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Temporal Dynamics for Blind Measurement
of Room Acoustical Parameters

Tiago H. Falk, Student Member, IEEE, and Wai-Yip Chan

Abstract—In this paper, short- and long-term temporal dynamic
information is investigated for the blind measurement of room
acoustical parameters. In particular, estimators of room reverber-
ation time (T60) and direct-to-reverberant energy ratio (DRR)
are proposed. Short-term temporal dynamic information is ob-
tained from differential (delta) cepstral coefficients. The statistics
computed from the zeroth-order delta cepstral sequence serve
as input features to a support vector T60 estimator. Long-term
temporal dynamic cues, on the other hand, are obtained from
an auditory spectrotemporal representation of speech commonly
referred to as modulation spectrum. A measure termed as rever-
beration-to-speech modulation energy ratio, which is computed
per modulation frequency band, is proposed and serves as input
to T60 and DRR estimators. Experiments show that the proposed
estimators outperform a baseline system in scenarios involving
reverberant speech with and without the presence of acoustic
background noise. Experiments also suggest that estimators of
subjective perception of spectral coloration, reverberant tail effect,
and overall speech quality can be obtained with an adaptive
speech-to-reverberation modulation energy ratio measure.

Index Terms—Delta cepstrum, direct-to-reverberation ratio,
modulation spectrum, reverberation time, temporal dynamics.

I. INTRODUCTION

WHEN speech is produced in an enclosed environment,
the acoustic signal follows multiple paths from source

to receiver. Such reflections may arrive with delays ranging
from a few milliseconds to a few seconds, depending on the
room geometry and the sound absorption properties. Early
reflections, which are on the order of a few tens of milliseconds,
modify the signal short-time spectrum, causing a change in sig-
nal timbre; such an effect is termed spectral coloration [1], [2].
Delays greater than 50 ms (termed late reflections), on the other
hand, are perceived as distinct copies of the direct path signal
and cause temporal coloration distortions. The exponential
decay of late reflections results in temporal smearing, which, in
turn, decreases the perceived speech quality and intelligibility.

As hands-free communication technologies advance, rever-
beration has become a burden, in particular for applications
with far-field microphones. A strategy to improve system per-
formance is to estimate the room acoustical parameters and
use signal processing techniques that are most appropriate for
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the environment (e.g., see [3] and [4]). Traditionally, the time-
domain room impulse response (IR) or room geometry and wall
absorption properties are used to measure the room acoustical
parameters. Offline measurement of the room IRs, however,
is a laborious task. In addition, the IR varies with acoustic
source positioning, room temperature, and placement of room
furnishings. As a consequence, the room acoustical parameters
obtained from room IR measurements are not feasible for real-
time signal processing applications. To this end, blind signal-
based measurement, where the room acoustical parameters are
obtained from the reverberant speech signal, has been the focus
of more recent research. Special emphasis has been given to the
blind estimation of the reverberation time (T60) parameter (see
Section II-B).

In the past, a handful of blind T60 estimators have been
proposed. In [5], the diffuse tail of the reverberation is modeled
as exponentially damped Gaussian white noise. A maximum-
likelihood (ML) estimate of the time constant of the decay
is used to characterize T60. With ML-based approaches, it
is common to assume that the source signal abruptly stops
and has long pauses between speech segments; such require-
ments are needed to attain reliable estimates. As expected,
the performance of ML-based methods is compromised for
noise-corrupted reverberant speech. Notwithstanding, the work
described in [6] proposes a “generalized” ML procedure that
loosens the aforementioned assumptions and allows for blind
T60 estimation under noisy environments.

Alternately, the work described in [7] shows that reverbera-
tion corrupts the harmonic structure of voiced speech segments.
Hence, a measure of pitch “strength” (or periodicity) is used
to blindly estimate T60. The estimator, however, is shown to
be sensitive to speaker gender. Additionally, the kurtosis of
linear prediction (LP) residuals is used in [8] for blind T60

characterization. The idea is that for clean voiced speech seg-
ments, LP residuals have strong peaks corresponding to glottal
pulses. The peaks become smeared in time as reverberation
increases, thus reducing the LP residual kurtosis to that of
a Gaussian distribution. LP residual-based methods have also
been successfully used in the past for noise and reverberation
suppression [9]–[11].

In this paper, we investigate the use of temporal dynamic
information for the blind measurement of room acoustical
parameters. Short-term dynamic information is obtained from
commonly used differential (delta) cepstral coefficients. The
statistics computed from the zeroth-order delta cepstral se-
quence are shown to provide useful cues for blind T60 estima-
tion. Moreover, long-term dynamic information is obtained by
means of spectral analysis of the temporal envelopes of speech,
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which is a process commonly termed as modulation spectrum
processing. Here, the work described in [12] is extended to al-
low for the blind measurement of several room acoustical para-
meters, including measures of subjective perception of spectral
coloration, reverberant tail effect, and overall speech quality.
Experiments show that the proposed estimators outperform a
baseline system in scenarios involving reverberant speech with
and without the presence of acoustic background noise.

The remainder of this paper is organized as follows:
Section II describes models, characterization, and simulation
of room reverberation. Section III provides motivation and
a description of the features obtained from temporal dy-
namic information. The experimental results are presented in
Section IV. An objective assessment of the perceived reverbera-
tion effects is discussed in Section V, and conclusions are given
in Section VI.

II. ROOM REVERBERATION

In this section, models of room reverberation are presented.
The parameters commonly used to characterize reverberation
are presented, as well as methods to generate reverberant
speech.

A. Models of Room Reverberation

Conventionally, the propagation from source to microphone
in a reverberant enclosure is modeled as a linear filtering
process. The reverberant signal s(n) is modeled as a convo-
lution of the anechoic source speech signal x(n) with the room
IR r(n) as

s(n) = x(n) ∗ r(n). (1)

If additive background noise N(n) is present, then (1) becomes

s(n) = x(n) ∗ r(n) + N(n). (2)

It is known that under the diffuse sound field assumption, the
ensemble average of the squared room IR exponentially decays
with time [13] as 〈

r2(n)
〉

= A exp(−kn). (3)

The angled brackets 〈·〉 denote the ensemble average, A is a
gain term, and k is the damping factor given by [13]

k = log 106/(Fs × T60) (4)

where Fs is the sampling frequency, and T60 is the so-called
reverberation time, as described in Section II-B. The plot in
Fig. 1 illustrates the exponential decay of a room IR generated
via the image method [14] with T60 = 0.5 s and Fs = 8 kHz.
The dashed curve in the figure illustrates the exponential decay
given by (3) with A = 0.0045.

B. Characterization of Room Reverberation

Reverberation time (T60) is the parameter most widely used
to characterize room acoustics. By definition, it is the time
required for the sound energy to decay by 60 dB after the

Fig. 1. Exponential decay of the late reflections of a room with T60 = 0.5 s.

sound source has been turned off [15]. Commonly, the so-called
Schroeder integral is used to calculate T60 from the room IR
[16]. Other parameters that characterize room acoustics and
are obtained from the room IR include the early decay time
(interval required for the energy to decay by 10 dB), the speech
clarity index (energy ratio between the 50-ms early reflections
and the remaining late reflections) [17], and the direct-to-
reverberant energy ratio (DRR). The DRR, which is expressed
in decibels, is the energy ratio between the direct sound and the
room reverberation and is given by

DRR = 10 log10

⎛⎜⎜⎝
nd∑

n=0
r2(n)

∞∑
n=nd+1

r2(n)

⎞⎟⎟⎠ (5)

where ndFs is the direct sound arrival time.
Moreover, the spectral content of the room IR can provide

information regarding spectral coloration. In [18] and [19],
the second-order moment of the room frequency response is
proposed as a measure of spectral coloration. Additionally, sub-
jective listening tests may be used to characterize the perceived
quality of speech signals produced in reverberant enclosures.
In [20], subjective listening tests are used to characterize the
perception of timbre. Recently, listening tests have been used
to characterize the subjective perception of coloration, rever-
beration decay tail effects, and overall quality for reverberant
and reverberation-suppressed speech [21]. The test follows the
guidelines described in the International Telecommunications
Union (ITU-T) Recommendation P.835 [22].

C. Simulation of Reverberant Speech

Two tools are used to generate reverberant speech: 1) SIm-
ulation of REal ACoustics (SIREAC) [23] and 2) the ITU-T
software package described in Recommendation G.191 [24].
Anechoic speech from eight speakers (half male, half female)
is used throughout our experiments. A total of 256 utterances
(averaging 6 s each) are spoken per speaker; half of the ut-
terances are in English and the other half in French. Each of
the speech samples consists of two sentences separated by an
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Fig. 2. Microphone array setup at the Bell Labs varechoic chamber.

TABLE I
ROOM ACOUSTICAL PARAMETERS FOR REAL ROOM IRs

approximately 800-ms pause; all signals are stored with 8-kHz
sampling rate and 16-bit precision. SIREAC is used to artifi-
cially generate reverberant speech with T60 values between 0.2
and 1 (with 0.1-s increments), 1.5, and 2 s. The level of the
reverberant speech signal is normalized to −26 dB overload
(dBov) using the ITU-T P.56 voltmeter [25].

The ITU-T G.191 tool is used to convolve the room IRs col-
lected from real environments with the anechoic speech signals.
The real room IRs are stored with 8-kHz sampling rate and
include those collected with a four-channel linear microphone
array (as depicted in Fig. 2) at the Bell Labs varechoic chamber1

with 100%, 43%, and 0% panels open [26] and those collected
with a single microphone in a large cafeteria, a medium-sized
meeting room, a small lavatory, and a medium-sized office [3].
As with the simulated data, the reverberant speech signals are
normalized to −26 dBov. Table I reports the parameters T60

and DRR, which are computed from the room IRs, for the
aforementioned environments. In the table, varechoic chamber
data are represented as “VC-%-mi,” where “%” represents the
percentage of open reflective panels, and “mi” represents the
microphone number in the microphone array (see Fig. 2).

III. TEMPORAL DYNAMICS AND PROPOSED ESTIMATORS

In this section, a description of the features used to capture
short- and long-term temporal dynamics is given; the proposed
T60 and DRR estimators are also described.

1The Bell Labs varechoic chamber is a rectangular room with 368 indepen-
dently actuated surfaces in the walls, ceiling, and floor. T60 is controlled by the
percentage of open panels.

A. Short-Term Temporal Dynamics

Short-term energy dynamics is used for the blind measure-
ment of T60. In this paper, the zeroth-order mel-frequency
cepstral coefficient is proposed as a measure of the short-term
log-spectral energy, and the zeroth-order delta coefficient is
proposed as a measure of the log-energy rate of change [27].
Since such coefficients are commonly extracted by speech and
speaker recognition systems, blind T60 estimation can be used
to improve the recognition performance while requiring neg-
ligible computational overhead. Let c0(m) denote the zeroth-
order cepstral coefficient for frame m. Δc0(m) represents the
zeroth-order delta coefficient and is computed as [28]

Δc0(m) =
L∑

l=−L

lc0(m + l) (6)

where the normalization factor
∑L

l=−L l2 is omitted as it does
not affect the results; in our simulations, L = 5 is used.

Fig. 3(a) depicts (from top to bottom) the waveform c0

and Δc0 sequences for a clean speech signal, respectively. As
observed, speech onsets induce positive “peaks” in the Δc0

sequence; analogously, speech offsets induce negative peaks.
Fig. 3(b) and (c) illustrates the effects of increasing T60 on
the speech offset regions (e.g., between 1.75 and 2.25 s); the
plots correspond to T60 = 0.4 and 1 s, respectively. As can be
seen, as T60 increases, c0 decays at a slower rate, which, in
turn, decreases the log-energy rate of change. Moreover, due to
temporal smearing, the intervals between phonemes are filled
with reverberant energy (e.g., between 0.5 and 1.75 s), thus also
decreasing the log-energy rate of change.

To capture such reverberation tail effects, sample statistics
are computed from NΔc0 samples (xi). In particular, standard
deviation (σΔ), skewness (SΔ), kurtosis (KΔ), and median
absolute deviation (DΔ) are computed according to

σΔ =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (7)

SΔ =

√
N

N∑
i=1

(xi − x̄)3(
N∑

i=1

(xi − x̄)2
)3/2

(8)

KΔ =
N

N∑
i=1

(xi − x̄)4(
N∑

i=1

(xi − x̄)2
)2 − 3 (9)

DΔ = mediani (|xi − medianj(xj)|) (10)

where x̄ indicates the sample average of xi.
The aforementioned inverse relationship between T60 and

the log-energy rate of change can be observed in the σΔ

versus T60 plots depicted in Fig. 4 (solid curve). Moreover,
since reverberation tail effects are more pronounced in speech
offset intervals, it is expected that, with an increase in T60,
fewer negative peaks will occur in the Δc0 sequence. A direct
consequence of this effect is the increase in positive skewness
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Fig. 3. (From top to bottom) Waveform, c0, and Δc0, for (a) clean speech
and reverberant speech with (b) T60 = 0.4 s and (c) T60 = 1 s.

SΔ, as illustrated in Fig. 4 (dashed curve). Note that, with
our speech data, both speech offsets and onsets are severely
affected by the reverberation tail for very large reverberation
times, hence the decrease in SΔ for T60 = 2 s. Additionally,
it is observed that an increase in T60 will result in a shift of
the variance to large deviations, rendering the Δc0 distribution
with a heavier tail. Hence, an increase in KΔ is observed, as
illustrated in Fig. 4 (dotted curve). Finally, DΔ (dash-dot curve)
is used as it provides increased robustness (relative to σΔ) to
extreme Δc0 deviations around the mean, which is an effect

Fig. 4. Plots of (normalized) sample statistics versus T60. Data points repre-
sent average statistics for simulated reverberant speech signals.

commonly observed in multiple-sentence speech signals with
an intersentence duration that is longer than T60.

Due to the nonlinear relationship between T60 and Δc0

sample statistics, we propose to use machine learning algo-
rithms to blindly estimate the room acoustical parameters. In
our experiments, a support vector regressor (SVR) is used to
estimate T60; the reader is referred to [29] for a comprehensive
description of support vector regression. Further performance
improvements may be attained with alternate machine learning
paradigms, such as neural networks [30] or relevance vector
machines [31]; such investigation, however, is left for future
study. The input to the SVR is a 4-D vector consisting of us =
[σΔ,SΔ,KΔ,DΔ]. As will be shown in Section IV-D, a simple
adaptation procedure can be used to improve the estimation
performance in the presence of acoustic background noise.

B. Long-Term Temporal Dynamics

To capture the long-term temporal dynamics of the reverber-
ant speech signal, we propose to use an auditory spectrotempo-
ral representation of speech, which is commonly referred to as
modulation spectrum. The modulation spectrum characterizes
the frequency content (or rate of change) of the long-term
speech temporal envelopes. In our experiments, the spectrotem-
poral signal representation is obtained using the signal process-
ing steps depicted in Fig. 5.

First, the speech signal s(n) is filtered by a bank of critical-
band filters. In our simulations, a critical-band gammatone
filterbank, with 23 filters, is used to emulate the processing
performed by the cochlea [32]. Filter center frequencies range
from 125 Hz to nearly half the sampling rate (e.g., 3567 Hz for
8-kHz sampling rate). The filter bandwidths are characterized
by the equivalent rectangular bandwidth (ERB) [33]. The ERB
for filter j, j = 1, . . . , 23, is given by

ERBj =
fj

Qear
+ Bmin (11)

where fj represents the center frequency for the filter, and Qear

and Bmin are constants set to 9.265 and 24.7, respectively.
The plot in Fig. 6 illustrates the frequency response of the
23-channel gammatone filterbank used in our experiments.
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Fig. 5. Block diagram of the signal processing steps involved in the computa-
tion of the spectrotemporal signal representation.

Fig. 6. Filter responses for the 23-channel gammatone filterbank.

The output signal of the jth channel is given by

sj(n) = s(n) ∗ hj(n) (12)

where hj(n) is the IR of the jth critical-band filter. Temporal
dynamics information is obtained from the temporal envelope
of sj(n). In our experiments, the Hilbert transform H{·} is used
to obtain the temporal envelopes ej(n). The temporal envelope
(also called Hilbert envelope) is computed as the magnitude
of the complex analytic signal s̃j(n) = sj(n) + jH{sj(n)}.
Hence

ej(n) =
√

sj(n)2 + H{sj(n)}2. (13)

Fig. 7. Filter responses for the eight-channel modulation filterbank.

The temporal envelopes ej(n) are then multiplied by a 256-ms
Hamming window with 32-ms shifts; the windowed envelope
for frame m is represented as ej(m), where the time variable
n is dropped for convenience. Here, 256-ms frames are used to
obtain long-term temporal dynamics information and appropri-
ate resolution for low-frequency modulation frequencies (e.g.,
around 4 Hz).

The modulation spectrum for critical-band j is obtained by
taking the discrete Fourier transform F{·} of the temporal
envelope ej(m), i.e., Ej(m; f) = |F(ej(m))|, where f de-
notes the modulation frequency. Modulation frequency bins are
grouped into K-bands to emulate an auditory-inspired modula-
tion filterbank [34]. The kth modulation band energy for frame
m is denoted as Ej,k(m), k = 1, . . . ,K. In the experiments
described in Section IV, K = 8 is used as it resulted in superior
performance. For the experiments described in Section V, on
the other hand, optimal values for K are chosen on a per-signal
basis. Fig. 7 depicts the frequency response of the eight-channel
modulation filterbank used in our experiments. The filters are
second-order bandpass with quality factor Q = 2, as suggested
in [34].

The modulation energy Ej,k(m) is then averaged over all
active speech frames to obtain

Ēj,k =
1

Nact

Nact∑
i=1

Eact
j,k (i) (14)

where Nact denotes the number of active speech frames, and
Eact

j,k (i) is the modulation energy of such frames; the voice
activity detection (VAD) algorithms used in our experiments
are described in Section IV-E. The Ēj,k notation will be used
throughout the remainder of this paper to indicate the ac-
tive speech modulation energy of the jth critical-band signal
grouped by the kth modulation filter. A representative illustra-
tion of Ēj,k for a clean speech signal is depicted in Fig. 9(a).

Moreover, the notation �̄Ek will be used to denote the 23-D
energy vector for modulation channel k.

For clean (unreverberated) speech, it is known that the
Hilbert temporal envelopes contain dominant frequencies
ranging from 2 to 20 Hz [35], [36] with spectral peaks at
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approximately 4 Hz, which corresponds to the syllabic rate of
spoken speech [37]. With reverberant speech, the diffuse IR
reverberant tail is often modeled as an exponentially damped
Gaussian white noise process [5]. As such, it is expected
that reverberant signals attain more Gaussian white-noise-like
properties with increasing T60. Since the Hilbert envelope can
contain frequencies (which are also termed modulation frequen-
cies) up to the bandwidth of its originating signal [38], the re-
verberant signals are expected to contain significant modulation
frequency components beyond the 2- to 20-Hz range of syllabic
modulation frequencies. The plots in Fig. 8 assist in illustrating
the effects of T60 on the temporal envelopes. Subplot (a) depicts
ej(n) and the positive portion of sj(n) (s+

j (n)) for a 256-ms
frame of clean speech. Subplots (b) and (c), in turn, depict the
corresponding signals for reverberant speech with T60 = 0.4
and 1 s, respectively. The plots in the figure are for j = 14,
which corresponds to a filter center frequency of 1.2 kHz.

Fig. 9 depicts the active speech modulation energy Ēj,k for
the speech signals used to produce Fig. 8. In the plots, the
modulation energy values are normalized by the maximum
energy obtained over all modulation frequency bands. Fig. 9(a)
depicts the normalized modulation energy for a clean speech
signal. As observed, the most significant modulation frequency
components lie below 20 Hz. The plots in Fig. 9(b) and (c),
in turn, depict Ēj,k for the corresponding reverberant speech
signals with T60 = 0.4 and 1 s, respectively. An increased
modulation energy at higher modulation frequency bands is
observed in these two plots. Additionally, more pronounced
reverberation effects are observed for modulation frequencies
greater than 20 Hz (i.e., k = 5−8).

It can also be observed from Fig. 9 that an increase in T60

has negligible effect on �̄E1, which corresponds to the 4-Hz
modulation frequency attributed to the syllabic rate of speech.
This insight is used to develop a reverberation-to-speech modu-
lation energy ratio (RSMR) measure computed per modulation
frequency channel k and given by

RSMRk =

23∑
j=1

Ēj,k

23∑
j=1

Ēj,1

. (15)

To illustrate the nonlinear effects of T60 on RSMR, the plots in
Fig. 10 depict RSMRk versus T60 for k = 5−8. The data points
reflect the average RSMR for the simulated reverberant speech
signals described in Section II-C.

As expected, more pronounced effects are observed for
k = 8 with an increase in T60. In pilot experiments, we
have observed that estimators based only on RSMR8 at-
tain reliable performance for simulated data, but a slightly
lower performance is attained for reverberant speech gener-
ated from recorded room IRs. To design estimators that are
robust to unseen (real) conditions, an SVR is used to estimate
T60. The 4-D vector input to the SVR is given by ul =
[RSMR5, RSMR6, RSMR7, RSMR8].

Moreover, as aforementioned, reverberation tail effects can
be quantified from �̄Ek, k = 5−8. Speech information, on the

Fig. 8. Temporal envelope ej(n) and positive portion of the gammatone-
filtered signal s+

j (n) for (a) clean speech and reverberant speech with
(b) T60 = 0.4 s and (c) T60 = 1 s. The plots are for j = 14 corresponding
to f14 = 1.2 kHz.

other hand, can be obtained from �̄E1. This insight is used to
compute an overall RSMR (ORSMR) measure, which is shown
to be highly correlated with DRR. The measure ORSMR is
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Fig. 9. Ēj,k for (a) clean speech and reverberant speech with (b) T60 = 0.4 s
and (c) T60 = 1 s.

given by

ORSMR =

8∑
k=5

23∑
j=1

Ēj,k

23∑
j=1

Ēj,1

=
8∑

i=5

RSMRi. (16)

Fig. 10. Plots of RSMRk versus T60 for k = 5−8.

Fig. 11. Plot of DRR versus ORSMR; the latter is given by (16).

The plot in Fig. 11 illustrates a linear regression relationship
between ORSMR (expressed in decibels) and DRR. The data
points represent DRR values described in Table I and average
ORSMR values obtained from English reverberant speech sig-
nals generated with recorded room IRs. Hence, the following
DRR estimator (̂DRR) is proposed:

̂DRR = −5.6467−1.0644 × ORSMR (in decibels) (17)

where ORSMR and ̂DRR are expressed in decibels. In the
sequel, the proposed estimators are tested on simulated and
recorded reverberant speech.

IV. EXPERIMENTS

In this section, experimental setup, performance figures,
baseline estimator, and two experiments are described. The first
experiment tests the performance of the proposed estimators
in reverberant enclosures, and the second experiment tests
the performance of the proposed estimators in environments
corrupted by reverberation and acoustic background noise.
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A. Experimental Setup

Reverberant speech signals generated with the SIREAC tool
are used to train the SVRs. Throughout the remainder of
this section, the notations SVRs and SVRl will be used to
distinguish blind T60 estimators derived from short- and long-
term temporal dynamics, respectively. On our data, SVR with
radial basis kernels and parameters optimized via linear search
are shown to provide the best estimation performance. The
results to follow are all based on using radial basis SVRs. The
reader is referred to [29] for a comprehensive review on support
vector machines. Additionally, the SIREAC tool is used to
generate speech signals degraded by reverberation and acoustic
background noise. Reverberant speech is generated with T60

ranging from 0.2 to 1 s (with 0.1-s increments) and with babble
noise at five SNR levels (5–25 dB with 5-dB increments). As
shown in Section IV-D, a simple adaptation process can be used
to increase the performance of the proposed T60 estimators in
the presence of acoustic noise. The “adapted” SVR is termed
S̃VR throughout the remainder of this paper.

B. Performance Figures and Baseline Estimator

The correlation (ρ), the mean square error (ε), and the
median absolute error (γ) are used as estimator figures of merit.
The correlation between blindly estimated parameter values
(wi) and parameter measurements obtained from room IR (yi)
is computed via Pearson’s formula [39] as

ρ =

N∑
i=1

(wi − w̄)(yi − ȳ)√
N∑

i=1

(wi − w̄)2
N∑

i=1

(yi − ȳ)2
(18)

where w̄ is the average of wi, and ȳ is the average of yi. The
mean square error ε is given by

ε =
1
N

N∑
i=1

(wi − yi)2 (19)

and the median absolute error γ is given by

γ = mediani (|wi − yi|) . (20)

In the sequel, error measures are reported in milliseconds for
T60 estimators and in decibels for DRR estimators.

The performance of the proposed T60 estimators is compared
with a baseline estimator based on the kurtosis of twelfth-
order LP residuals (κLP) computed over 32-ms frames. In pilot
experiments, the LP residual-based method was found to be
more robust to background noise when compared with other
existing ML-based schemes (e.g., [5], [6]) and, as opposed to
pitch-based methods, was found to be insensitive to speaker
gender. The plot in Fig. 12 shows the nonlinear relationship
between κLP and T60. As can be seen, the LP residual kurtosis
approaches that of a Gaussian distribution with increasing T60.
A clean speech, which is represented by T60 = 0 s in the plot,
attains a high κLP; this is expected as the LP residual for clean
speech contains sparse peaks corresponding to glottal pulses. In

Fig. 12. Plot of κLP versus T60. The LP residual kurtosis for clean unrever-
berated speech is represented as T60 = 0 in the plot.

our experiments, simulated data are used to train the baseline
SVR, which is henceforth referred to as SVRκ. Moreover, to
the best of our knowledge, ours is the first blind estimator of
DRR; thus, comparisons with a baseline are not carried out
for ̂DRR.

C. Experiment 1—Reverberation Only

As aforementioned, reverberant signals simulated with the
SIREAC tool are used to train T60 estimators SVRs, SVRl, and
SVRκ. Bilingual reverberant data generated with real single-
and multichannel recordings of room IR are regarded as unseen
data and are used for testing. Table II reports the performance
figures for the proposed estimators as well as for the base-
line estimator. Columns labeled “%” indicate the percentage
increase in ρ or percentage decrease in ε and γ attained with the
proposed measures relative to the baseline. As observed, both
proposed estimators outperform the baseline method. SVRs

results in superior improvements relative to SVRl for the data
generated with the multichannel room IR. For data generated
from the single-channel room IR, both estimators attain similar
performance figures, with SVRl obtaining somewhat lower γ.

Moreover, as aforementioned, English reverberant speech
data are used to train the coefficients in (17). Hence, French
reverberant speech data are regarded as unseen and used to test
the performance of the proposed DRR estimator. Fig. 13 depicts
DRR versus the average ̂DRR for the unseen test set; ρ = 0.98,
ε = 1.11 (dB), and γ = 0.97 (dB) are attained. The results are
encouraging given that no knowledge of the room IR is used
for estimation. Additionally, both T60 and DRR estimators are
found to be insensitive to speaker gender.

D. Experiment 2—Reverberation and Background Noise

To test the performance of the proposed estimators in prac-
tical scenarios, we use speech corrupted by reverberation and
babble (crowd) noise. Table III reports the performance mea-
sures for SVRκ, SVRs, and SVRl for various noise levels.
As can be seen, both proposed estimators outperform the
baseline, with SVRl showing reduced sensitivity to the noise
level. This behavior is expected as babble noise has speechlike
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TABLE II
PERFORMANCE COMPARISON OF PROPOSED T60 ESTIMATORS FOR SPEECH CORRUPTED BY REVERBERATION

Fig. 13. Plot of DRR versus average ̂DRR for unseen French test data.

characteristics, thus mostly affecting �̄E1. Overall, SVRs attains
average improvements over the baseline of 38.2%, 35.4%, and
23.1% in ρ, ε, and γ, respectively, and SVRl attains average
improvements of 22.2%, 81%, and 68.2%.

Despite improved performance over the baseline, high ε and
γ errors compromise the usability of SVRs for practical appli-
cations. To reduce estimation errors, an “adaptation” process
is proposed where the estimated SNR is introduced as an
added feature to the support vector estimators. Here, the noise
analysis module of the ITU-T P.563 algorithm [40] is used
to estimate the SNR. Estimation is performed by calculating
the levels of speech and noise sections identified during VAD
[41]. In a controlled experiment, the estimated SNR is shown
to be highly correlated with the true SNR (ρ = 0.96). Table IV
reports improvements in ε and γ for the adapted T60 estimators;
as observed, adaptation substantially reduces the estimation
errors. Relative to the adapted baseline, S̃VRs attains average
improvements of 37.3% in ε and 20.7% in γ. S̃VRl obtains
average improvements of 50.5% and 40.9%, respectively. The
improvements in ρ over the nonadapted estimators are consid-
erably lower—on the order of 7%—for all three estimators and,
thus, are omitted from the table.

E. Discussion

As can be seen from (15) and (16), the proposed measures
are based on summing the per-band modulation energy over
23 acoustic frequency channels. To reduce the algorithmic
processing time, the critical-band gammatone filterbank can be
omitted, and the per-band modulation energy can be computed
over the entire 4-kHz signal bandwidth. On our data, such
simplified configuration is capable of reducing the algorithmic

processing time by a maximum 40%. It has been observed,
however, that the reduced-complexity configuration lowers the
measurement performance by as much as 20%, in particular for
noise-corrupted environments and for enclosures with low T60

(≤ 0.3 s). As a consequence, the reduced-complexity alterna-
tive should be considered only if limited resources are available.
Moreover, as will be described in Section V, the critical-band
gammatone filterbank is useful for the objective assessment of
perceived reverberation effects and, thus, has been kept in our
experiments.

Additionally, we have experimented with two VAD algo-
rithms. The first is available in the ITU-T G.729 speech codec
[42], and the second is available in the adaptive multirate
(AMR) wireless speech codec [43]. For the reverberant speech
files used in Experiment 1 (Section IV-C), both VAD algo-
rithms attained similar detection performance. On the other
hand, for the noise-corrupt speech files used in Experiment 2
(Section IV-D), the AMR VAD attained improved detection
performance, as expected. For the purpose of blind room
acoustic characterization, however, a similar T60 measurement
performance is attained with either VAD algorithm, thus signal-
ing the robustness of the proposed measures to VAD errors.

Overall, the use of temporal dynamics information for the
blind characterization of room acoustics has several advantages
over existing schemes. As estimators of T60, the proposed
measures are found to be more robust to background noise
and, unlike pitch-based methods, are found to be insensitive
to speaker gender. Moreover, the proposed measures, based on
long-term temporal dynamics, allow for the blind estimation
of DRR and, as will be shown in Section V, also the blind
estimation of subjective perception of coloration, reverberation
tail effects, and overall quality—which are functionalities not
available with existing algorithms.

V. TOWARDS OBJECTIVE ASSESSMENT OF PERCEIVED

REVERBERATION EFFECTS

Subjective listening tests may be used to characterize the
subjective perception of room reverberation effects, such as
coloration and temporal smearing, as well as to quantify the
perceived quality of reverberant speech. Subjective speech
quality assessment, however, is laborious and expensive. For
the purpose of real-time quality measurement, an automated
objective speech quality assessment is required.

In [21], a subjectively scored multichannel acoustic rever-
beration database (MARDY) is used to test the performance
of several objective quality measures, namely, segmental SNR,
Bark spectral distortion, cepstral distance, and reverberation de-
cay tail. Such measures are termed “intrusive” as the anechoic
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TABLE III
PERFORMANCE COMPARISON OF T60 ESTIMATORS FOR SPEECH CORRUPTED BY REVERBERATION AND ACOUSTIC NOISE

TABLE IV
PERFORMANCE COMPARISON OF ADAPTED T60 ESTIMATORS FOR SPEECH CORRUPTED BY REVERBERATION AND ACOUSTIC NOISE

source signal is used as a reference in the computation process.
A nonintrusive measurement, akin to “blind” measurement,
does not require a reference signal and constitutes a more
challenging approach. In [21], the intrusive measures are tested
as estimators of the subjective perception of coloration (COL),
reverberation tail effects (RTE), and overall quality (QUAL).
It is reported that most measures attain poor correlation with
subjective listening quality scores (ρ ≤ 0.40), and the rever-
beration decay tail measure attains the highest correlation (ρ =
0.62) with respect to RTE. Such poor performance signals the
need for more reliable objective quality measures.

Here, long-term temporal dynamics information is investi-
gated for the nonintrusive estimation of perceived reverberation
effects. As aforementioned, the modulation frequency content
for acoustic frequency band j is upper bounded by the band-
width of the critical-band filter j. Hence, speech signals with
different acoustic frequency content, which are subjected to
the same quality-degrading reverberation effects, may result in
different modulation spectra. In our experiments, an adaptive
measure is found to attain superior performance relative to (16).
To devise a measure that positively correlates with the sub-
jective quality, an adaptive speech-to-reverberation modulation
energy measure (SRMR) is proposed and given by

SRMR =

4∑
k=1

23∑
j=1

Ēj,k

K∗∑
k=5

23∑
j=1

Ēj,k

. (21)

The measure is adaptive as the upper summation bound K∗ in
the denominator is dependent on the test speech signal.

In our simulations, K∗ is chosen on a per-signal basis and
depends on the bandwidth of the lowest gammatone filter for

Fig. 14. Percentage of modulation energy, per acoustic frequency band, for a
speech signal from a male speaker.

which 90% of the total modulation energy is accounted for.
As an example, the plot in Fig. 14 depicts the percentage of
modulation energy present per acoustic frequency band for a
speech signal, produced by a male speaker, with a reverberation
time of 319 ms. As can be seen, 90% of the total energy is
obtained below 447 Hz. The bandwidth of the gammatone filter
centered at this frequency is approximately 73 Hz. According
to Fig. 7, negligible energy at modulation frequency band k = 8
is expected, and K∗ = 7 is chosen.

To test the performance of the proposed SRMR measure,
a subset of the aforementioned MARDY database is used.
The database was developed with room IRs collected with a
linear microphone array in an anechoic chamber with reflec-
tive panels and absorptive panels installed [21]. The speaker-
to-microphone distances varied between 1 and 4 m (1-m
increments); the T60 values range from 291 to 447 ms.
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Reverberant speech was generated with the collected room IRs
and anechoic speech from two speakers (one male and one fe-
male); additionally, three dereverberation algorithms were used.
In our experiments, speech signals are downsampled to 8-kHz
sample rate, and only reverberant speech and speech processed
by a conventional delay-and-sum beamformer are used.

The proposed SRMR measure is shown to attain ρ = 0.81,
0.73, and 0.70 with quality dimensions COL, RTE, and QUAL,
respectively. For comparison purposes, objective quality scores
obtained from the state-of-the-art nonintrusive ITU-T P.563
standard algorithm [40] attain ρ = 0.44, 0.46, and 0.35 with
COL, RTE, and QUAL, respectively. Moreover, the state-of-
the-art intrusive ITU-T P.862 standard algorithm [44] attains
ρ = 0.69, 0.81, and 0.73, respectively. As can be seen, the
results obtained with the proposed nonintrusive measure are
comparable with those attained with a state-of-art intrusive
standard algorithm but with the advantage that a reference
speech signal is not required.

VI. CONCLUSION

Temporal dynamics information has been used to design
blind estimators of room acoustic parameters, namely, reverber-
ation time and direct-to-reverberation energy ratio. Estimators,
based on short- and long-term temporal dynamics information,
are shown to outperform a baseline system on reverberant
speech data with and without the presence of acoustic back-
ground noise. The proposed measures are also shown to reliably
estimate the perceived room reverberation effects, such as col-
oration and reverberation tail effects, in addition to the overall
reverberant speech quality.
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