xh = x) ∧ ∃rv∃ru1

(
δ0(ra, rv) ∧ δ1(rv, ru1

) ∧ δ1(rv, t) ∧ δ1(ru1
, t′)
))
.

We can now define a rewriting for q(~x,~s) and T . Let T be the set of all witnesses for q and T . We
call a subset S ⊆ T consistent if (Xh1

∪ Yh1
) ∩ (Xh1

∪ Yh2
) ⊆ Xh1

∩ Xh2
, for any distinct h1, h2 ∈ S.

Assuming that ~y contains all the quantified variables in q and q \ S is the sub-query of q obtained by
removing the atoms in qh, h ∈ S, other than (τ < τ ′) and (τ = τ ′), we set:

q∗(~x,~s) = ∃~y
∨

S⊆T
S consistent

( ∧
h∈S

wh ∧ extTq\S
)
.

Theorem 16 Let T be a TQL TBox in CoNF and q(~x,~s) a totally ordered CQ. Then, for any consistent
KB (T ,A) and any tuples ~a ⊆ ind(A) and ~n ⊆ Z,

(T ,A) |= q(~a, ~n) iff AZ |= q∗(~a, ~n).

(T ,A) is inconsistent iff (T ⊥,A) |= q⊥.

Theorem 2 now follows by Lemma 3.

6 Non-Rewritability
In this section, we show that the language TQL is nearly optimal as far as rewritability of CQs and ontolo-
gies is concerned.

We note first, that the syntax of TQL allows concept inclusions and role inclusions; ‘mixed’ axioms
such as the datalog rule A(x, t) ∧R(x, y, t)→ B(x, t) are not expressible. The reason is that mixed rules
often lead to non-rewritability, as is well known from the DL EL. For example, there does not exist an
FO-query q(x, t) such that (T ,A) |= A(a, n) iff AZ |= q(a, n) for T = {A(y, t) ∧R(x, y, t)→ A(x, t)}
since such a query has to express that at time-point t there is an R-path from x to some y with A(y, t).

Second, it would seem to be natural to extend TQL with the temporal next/previous-time operators
as concept or role constructs. However, again this would lead to non-rewritability: any FO-rewriting for
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A(x, t) and {©PA v B, ©PB v A} has to express that there exists n ≥ 0 such that A(x, t − 2n) or
B(x, t− (2n+ 1)), which is impossible [Libkin, 2004].

Another natural extension would be inclusions of the form A v ♦FB. (Note that inclusions of the
form A v ∃R.B are expressible in OWL 2 QL.) But again such an extension would ruin rewritability. The
reason is that temporal precedence < is a total order, and so one can construct an ABox A and a UCQ
q(x) = q1 ∨ q2 such that (T ,A) |= q(a) but (T ,A) 6|= qi(a), i = 1, 2, for T = {A v ♦FB}. Indeed, we
take A = {A(a, 0), C(a, 1)} and

q1(x) = ∃t (C(x, t) ∧B(x, t)),

q2(x) = ∃t, t′ ((t < t′) ∧ C(x, t) ∧B(x, t′)).

In fact, by reduction of 2+2-SAT [Schaerf, 1993], we prove the following:

Theorem 17 Answering CQs over the TBox {A v ♦FB} is CONP-hard for data complexity.

7 Related Work
The Semantic Web community has developed a variety of extensions of RDF/S and OWL with validity
time [Motik, 2012; Pugliese et al., 2008; Gutierrez et al., 2007]. The focus of this line of research is
on representing and querying time stamped RDF triples or OWL axioms. In contrast, in our language
only instance data are time stamped , while the ontology formulates time independent constraints that
describe how the extensions of concepts and roles can change over time. In the temporal DL literature,
a similar distinction has been discussed as the difference between temporalised axioms and temporalised
concepts/roles; the expressive power of the respective languages is incomparable [Gabbay et al., 2003;
Baader et al., 2012].

In Theorem 8, we show rewritability using boundedness of recursion. This connection between first-
order definability and boundedness is well known from the datalog and logic literature where boundedness
has been investigated extensively [Gaifman et al., 1987; van der Meyden, 2000; Kreutzer et al., 2007].
? [2009] investigate boundedness for datalog programs on linear orders; the results are different from
ours since the linear order is the only predicate symbol of the datalog programs considered and no further
restrictions (comparable to ours) are imposed.

8 Conclusion
In this paper, we have proved UCQ rewritability for conjunctive queries and TQL ontologies over data
instances with validity time. Our focus was solely on the existence of rewritings, and we did not consider
efficiency issues such as finding shortest rewritings, using temporal intervals in the data representation or
mappings between temporal databases and ontologies. We only note here that these issues are of practical
importance and will be addressed in future work. It would also be of interest to investigate the possibilities
to increase the expressive power of both ontology and query language. For example, we believe that the
extension of TQL with the next/previous time operators, which can only occur in TBox axioms not involved
in cycles, will still enjoy rewritability. We can also increase the expressivity of conjunctive queries by
allowing the arithmetic operations + and × over temporal terms, which would make the CQ A(x, t) and
the TBox {©PA v B, ©PB v A} rewritable in the extended language.
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A Proofs
We first give a detailed definition of the standard translation C] and S] of TQL concepts C and roles S
into two-sorted first-order logic. The definitions are by induction as follows. For concepts:

A](ξ, τ) = A(ξ, τ),

⊥](ξ, τ) = ⊥,
(∃R)](ξ, τ) = (∃y R](ξ, y, τ)),

(C1 u C2)](ξ, τ) = C]1(ξ, τ) ∧ C]2(ξ, τ),

(♦PC)](ξ, τ) = ∃t ((t < τ) ∧ C](ξ, t)),
(♦FC)](ξ, τ) = ∃t ((t > τ) ∧ C](ξ, t)).

For roles:

P ](ξ, ζ, τ) = P (ξ, ζ, τ),

(P−)](ξ, ζ, τ) = P (ζ, ξ, τ),

⊥](ξ, ζ, τ) = ⊥,
(S1 u S2)](ξ, ζ, τ) = S]1(ξ, ζ, τ) ∧ S]2(ξ, ζ, τ),

(♦PS)](ξ, ζ, τ) = ∃t ((t < τ) ∧ S](ξ, ζ, t)),
(♦FS)](ξ, ζ, τ) = ∃t ((t > τ) ∧ S](ξ, ζ, t)).

Lemma 7 Suppose T is a flat TBox, let nT = (4 · |T |)4. Then cl∞(AZ) = clnT (AZ), for any ABox A.
Proof. We start with an observation that to compute cl∞(S) it is sufficient to first compute the closure
under the rules (r1)–(r3) for role inclusions, then apply the rule (ex), and then apply the rules (c1)–(c3) for
concept inclusions. Formally, for a set R of rules, let clR(S) denote the result of applying the rules in R
(non-recursively!) to S. Let role = {(r1), (r2), (r3)} and concept = {(c1), (c2), (c3)}. Then

Fact 1. cl∞(S) = cl∞concept(cl{(ex)}(cl∞role(S))), for all S.

The proof is straightforward: since none of the rules (c1)–(c3) or (ex) introduces a new role assertion,
i.e., an assertion of the form R(u, v, n), no new applications of rules (r1)–(r3) become possible after
applying rules (c1)–(c3) and (ex); and no new applications of (ex) becomes possible after applying rules
(c1)–(c3).

We first consider the closure under the rules for role inclusions and show cl∞role(AZ) = clkrrole(AZ) for
kr = 4|RT |4. We start with the observation that it is sufficient to show this for ABoxes having at most two
individuals because role assertions for individuals u, v do not interact with role assertions for individuals
u′, v′ if {u, v} 6= {u′, v′}. Formally, for any u, v (u = v is not excluded), let Au,v consist of all assertions
R(u, v, n) in A. Then

Fact 2. clkrole(AZ) =
⋃
u,v∈Ind(A) clkrole(AZ

u,v), for all k ≥ 0.

Now let A be an ABox with individuals u, v. Observe that the rule (r1) is local in the sense that the
addition of a role assertion at time point n depends only on role assertions that hold already at time point
n. It follows that cl∞{(r1)}(S) = cl

|RT |
{(r1)}(S). We now analyse the two operators obtained by adding to (r1)

either the rule (r2) or the rule (r3). Let P = {(r1), (r2)} and F = {(r1), (r3)}. For the rules in P the
addition of role assertions at time point n only depends on the time points m ≤ n and, similarly, for F the
addition of role assertions at time point n only depends on time points m ≥ n. It is now easy to see that
in each case, one has to alternate between applications of local rules and the rule (r2) (respectively (r3)) at
most |RT | times. Thus

Fact 3. cl∞P (AZ) = cl
|RT |
P (AZ) and cl∞F (AZ) = cl

|RT |
F (AZ).

By Fact 3, to obtain a kr such that cl∞role(AZ) = clkrrole(AZ) it is sufficient to determine an upper bound
for the number of alternations between cl∞P and cl∞F that are required to compute cl∞role:

13



Fact 4. cl∞role(S) = (cl∞P ◦ cl∞F )|RT |2(S).

To prove Fact 4 we introduce the notion of a cross over. Assume u, v are the individuals of S. Let R1

and R2 be roles. We say that (R1, R2) are a cross over in S if there are m1,m2 with m1 + 1 ≥ m2 such
that R1(u, v, n) ∈ S for all n ≤ m1 and R2(u, v, n) ∈ S for all n ≥ m2.

Claim 1. Let S = cl∞P (S), S1 = cl∞F (S) and S2 = cl∞P (S1). If S2 ) S1 then there exists a cross over
(R1, R2) in S2 which is not a cross over in S .

Proof of Claim 1. Since S1 is closed under (r1), there exist ♦PR v R′ in T and n1 such that

– R(u, v, n1) ∈ S1 and there is n > n1 with R′(u, v, n1) /∈ S1;

– and R′(u, v, n) ∈ S2, for all n > n1.

It follows that R(u, v, n1) 6∈ S; for otherwise R′(u, v,m) ∈ S1 for all n > n1. From R(u, v, n1) ∈ S1
and, since S is closed under (r1), there exist ♦FS v S′ in T and n2 > n1 such that

– S(u, v, n2) ∈ S and S′(u, v, n1) /∈ S;

– S′(u, v, n) ∈ S1, for all n < n2.

Let m1 = n2 − 1, m2 = n1 + 1. Then (S′, R′) is a cross over in S2 with witness times points m1,m2

which is not a cross over in S. This finishes the proof of Claim 1.

Clearly the number of cross overs is bounded by |RT |2 and so we have proved Fact 4. We obtain from
Fact 3 and Fact 4 that cl∞role(AZ) = clkrrole(AZ) for kr = 4|RT |4.

One can show in almost exactly the same way that cl∞concept(AZ) = clkcconcept(AZ) for kc = (2mc)
4,

where mc is the number of concept names in T . Since 4|RT |4 + (2mc)
4 ≤ (4|T |)4, this finishes the proof

of Lemma 7. q

Lemma 11 Let a 0
R u in CKT,R . Then the following hold, for all basic roles R′:

1. if m < n < 0 or 0 < n < m, then R′(a, u, n) ∈ CKT,R implies R′(a, u,m) ∈ CKT,R ;

2. if n < m = −|RT | or |RT | = m < n, then R′(a, u, n) ∈ CKT,R iff R′(a, u,m) ∈ CKT,R .

Proof. We start with Item 1. Assume 0 < n < m (the case m < n < 0 is similar and left to the reader).
The proof is by induction over rule applications. Namely, we show

Claim 1. Let 0 < n < m. If R′(a, u, n) ∈ clk1(AZ), then R′(a, u,m) ∈ clk1(AZ), for all k ≥ 0.

For AZ itself the claim is trivial. Now assume it holds for clk1(AZ). Applications of (ex) and (c1)–(c3)
do not influence the role assertions for (a, u), so we do not have to consider them. Applications of (r1)–(r3)
clearly preserve the property stated in Claim 1.

Now consider Item 2. Assume |RT | = m < n (the case −|RT | = m > n is similar and left to the
reader). The proof is by induction over rule applications. In detail, we show the following

Claim 2. For all k ≥ 0 and ` > 1, if there exists R′ with R′(a, u, `) ∈ clk1(AZ) and R′(a, u, ` − 1) 6∈
clk1(AZ), then |{R′′ | R′′(a, u, `) ∈ clk1(AZ)}| ≥ `.

The proof of Claim 2 is by induction over k and left to the reader. Now Item 2 follows directly with
Point 1. q

We now analyse in more detail why one can without loss of generality assume TBoxes to be in CoNF.
Let T be a TBox in normal form. Add to T the inclusions

∃R v A0
R, ♦F∃R v A−1R , ♦FA

−m
R v A−m−1R , (3)

♦P∃R v A1
R, ♦PA

m
R v Am+1

R , (4)
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for all R ∈ RT and 0 ≤ m ≤ |RT |, where the AiR are fresh concept names; and add

AmR v ∃R′, for |m| ≤ |RT | and R′(a, v,m) ∈ CKT,R .

Denote the resulting TBox by T ′. We first show that T ′ is a conservative extension of T in the following
sense:

Lemma 18 For every model I of T there exists a model I ′ of T ′ such that ∆I = ∆I
′

and such that I ′
coincides with I for the interpretation of symbols from T .

Proof. Assume I is given. We define I ′ as follows:

A0
R)I(n) = (∃R)I(n),

(AmR )I(n) = (♦mP ∃R)I(n) and (A−mR )I(n) = (♦mF ∃R)I(n), for 0 < m ≤ |RT |.

We have to show that I ′ |= T ′. It is readily seen that I ′ satisfies the inclusions (3) and (4), for all R ∈ RT
and 0 ≤ m ≤ |RT |. The interesting part are the fresh inclusions AmR v ∃R′ for R′(a, v,m) ∈ CKT,R . Let
AmR v ∃R′ be such a fresh inclusion. Consider m ≥ 0 and let d ∈ (AmR )I(n). Then d ∈ (♦mP ∃R)I(n).
Moreover, R′(a, v,m) ∈ CKT,R implies, by Lemma 11, T |= ♦mP R v R′. Since I is a model of T , we
obtain d ∈ (∃R′)I(n). q

Note that it also follows from Lemma 18 that T ′ is in CoNF since it implies that the set of role assertions
in CKT,R coincides with the set of role assertions in CKT ′,R .

Now observe that if a TBox T is in CoNF, then one can construct CT ,A by

– first applying the rules (r1)–(r3) exhaustively to ABox individuals,

– then applying the rules (ex), ( ) and (c1)–(c3) exhaustively,

– and finally applying again (r1)–(r3).

This follows from the second part of Lemma 11 (according to which the role assertions are stable at dis-
tances larger than |RT | in CKT,R ) and the inclusions AmR v ∃R′, for |m| ≤ |RT | and R′(a, v,m) ∈ CKT,R .

Lemma 12 Let T be in concept normal form and a 0
R u in CKT,R . Then the following hold, for all basic

concepts B:

– if m < n < 0 or 0 < n < m, then B(u, n) ∈ CKT,R implies B(u,m) ∈ CKT,R ;

– if n < m = −|T | or |T | = m < n, then B(u, n) ∈ CKT,R iff B(u,m) ∈ CKT,R .

Proof. The proof is similar to the proof of Lemma 11 and omitted. q

To generalize the rewriting from flat TBoxes to arbitrary TBoxes, we admit PEQs that can contain
atoms of the form ∃̂R(ξ, τ), where ∃R is a basic concept. Moreover, we modify the standard translation
C] to a translation C ]̂ that regards basic concepts ∃R as atoms by setting (∃R)]̂(ξ, τ) = ∃̂R(ξ, τ). We
now show how the definition of ϕn↓ is modified. Given a generalized PEQ ϕ, we set ϕ0↓ = ϕ and define,
inductively, ϕ(n+1)↓ as the result of replacing

– every A(ξ, τ) in ϕ with A(ξ, τ) ∨
∨

CvA∈T

(C ]̂(ξ, τ))n↓,

– every P (ξ, ζ, τ) in ϕ with P (ξ, ζ, τ) ∨
∨

SvP∈T

(S](ξ, ζ, τ))n↓,

– every ∃̂R(ξ, τ) in ϕ with (∃y R(ξ, y, τ))(n+1)↓ ∨
∨

Cv∃R∈T

(C ]̂(ξ, τ))n↓.
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For a query q(~x,~s) we now define as extTq (~x,~s) the result of replacing every atomA(ξ, τ) by (A(ξ, τ))nT ↓

and every atom P (ξ, ζ, τ) by (P (ξ, ζ, τ))nT ↓ and replacing in the resulting PEQ the atoms ˆ(∃R)(ξ, τ) by
(∃y R](ξ, y, τ)). One can readily show that

C0K |= q(~a, ~n) iff AZ |= extTq (~a, ~n). (2)

We also set extT∃R(ξ, τ) = (∃̂R(ξ, τ))nT ↓. Then one can show

∃R(a, n) ∈ CK iff AZ |= extT∃R(a, n). (5)

To prove Theorem 14, we require some preparation. Firstly, variations of the monotonicity Lemmas 11
and 12 can be proved for ABox individuals in arbitrary ABoxes as well.

Lemma 19 For any K = (T ,A) with T in CoNF and any a, b ∈ ind(A), the following hold, for all basic
roles R:

– if m < n < min tem(A) or max tem(A) < n < m, then R(a, b, n) ∈ CK implies R(a, b,m) ∈ CK;

– if n < m = min tem(A) − |RT | or max tem(A) + |RT | = m < n, then R(a, b, n) ∈ CKT,R iff
R(a, b,m) ∈ CKT,R ;

and, similarly, for all basic concepts B:

– if m < n < min tem(A) or max tem(A) < n < m, B(a, n) ∈ CK implies B(a,m) ∈ CK;

– if n < m = min tem(A) − |RT | or max tem(A) + |RT | = m < n, then B(a, n) ∈ CK iff
B(a,m) ∈ CK.

Proof. The proof is similar to the proof of Lemma 11 and omitted. q

In what follows it will often be useful to work with types. Given (u, n) we denote by t(u, n) the set of
basic concepts B with B(u, n) ∈ CK and given (u, n), (v, n) we denote by t(u, v, n) the set of basic roles
R with R(u, v, n) ∈ CK, where the knowledge base K will always be clear from the context.

Secondly, it will be useful to introduce a notation system for the individuals u and pairs (u, n) in CK.
In detail, we identify any u in CK with a vector

(a, n0, R0, n1, . . . , nk, Rk)

which is defined inductively as follows. If u has depth 0, then u = a ∈ ind(A) and we denote u by the
singleton vector (a). If u has depth k + 1 then there is a unique v of depth k and v  n

R u. So, if

v = (a, n0, R0, . . . , nk, Rk)

then we set
u = (a, n0, R0, . . . , nk, Rk, nk+1, Rk+1),

where Rk+1 = R and nk+1 = n − (n0 + · · · + nk). Moreover, if u = (a, n0, R0, . . . , nk, Rk), then the
pair (u, n) is identified with

(a, n0, R0, n1, . . . , nk, Rk, nk+1),

where nk+1 = n − (n0 + · · · + nk). Observe that we can recover the time point n of any pair (u, n) as
n = n0 + · · ·+ nk+1.

Observe that not every vector of this from is identical to some individual u in CK. It is easy to see which
ones are, however: (a, n0, R0, n1, . . . , Rk) is identical to some u in CK iff, inductively,

a ∈ ind(A) and ∃Ri ∈ t(a, n0, R0, . . . , ni), for all 0 ≤ i ≤ k.

Lemma 20 For any u in CKT,R , there is v of depth ≤ 2|RT | such that B(u, k) ∈ CKT,R implies B(v, k) ∈
CKT,R , for all k ∈ Z and all basic concepts B.
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Proof. Let u = (a, n0, R0, n1, . . . , Rm). Assume the depth of u exceeds 2|RT |; that is, m ≥ 2|RT |. We
construct a v of depth smaller than u such that B(u, k) ∈ CKT,R implies B(v, k) ∈ CKT,R , for all k ∈ Z
and all basic concepts B. The claim then follows by applying the construction again until the depth of the
resulting individual does not exceed 2|RT |. Suppose there is i < j withRi = Rj . Let δij = ni+1+· · ·+nj .

Case 1. If δij = 0 then we remove the sequence (ni+1, Ri+1, . . . , nj , Rj) from u and set

v = (a, n0, R0, . . . , ni, Ri, nj+1, . . . , Rm).

Clearly, v belongs to CKT,R and t(u, k) = t(v, k), for all k ∈ Z.

Case 2. If δij > 0 and nj+1 > 0 then we remove (ni+1, Ri+1, . . . , nj , Rj), replace nj+1 by nj+1 + δij
and set

v = (a, n0, R0, . . . , ni, Ri, nj+1 + δij , Rj+1, nj+2, . . . , Rm).

Note that we have 0 < nj+1 < nj+1 + δij and so, by Lemma 12,

t(a, n0, R0, . . . , ni, Ri, ni+1) ⊆ t(a, n0, R0, . . . , ni, Ri, nj+1 + δij).

Hence, v belongs to CKT,R and t(u, k) ⊆ t(v, k) for all k ∈ Z.

Case 3. If δij < 0 and nj+1 < 0 then this case is dual to Case 2.

Case 4. If δij < 0 and nj+1 > 0 and there exists j′ > j such that nj′+1 < 0 then we remove
(ni+1, Ri+1, . . . , nj , Rj), replace nj′+1 by δij + nj′+1 and set

v = (a, n0, R0, . . . , ni, Ri, nj+1, Rj+1, . . . , Rj′ , δij + nj′+1, Rj′+1, nj′+2, . . . , Rm).

We have δij + nj′+1 < nj′+1 < 0, and so, by Lemma 12,

t(a, n0, R0, . . . , nj′ , Rj′ , nj′+1) ⊆ t(a, n0, R0, . . . , ni, Ri, nj+1, Rj+1, . . . , Rj′ , δij + nj′+1)

It follows that v belongs to CKT,R with t(u, k) ⊆ t(v, k) for all k ∈ Z.

Case 5. If δij > 0, nj+1 < 0 and there exists j′ > j such that nj′+1 > 0 then this case is dual to Case 4.
q

Theorem 14 There are polynomials f1 and f2 such that, for any consistent TQL KB K = (T ,A), any
CQ q(~x,~s) and any ~a ⊆ ind(A) and ~n ⊆ tem(A), we have K |= q(~a, ~n) iff there is a homomorphism
h : q → CK such that h(q) ⊆ Cd,`K , where d = f1(|T |, |q|) and ` = f2(|T |, |q|).

Proof. Assume that a homomorphism h : q → CK is given. A sub-query of q is a non-empty subset q′ ⊆ q
containing all temporal atoms in q. We assume that q is totally ordered. First we consider the parameter d
for the depth required to find a match for q in CdK. We set d = 2|RT |+ |q|.

A sub-query q′ of q is connected if for any two individual terms ξ1, ξ2 in q′ there are τ1, . . . , τn and
ζ0, . . . , ζn such that there are roles R1, . . . , Rn with R1(ζ0, ζ1, τ1), . . . , Rn(ζn−1, ζn, τn) ∈ q′ such that
ζ0 = ξ1 and ζn = ξ2. We consider the maximal connected components q1, . . . , qn of q and construct the
new homomorphism h′ as follows:

• h′(τ) = h(τ) for all temporal terms τ ;

• for all qi such that h(ξ) ∈ ind(A) for some ξ in qi we have h(y) ∈ C|qi|
K for all y in qi. Thus, for

individual terms ξ in such a qi we set h′(ξ) = h(ξ);

• let qi be such that h(ξ) 6∈ C2|RT |+|q|
K for some ξ in qi. Let ξ in qi be such that h(ξ) is of minimal

depth, say δ, in CK. Then δ > 2|RT |. By Lemma 20, we find v of depth ≤ 2|RT | such that
t(v,m) ⊇ t(h(ξ),m) for all m ∈ Z. Assume

v = (a, n0, . . . , nk, Rk) and h(ξ) = (b,m0 . . . ,mr, R
′
r).
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Let ξ′ be an individual variable in qi. Then h(ξ′) is the concatenation of h(ξ) and some vector

(mr+1, R
′
r+1, . . . ,ms, R

′
s).

Letm = (m0+· · ·+mr)−(n0+· · ·+nk) and let h′(ξ′) be the concatenation of (a, n0, . . . , nk, Rk)
and (mr+1 +m,R′r+1, . . . ,ms +m,R′s).

The resulting h′ is the required homomorphism.

Now we consider the bound ` for the “width” of the match for q. Assume that h : q → CdK for d =
2|RT | + |q|. We set ` = |T | × |q| × (2|RT | + |q|) and transform h into a homomorphism h′ : q → Cd,`K .
It should be clear that f1(|T |, |q|) = 4|T |+ |q| and f2(|T |, |q|) = |T | × |q| × f1(|T |, |q|).

For a vector g = (a, n0, R0, . . . , Rk−1, nk) representing a pair (v, n) we define the temporal extension
gt of g as the set of all time points

n0, n0 + n1, . . . , n0 + · · ·+ nk

The temporal extension of a set X of such vectors is defined as X t =
⋃
g∈X g

t. Similarly, the temporal
extension of an individual u with representation (a, n0, R0, . . . , Rk−1, nk, Rk) is

n0, n0 + n1, . . . , n0 + · · ·+ nk

ByHh we denote the set of all h(ξ, τ) represented as vectors as introduced above. LetM = {min tem(A)−
|T |,max tem(A) + |T |}. The homomorphism h′ we are going to construct will have the following prop-
erty:

• for any two m1,m2 ∈ Hth′ ∪ M such that there is no m ∈ Hth′ between m1,m2 and such that
m1,m2 ≤ min tem(A)− |T | or m1,m2 ≥ max tem(A) + |T | it follows that |m1 −m2| ≤ |T |.

Assume such an h′ has been constructed. The cardinality ofHth′ is bounded by |q| × (2|RT |+ |q|) (since
h′ is into C2|RT |+|q|

K ). Hence h′ is into C2|RT |+|q|,`
K , as required.

For the construction of h′, let m1,m2 ∈ Hth ∪ M be such that there is no m ∈ Hth between m1

and m2 and such that m1 < m2 ≤ min tem(A) − |T | or max tem(A) + |T | ≤ m1 < m2. Assume
|m2 −m1| > |T | and that w.l.o.g. max tem(A) + |T | ≤ m1 < m2.

We define h′ as follows. Let m = (m2 − m1) − |T |. Then, for all temporal terms τ we set
h′(τ) = h(τ) if h(τ) ≤ m1, and h′(τ) = h(τ) − m if h(τ) ≥ m2. To define h′(ξ) assume that
h(ξ) = (a, n0, R0, n1, . . . , Rk). If the temporal extension of h(ξ) contains no time point > m1, then
h′(ξ) = h(ξ). Otherwise, replace all ni+1 with

n0 + · · ·+ ni ≤ m1 and n0 + · · ·+ ni + ni+1 ≥ m2

by ni+1 −m; all ni+1 with

n0 + · · ·+ ni ≥ m2 and n0 + · · ·+ ni + ni+1 ≤ m1

by ni+1 + m; and if n0 ≥ m2, then replace it by n0 −m. h′(ξ) is defined as the resulting vector. Using
Lemmas 19, 11, and 12 one can readily check that h′ is a homomorphism.

After applying the above construction exhaustively, the resulting h′ is as required. q

Theorem 16 Let T be a TQL TBox in CoNF and q(~x,~s) a totally ordered CQ. Then, for any consistent
KB (T ,A) and any tuples ~a ⊆ ind(A) and ~n ⊆ Z,

(T ,A) |= q(~a, ~n) iff AZ |= q∗(~a, ~n).

Proof. (⇒) Suppose (T ,A) |= q(~a, ~n). Then, by Theorem 14, there is a homomorphism g : q(~a, ~n) →
Cd,`K . If there is no individual variable y such that g(y) /∈ ind(A), then we have C0K |= q(~a, ~n), and so,
by (2), AZ |= extTq (~a, ~n), from which AZ |= q∗(~a, ~n) (just take S = ∅).
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Otherwise, we take a variable y with g(y) /∈ ind(A) and consider the minimal set Θy of atoms in q with
the following property: (i) all atoms containing y are in Θy; (ii) if z is an individual variable in an atom
from Θy and g(z) /∈ ind(A) then all atoms with z are in Θy . Consider the sub-query q′ ⊆ q comprised of
all atoms in Θy (and all the temporal constraints in q). Denote by X the set of individual terms in q′ sent
by g to ind(A), and by Y the remaining individual terms in q′. Clearly, all elements of Y are existentially
quantified variables. In view of the UNA, X contains at most one constant. By the construction of CK and
Θy , there are unique b ∈ ind(A), n ∈ Z and a role R such that b n

R u, for some u, and, for every z ∈ Y ,
we have b n

R u 
n1

R1
· · · nm

Rm
g(z), for some ni.

Consider now CKT,R with root a. Let e be the natural embedding of CKT,R \ {A(a, 0)} to CK such that
e(a) = b, e(0) = n and e(R(a, v, 0)) = R(b, u, n). Let h : q′ → CKT,R be such that h ◦ e = g on q′.
The map h is not necessarily a tree witness for R with qh = q′: although h(q′) ⊆ CdKT,R

, we may have
h(q′) 6⊆ Cd,`KT,R

. We use h to construct a tree witness h′ forR in the same way as in the proof of Theorem 14.
Let S be the set of all the distinct tree witnesses constructed in this way for the individual variables in

q. Observe that if y, z ∈ Y , then y and z belong to the same tree witness. It follows that S is consistent.
It follows now from (2), (5) and the proof of Theorem 14 that

AZ |=g
∧
h′∈S

twh′ ∧ extTq\S.

(⇐) Suppose AZ |=g′
∧
h∈S twh ∧ extTq\S for some consistent set S of tree witnesses and some

assignment g′. Our aim is to extend g′ to an assignment g in CK under which CK |=g q. We set g to
coincide with g′ on those terms that occur in q∗. Thus, it remains to define g on the individual variables
occurring in every qh, h ∈ S. Suppose h is a tree witness for R, g′(ra) = n and g′(xh) = b, where ra
and xh are from wh. By (5), we have CK |= ∃R(b, n). Denote by e the natural embedding of CKT,R to CK.
Now, for every existentially quantified variable y ∈ Yh, we set g(y) = h(e(y)). Note that this definition
is sound as different tree witnesses h1 and h2 in S do not share variables apart form Xh1

∩ Xh2
, and the

variables in the Yhi do not occur in q∗. That the resulting g is a homomorphism from q to CK follows from
Lemmas 11 and 12 for the atoms in the tree witnesses qh and from (2) and (5) for the remaining atoms. q

Theorem 17 Answering CQs over T = {A v ♦FB} is CONP-hard for data complexity.
Proof. The proof is by reduction of 2+2-SAT, a variant of propositional satisfiability that was first in-
troduced by Schaerf as a tool for establishing lower bounds for the data complexity of query answering
in a DL context [Schaerf, 1993]. A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of
p1, p2, n1, n2 is a propositional variable or a truth constant 0, 1. A 2+2 formula is a finite conjunction
of 2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula is satisfiable.
2+2-SAT is NP-complete [Schaerf, 1993].

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional variables π0, . . . , πm, and let ci = pi,1 ∨ pi,2 ∨
¬ni,1 ∨ ¬ni,2 for all i ≤ n. Our aim is to define an ABox Aϕ and a CQ q such that ϕ is unsatisfiable iff
(T ,Aϕ) |= q. We expandA and q1∨q2 from Section 6. Namely, we represent the formula ϕ in the ABox
Aϕ as follows:

– the individual name f represents the formula ϕ and the individual names c0, . . . , cn represent the
clauses of ϕ;

– the assertions S(f, c0, 0), . . . , S(f, cn, 0) associate f with its clauses (at time point 0), where S is a
role name;

– the individual names π0, . . . , πm represent the propositional variables, and the individual names
false, true represent truth constants;

– the assertions, for each i ≤ n,

P1(ci, pi,1, 0), P2(ci, pi,2, 0), N1(ci, ni,1, 0), N2(ci, ni,2, 0)

associate each clause with the four variables/truth constants that occur in it (at time point 0), where
P1, P2, N1, N2 are role names.
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We further extend Aϕ to enforce a truth value for each of the variables πi. To this end, add A0, . . . ,Am to
Aϕ, whereAi = {A(ai, 0), C(ai, 1)}. Intuitively,Ai is a copy ofA from Section 6 and is used to generate
a truth value for the variable πi, where we want to interpret πi as true if q1(a) is satisfied and as false if
q2(a) is satisfied. To actually relate each individual name πi to the associated ABox Ai, we use role name
R. More specifically, we extend Aϕ as follows:

• link variables πi to the ABoxes Ai by adding assertions R(πi, a
i, 0) for all i ≤ m; thus, truth of πi

means that tt(πi) is satisfied and falsity means that ff(πi) is satisfied, where

tt(y) = ∃z, t
(
R(y, z, 0) ∧ C(z, t) ∧B(z, t)

)
,

ff(y) = ∃z, t, t′
(
R(y, z, 0) ∧ (t < t′) ∧ C(z, t) ∧B(z, t′)

)
;

• to ensure that false and true have the expected truth values, add the following assertions to the ABox:

R(true, true, 0), A(true, 0), C(true, 1), B(true, 1),

R(false, false, 0), A(false, 0), C(false, 1), B(false, 2).

Consider the query

q = ∃x
(
S(f, x, 0) ∧ (∃y1(P1(x, y1, 0) ∧ ff(y1))) ∧ (∃y2(P2(x, y2, 0) ∧ ff(y2))) ∧

(∃y3(N1(x, y3, 0) ∧ tt(y3))) ∧ (∃y4(N2(x, y4, 0) ∧ tt(y4)))
)
,

which describes the existence of a clause with only false literals and thus captures falsity of ϕ. It is
straightforward to show that ϕ is unsatisfiable iff (T ,Aϕ) |= q. To obtain the desired CQ, it remains to
pull the existential quantifiers out.

q
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