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Abstract. This paper presents a new diffeomorphic temporal registra-
tion algorithm and its application to motion and strain quantification
from a temporal sequence of 3D images. The displacement field is com-
puted by forward eulerian integration of a non-stationary velocity field.
The originality of our approach resides in enforcing time consistency by
representing the velocity field as a sum of continuous spatiotemporal B-
Spline kernels. The accuracy of the developed diffeomorphic technique
was first compared to a simple pairwise strategy on synthetic US images
with known ground truth motion and with several noise levels, being the
proposed algorithm more robust to noise than the pairwise case. Our al-
gorithm was then applied to a database of cardiac 3D+t Ultrasound (US)
images of the left ventricle acquired from eight healthy volunteers and
three Cardiac Resynchronization Therapy (CRT) patients. On healthy
cases, the measured regional strain curves provided uniform strain pat-
terns over all myocardial segments in accordance with clinical literature.
On CRT patients, the obtained normalization of the strain pattern after
CRT agreed with clinical outcome for the three cases.

1 Introduction

Quantification of cardiac motion and strain provides insight about cardiac func-
tion by estimating how a given pathology affects global or local contractility of
the myocardium. In clinical routine, motion and strain are usually derived from
ultrasound (US) images for which 3D acquisitions are now currently available
with sufficient spatiotemporal resolution for characterizing motion and strain.
Nonetheless, 3D-US images have lower signal-to-noise ratio (SNR) and temporal
resolution than the 2D ones, thus making their processing more challenging.

Several approaches [1,2,3] have been proposed to extend 2D speckle tracking
techniques to 3D and to recover myocardial motion from a sequence of 3D-US
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images. One of the main drawbacks of these techniques based on pairwise reg-
istrations is that they do not make use of the temporal information embedded
in the 3D-US sequences. Parametric spatiotemporal models providing continu-
ous and smooth transformations were proposed by Ledesma-Carbayo et al. [4]
to exploit temporal information in 2D-US image sequences. However, ensuring
temporal smoothness of the displacement field does not render properly temporal
consistency, i.e. that the displacement field at each time point is related to all
the previous times.

Diffeomorphic registration algorithms ([5,6] among others) ensure a contin-
uous, differentiable and with continuous inverse, correspondence between the
features to register. Thus, they are particularly well suited to handle medical
image sequences as they conserve the topology and the orientation of the ob-
served anatomical structures along time. By integrating a velocity field over time,
they provide an elegant way of encoding temporal consistency.

This concept was applied by Khan et al. [7] to monitor growth processes by ex-
tending the LDDMM [5] image registration algorithm. Velocities were computed
using a dense grid, which did not guarantee their spatiotemporal continuity, un-
like parametric registration methods. Moreover, a regularization term added to
the image similarity metric involved a smoothing kernel that enforced the spatial
continuity of the computed velocities. The temporal continuity of the velocities
was then fully conditioned by the conservation of the topology of the observed
features along the image sequence. This assumption does not hold for noisy im-
age sequences, such as cardiac US images. Similar concepts were applied to 2D
contours and 3D shapes by Durrleman et al. [8]. However, while the computa-
tional cost of dense velocity fields is acceptable for sparse topologies, its extension
to dense volumetric spatiotemporal data remains critical.

In this paper, we propose a diffeomorphic registration algorithm that models
velocities continuously in time and space. We refer to our approach as Tempo-
ral Diffeomorphic Free-Form Deformation (TDFFD) algorithm. We extend the
popular parametric FFD registration technique [6] by summing spatiotemporal
B-Spline kernels to model the 3D+t velocity field. One of the main advantages of
our approach is the enforcement of the continuity of the velocity field by using a
continuous parametric representation. As a result, the velocity and displacement
fields can be computed at any time within the temporal interval captured by the
image sequence. The advantage of applying such transformation model for strain
quantification purposes is demonstrated here on synthetic and real 3D-US image
sequences, with the underlying objective of accurately estimating the impact of
Cardiac Resynchronization Therapy (CRT) on 3D strain.

2 Registration Algorithm and Strain Computation

In this paper, we consider a sequence of N images {In, n = 1 . . .N}, each image
being defined on a spatial domain Ω ⊂ IRd where d = 3 stands for the spatial
dimension. Each image In is associated to a time instant tn ∈ [0, T ], with T >
0 ∈ IR. The purpose of the registration algorithm is to solve for the diffeomorphic
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mapping ϕ : Ω × [0, T ] → IRd that relates any point x in the Eulerian space
of coordinates of the first image in the sequence (here taken by convention as
t = 0) to a continuous time t ∈ [0, T ].

The temporal dimension is introduced into the diffeomorphic registration
problem by relating the mapping ϕ at any time t ∈ [0, T ] to a time-varying ve-
locity field. In this paper, the velocity field is represented as a sum of spatiotem-
poral kernels. The B-Spline velocity weights given to all kernels are concatenated
in a vector of parameters p, the velocity being then denoted as v(x, t,p) and
computed as

v(x,p, t) =
∑

τ

∑

c

β
( t − tτ

Δτ

)
B

(x − xc

Δc

)
pτ,c (1)

where B(·) is the 3D tensor product of 1D cubic B-spline kernels β(·), defined
on a sparse grid of 4D control points, being c the spatial index, τ the temporal
index, and (Δc, Δτ ) the width of the kernels in each dimension. Hence, the ϕ
mapping is obtained as

ϕ(x, t,p) = x +
∫ t

0

v(ϕ(x, τ,p), τ,p)dτ . (2)

Forward eulerian integration scheme. The transport equation for comput-
ing ϕ in Eq. 2 is solved numerically using a forward Euler integration scheme in
which the continuous integral is replaced by a discrete summation. The contin-
uous time interval is now split into a collection of tk ∈ [0, T ] values where the
time increment Δtk between consecutive time-steps is adapted to ensure invert-
ibility as described in the next subsection. Using this discretization, Eq. 2 can
be approximated by

ϕ(x, tn,p) = x +
n−1∑

k=0

v(ϕ(x, tk,p), tk,p)Δtk , (3)

If we define xk(p) .= ϕ(x, tk,p), tk
.=

∑k−1
l=0 Δtl, and vk−1(p) .= v(xk−1, tk−1,p)

then we can recursively write xk as follows:

xk(p) = xk−1(p) + vk−1(p)Δtk−1 . (4)

Adaptive time-step computation. The integration of Eq. 2 using the discrete
approximation of Eq. 4 requires to select a time-step sufficiently small for ensur-
ing accurate computation and invertibility of the mapping ϕ. In our method, we
start with a uniform sampling of the time interval [0, T ], arbitrarily chosen as
half of the temporal spacing of the image sequence. To ensure invertibility, one
needs to consider the Jacobian of the mapping xn(p), here denoted as Dxn(p)
and computed from Eq. 4 using

Dxn(p) =
n−1∏

k=0

(I + Dvk(p)Δtk) .=
n−1∏

k=0

Δϕk , (5)

where I stands for the identity matrix. This Jacobian must be positive definite
everywhere to ensure invertibility of the transformation. A necessary condition
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for this is to have det(Dxn(p)) > 0 for all x ∈ Ω. Computing the product over
k of all det(Δϕk) gives the determinant of the Jacobian matrix in Eq. 5. When
a negative value of det(Δϕk) is detected, the value of Δtk is reduced by a factor
2 until the obtention of a positive determinant.

Similarity metric and non-linear optimization. 3D-US images are char-
acterized by a speckle spatial distribution inside the myocardial wall that is
conserved along time. The Mean Squared Error (MSE) appears therefore as a
good fit for capturing the optimal set of B-Spline velocity weights p from Eq. 1.
Similarity is measured between the first image in the sequence and all the con-
secutive frames according to

MSE(p) =
N−1∑

n=0

∫

Ω

(
I0(x) − In(xn(p), tn)

)2

dx (6)

Since the number of parameters characterizing the transformation is large, and
the metric is explicitly differentiable, gradient-based optimization methods are
well indicated for minimizing Eq. 6. In this paper, the L-BFGS-B method was
used, which searches the optimum according to the gradient and a low-rank
approximation of the Hessian of the metric. For computing the total derivative
of Eq. 6 with respect to the weights p of velocity kernels, we need the following
derivative:

dxn

dp
=

dvn−1

dp
Δtn−1 +

dxn−1

dp
where

dvn−1

dp
=

∂vn−1

∂xn−1

dxn−1

dp
+

∂vn−1

∂p
. (7)

Hence, dxn/dp can be obtained from the following recursive equation:

dxn

dp
=

dxn−1

dp

(
I + Dvn−1Δtn−1

)
+

∂vn−1

∂p
Δtn−1 , (8)

where D is the Jacobian on all spatial dimensions (i.e., (Dv)ij = ∂vi/∂xj).

Strain computation. The Cauchy strain tensor is estimated directly using
the spatial derivatives of the displacement field from Eq. 5, obtained at any
spatiotemporal location using Eq. 4. The Cauchy strain tensor is then computed
as

σ(x, tn) =
1
2
((Dxn)tDxn − I) . (9)

Strain is obtained along a specific direction h using σh(x, t) = ht · σ(x, t) · h.
The h directions considered here are the three vectors (circumferential, longitu-
dinal, radial) of a parabolic coordinate system related to the anatomy of the left
ventricle.

3 Experiments

The proposed registration algorithm was applied to three different synthetic
datasets to evaluate its accuracy and was then applied to clinical routine 3D-US
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Fig. 1. Median value of error magnitude on the displacement field for the FFD (plotted
in blue dashed) and the TDFFD algorithm (black). Vertical bars indicate the second
and third quartiles. Three levels of noise are considered: w = 0.2 (left), w = 0.5 (center)
and w = 0.7 (right).

images. First, a simple pairwise strategy and the proposed temporally consistent
scheme were compared taking a ground truth deformation from simulated US
data as reference. Then, strain curves were estimated from 3D-US sequences for
8 volunteers and 3 CRT patients before the therapy and at 12-months follow-up.

3.1 Registration Accuracy on Simulated US Data

Elen et al. [2] simulated Left Ventricle (LV) deformation in which the LV was
represented as a thick-walled ellipsoid with physiologically relevant end-diastolic
dimensions. A simplified kinematic model with an ejection fraction of 60% over a
cardiac cycle was used to generate the ground truth displacement field. We used
this ground truth data to evaluate the accuracy of the proposed algorithm and
compare it to a pairwise registration strategy at different noise levels. Various sig-
nal to noise ratios were generated by adjusting intensities inside and outside the
myocardial wall using a weight w (w = 0.2, w = 0.5 and w = 0.7 in this paper).
Fig. 1 shows the median magnitude and dispersion of the difference between the
ground truth displacement field and the ones given by two algorithms: a pair-
wise FFD (see reference in [6]) and the temporal diffeomorphic FFD registration
(TDFFD) algorithms. This error was computed over the entire myocardial wall.
FFD pairwise registration was performed between each image and the first im-
age in the sequence, taking the chain of previously computed transformations
as bulk transformation. For the two algorithms, the B-Spline grid had an initial
resolution of three control points in the longitudinal direction and five in the
the two transverse directions. This resolution was then refined twice by a factor
2. For the lowest amount of noise, there was no substantial difference between
FFD and TDFFD strategies. However, as the signal to noise ratio decreased,
the TDFFD algorithm proved to be more robust and produced smaller errors
(maximal median error of 2.6 mm for TDFFD and 3.6 mm for pairwise FFD).
The dispersion was also clearly reduced when using the TDFFD algorithm for
all noise levels, as observed in Fig. 1. For w = 0.7, the upper limit of the third
quartile goes from 6.6 mm using pairwise FFD to 3.5 mm using TDFFD.
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Fig. 2. Longitudinal strain quantified for the synthetic case and 8 healthy volun-
teers in basal and mid segments. The AHA segments are labelled according to the
following: · Basal anterior (1), ◦ Basal anteroseptal (2), × Basal inferoseptal (3), +
Basal inferior (4), ∗ Basal inferolateral (5), � Basal anterolateral (6), � Mid ante-
rior (7), � Mid anteroseptal (8), � Mid inferoseptal (9), � Mid inferior (10), � Mid
inferolateral (11), � Mid anterolateral (12). Color version of this figure available at
http://bit.ly/miccai10.

3.2 Experiments on Clinical Datasets

Data acquisition. We acquired 3D echocardiographic sequences in an apical
view for two populations, using a General Electric (Milwaukee, WI, USA) Vivid
7 device. The first population was made up of 8 healthy volunteers (aged 31 ±
6 years), and the second population was composed of 3 CRT patients (aged 61
± 8 years), who were all clinical responders to CRT. The average number of
images per cardiac cycle was of 17.8 for the healthy subjects and 18.3 for the
CRT patients. The pixel spacing was on average of 0.9 × 0.6 × 0.9 mm3 for the
healthy volunteers and 1.0 × 0.7 × 1.0 mm3 for the CRT patients.

Strain in healthy volunteers. Fig. 2 shows the recovered longitudinal strain
curves for the database of 8 healthy subjects at mid and basal segments of the
American Heart Association (AHA). The segments either not totally included
in the field of view of the 3D-US images or suffering from typical image artifacts
(non visibility of lateral wall, reflections of surrounding anatomical structures,
lower spatial resolution on the lateral sides of the sector) of 3D-US acquired

http://bit.ly/miccai10
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Fig. 3. (a) Longitudinal strain as a colormap at end of systole before CRT (top) and
at twelve months follow-up (bottom) for Patient 1. (b-g) Longitudinal strain curves
in septal regions before (OFF) and at 12 months follow-up (M12) for Patients 1 to 3.
Color version of this figure available at http://bit.ly/miccai10.

clinically, were excluded from the analysis. The recovered strain curves showed
a similar pattern in all volunteers, in good agreement with clinical literature [9].
The average peak systolic strain was of −16.3 ± 4.7%. This value is close the
−17.5 ± 4% reported in [9] and obtained from tagged MRI images. Different
phases of diastole such as the isovolumetric relaxation and the atrial contraction
(acceleration of the strain at the end of the diastole) periods can be distinguished
in cases with higher temporal image resolution such as Volunteers 1 and 4.

Strain before and after CRT. The three CRT patients processed in this paper
had dilated geometry before implantation, thus the LV did not fit entirely in the
field of view. Therefore, strain was only quantified in the septal regions that
usually have the best image quality. Fig. 3 shows longitudinal strain plotted
using a color map for the first patient and its temporal evolution per septal
segment for all the patients. Average strain curves are shown in red and the peak
systolic strain value before and after CRT is indicated by an arrow. Patients
1 and 3 showed a significant improvement in peak systolic strain after CRT
that correlated well with an important reverse remodeling observed in these
two patients at the 12-month follow-up (reduction of end-systolic volume of
27.7% and 51.0%, respectively). For Patient 2, no substantial change in peak
strain value was observed from the strain curves. This patient had lower reverse
modeling as observed at the follow-up with a reduction of end-systolic volume
of 16.9%. This value is very close to 15 %, which is the threshold used at our
institution for defining positive CRT response.

4 Conclusion

This paper presents a new diffeomorphic registration method ensuring tempo-
ral consistency of the resulting deformation fields, which can be particularly

http://bit.ly/miccai10
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useful in image sequences with substantial amount of noise and artifacts. This
algorithm was applied for the quantification of strain in 3D US using synthetic
datasets, and a set of healthy subjects and CRT patients. Experiments on syn-
thetic US datasets proved an improved robustness and accuracy at high noise lev-
els compared to classical pairwise approaches. On healthy volunteers, the method
provided physiologically meaningful longitudinal strain curves with small disper-
sion among LV segments. On CRT patients, improved peak systolic longitudinal
strain in the septum agreed with positive clinical response and reverse remod-
eling. Future work will include US-adapted similarity metrics and the extension
of this registration framework to incorporate compounding strategies to address
field of view issues in 3D-US sequences of heart failure patients with dilated LV.
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