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Abstract

Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The
host response is an important determinant of disease progression. In order to delineate host molecular responses that
differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza
(H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here
we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We
show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and
inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly
regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated
responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and
biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal
pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an
asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both
prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.
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Introduction

Influenza viruses are highly infectious and can cause acute

respiratory illness in human hosts. Infected hosts present a variety

of clinical symptoms including fever, runny nose, sore throat,

myalgias, and malaise with potentially more serious complications

such as viral pneumonia [1]. Many hosts also withstand com-

parable level of viral insult with little or no overt symptoms,

exhibiting a higher degree of tolerance [2,3]. Clearly, these

asymptomatic infected hosts are able to control and eradicate viral

threats more effectively than those who become symptomatic.

Given the dynamic nature of viral infection, it is now recognized

that interactions between hosts and viruses play a crucial role in

determining the presence and absence of symptoms [4]. This leads

to an interesting question _ what are the principal factors

associated with such divergent disease outcome?

In recent years, seminal studies on the sensing of pathogens by

pattern-recognition receptors (PRRs) and their related signaling

cascades have advanced our understanding of innate immunity

[5–10]. Many elegant experimental analyses have further eluci-

dated the mechanistic activation and modulation of host response

to invading pathogens [11–16]. By design, however, host re-

sponses in these experimental conditions are often characterized

for individual cells via cell culture; or they represent a snapshot of

the immune response pertaining to a limited number of time

points. The components of the host immune system are diverse

and they interact in a complicated manner. Owing to both

technical and ethical difficulties, it has not been practical to

experimentally determine the full course of immune responses

leading to severe symptoms in otherwise healthy human hosts.

Thus the time sequence and orchestration of host response events

remain to be fully understood.
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The peripheral blood contains key elements of the immune

system and the circulating immune cells recruited by the host in

response to viral infection and virus-induced tissue damage

provides a global view of the host immune response. Thus, we

hypothesized that it can be used to monitor the temporal dynamics

of host-virus interactions. Analyzing whole-genome gene expres-

sion profiles from healthy human subjects challenged with

influenza H3N2/Wisconsin, we studied the full temporal spectrum

of virus-mediated disease dynamics. Going beyond the peak

symptom time analysis reported in Zaas et al. [17], this report

offers an hour-by-hour detailed view of host immune response as a

continuum, spanning the time from exposure to peak symptom

manifestation. Utilizing biological and mathematical models, we

highlight key immune response events representing potential

factors that determine the pathogenicity of influenza viral infec-

tion. We further present a statistical risk-stratification model for

estimating current disease state with potential forward risk assess-

ment capability. These results are concordant with findings

reported by Zaas et al. that was limited to peak symptom time

analysis.

Results

Outline of overall analysis strategy
A cohort of 17 healthy human volunteers (Table S1) received

intranasal inoculation of influenza H3N2/Wisconsin and 9 of

these subjects developed mild to severe symptoms based on

standardized symptom scoring [18]. Gene expression profiles were

measured on whole peripheral blood drawn from all subjects at an

interval of ,8 hours post inoculation (hpi) through 108 hpi. A

total of 267 gene expression profiles were obtained for all subjects

at 16 time points including baseline (224 hpi). As outlined in

Figure S16, our analysis of the data consists of two parallel

components: 1) clinically uninformed (unsupervised) factor analysis

using Bayesian Linear Unmixing (BLU) [19]; 2) clinically informed

(supervised) pathway analysis using EDGE [20] and self organizing

maps (SOM) [21] that leverages clinical and temporal covariates

for increased statistical power. The former establishes the existence

of an ab initio molecular signature that strongly correlates to

symptomatic clinical disease. The later further reveals important

host factors that delineate time courses of designated symptomatic

(Sx) and asymptomatic (Asx) subjects.

A genomic signature discriminates between early and
late stages of disease
Symptomatic infection exhibits a distinct time evolving mole-

cular signature. This signature is sufficiently strong that a clinically

uninformed factor analysis method is able to pick it up without

using any clinical phenotype information such as disease outcome,

subject or time labels. For this analysis we used the BLU factor

analysis method described in the Methods section. Figure 1A

shows a heatmap of the linear combination (BLU factor score) of

genes in this signature, where for visualization we have arranged

the samples in a matrix whose rows and columns are organized

according to clinical phenotype of the subject and sample time.

The image of the BLU factor score shown in Figure 1A bears

striking resemblance to the standardized clinical symptom obser-

vation matrix in Figure 1B.

The BLU factor score signature is sufficiently strong that

application of a threshold to the post-inoculation part of the

heatmap in Figure 1A perfectly divides the subjects into asympto-

matic subjects (Class 2) and symptomatic subjects before onset

(Class3) and after onset (Class 4) of acute infection. The selection of

the threshold was based on the pre-inoculation samples (Class 1) and

is described in the Methods section. Then, using logistic regression

[22] as an association measure between class label and gene

expression, we extracted sets of genes that are most associated with

differences between pairs of classes (Table S4). When the expression

profiles of these genes are plotted as heatmaps (Figure 1C) the

contrasts in gene expression are striking. For example, the type-I

interferon antiviral response related genes IFI44L, IFI27, GBP1,

RTP4, and OAS1 are among the most associated with differenti-

ating acute infection (class 4) from the other 3 classes. As another

example, note the contrast between complement component 3a

receptor (C3AR1) between Classes 2 and 3, exhibiting a marked

change after inoculation in symptomatic subjects. These genes are

well known for their critical function in host immunity [6,23,24].

This demonstrates both the strength of the genomic signature of

acute infection and the utility of BLU factor analysis for ab initio

discovery of this signature.

Identification of eight distinct virus-mediated gene
expression dynamics
When we add clinical and temporal information about the

samples to the analysis we can identify clusters of genes whose

temporal expression patterns differentiate immune response of

clinically asymptomatic from clinically symptomatic subjects.

Using EDGE with false discovery rate (FDR) significance level

(q-value),0.01, we selected 5,076 genes whose temporal expres-

sion profiles differed significantly between Asx and Sx phenotypes.

Heatmaps of these 5,076 EDGE genes are shown in Figure S18.

Next, these 5,076 gene expression profiles were grouped into

clusters based on using SOM applied jointly to the Sx and Asx

phenotypes. A total of eight clusters were identified and their

associated centroids are shown in Figure 2A and 2C as polar and

linear plots of expression over time. Heatmaps of gene expression

Author Summary

The transcriptional responses of human hosts towards
influenza viral pathogens are important for understanding
virus-mediated immunopathology. Despite great advances
gained through studies using model organisms, the
complete temporal host transcriptional responses in a
natural human system are poorly understood. In a human
challenge study using live influenza (H3N2/Wisconsin)
viruses, we conducted a clinically uninformed (unsuper-
vised) factor analysis on gene expression profiles and
established an ab initio molecular signature that strongly
correlates to symptomatic clinical disease. This is followed
by the identification of 42 biomarkers whose expression
patterns best differentiate early from late phases of
infection. In parallel, a clinically informed (supervised)
analysis revealed over-stimulation of multiple viral sensing
pathways in symptomatic hosts and linked their temporal
trajectory with development of diverse clinical signs and
symptoms. The resultant inflammatory cytokine profiles
were shown to contribute to the pathogenesis because
their significant increase preceded disease manifestation by
36 hours. In subclinical asymptomatic hosts, we discovered
strong transcriptional regulation of genes involved in
inflammasome activation, genes encoding virus interacting
proteins, and evidence of active anti-oxidant and cell-
mediated innate immune response. Taken together, our
findings offer insights into influenza virus-induced patho-
genesis and provide a valuable tool for disease monitoring
and management in natural environments.

Temporal Host Molecular Responses to Influenza A
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Figure 1. The BLU genetic signature correlates strongly with disease severity and yields early- and late-stage risk stratification
model. (A) The scores of the top ranked factor detected by the unsupervised BLU factor analysis method. Each microarray sample is represented by
one square cell of the image and ordered by phenotype and subject (row-wise) and increasing time (column-wise). Color palette is coded according

Temporal Host Molecular Responses to Influenza A
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are shown for the top 5 genes in each SOM cluster (Figure 2B).

These eight clusters decompose temporal host response into eight

distinct classes of differential expression dynamics, revealing

divergent trends in asymptomatic and symptomatic responses

over time. The contrasts in expression patterns between pheno-

types are all statistically significant (q-value,0.01) (Figure 2C).

Most clusters show significant monotonic increase or decrease in

expression over time in Asx or Sx phenotypes (Table S3). For Sx

subjects we define three stages of infection: early (0–12 hpi),

middle (12–45 hpi), and late (.45 hpi).

Collectively, clusters 2, 3, 4, and 6 contain more than 78% of all

significant genes and highlight the sharp contrasts in expression

dynamics between phenotypes. Although the discussion below

focuses on these four clusters, pathway enrichment analysis indi-

cates that genes from all eight clusters are directly related to the

activation and modulation of host immune and inflammatory

responses (Table 1). Clusters 3 and 4 contain genes that are asso-

ciated with equally strong Sx response but responded discordantly.

Cluster 3 is denoted as (Anc,S
up
mid ) where superscripts nc and up

stands for no change and upregulation, respectively. The subscript

mid (middle stage) indicates the onset time of the change. Cluster 3

is characterized by strong activation, in Sx phenotype, of genes

responsible for antiviral and inflammatory responses. Cluster 4,

(Anc,Sdw
mid ), contains genes that are continuously down-regulated in

the Sx phenotype in contrast to nearly no change in the Asx

phenotype. On the other hand, genes in clusters 2 and 6 are

associated with strong but discordant responses in both Asx and Sx

individuals, indicating an active physiological response in Asx

hosts. Cluster 2, (Adw
early,S

up
mid ), includes genes exhibiting sustained

decrease unique to the Asx phenotype from early time onward. In

Sx, the expression of cluster 2 genes increases to peak level at the

middle of challenge (45–69 hpi), followed by a rescinding trend.

Cluster 6, (A
up
early,S

dw
mid ), is populated by genes whose expression

steadily increases in the asymptomatic phenotype over all time. In

contrast, for the symptomatic subjects these genes exhibit a

transient but significant decrease beginning at 29 hpi and return to

baseline after 60 hpi.

Host transcription signatures are highly correlated with
disease dynamics
The eight clusters represent molecular signatures of unique and

contrasting temporal dynamics. We evaluated whether these

signatures are related to symptom development by correlating

the expression of these signatures against standardized clinical

symptom scores [17,18]. Both positive and negative correlations

were observed (Figure 3C). In particular, cluster 3 (Anc,S
up
mid )

showed the strongest positive correlation with symptom scores

(r=0.77) followed by cluster 2 (r=0.58). The temporal expression

pattern of cluster 3 genes closely resembled the disease progression

trajectory of each individual Sx subject. It is noteworthy that luster

3 is most significantly enriched with 70% of the BLU factor genes

(p,0.05; Fisher’s exact test). This is in strong concordance with the

BLU gene expression signature being highly correlated with

temporal disease progression (Figure 3A and 3B). Furthermore,

90% of ‘‘acute respiratory viral’’ signature genes are found in

cluster 3 (Table S5) [17]. In comparison, the lack of symptoms in

Asx subjects was consistent with their nearly-constant low-level

expression of this same cluster of genes (Figure 3B). Interestingly, the

two largest clusters, cluster 4 (Anc,Sdw
mid ) and cluster 6 (A

up
early,S

dw
mid ),

were the most negatively correlated with the development of

symptoms, (r=20.54) and (r=20.41) respectively (Figure 3C).

These demonstrate the close association between the host tran-

scriptional signatures and the overt clinical disease development.

Cluster 6 contains significant proportion of genes
encoding influenza virus interacting proteins
A recent study identified 66 and 87 human proteins that

physically interact with H3N2/Udorn and H1N1/A/PR/8/34

(PR8) viruses, respectively [25]. We examined the distribution of

genes corresponding to these proteins among the eight clusters

identified in our analysis. Several interesting findings result from

the comparison. A total of 27 (45%) and 40 (46%), respectively, of

genes overlap with the set of differentially expressed genes found in

our study (Figure 3D). The majority of these genes (67%) are

found in cluster 4 and 6. Except for clusters 2 and 3, the H3N2/

Udorn and H1N1/PR8 genes are distributed in a similar

proportion across the eight SOM clusters. Such similarity shows

functional conservation between the two viral strains. Secondly,

cluster 6 alone contains 44% of the 27 overlapping genes (H3N2/

Udorn). This is significantly disproportional to the size of cluster 6

(p-value,0.05; Fisher exact test). Several of the overlapping genes

such as PRKRA, MAPK9, and NRF1 have been shown to play

important roles in host immune or antioxidant function. Thirdly,

cluster 2 and 3 showed a significantly lower proportion of

overlapping genes (p-value,0.05; Fisher’s exact test). These results

suggest that genes in these two clusters are more likely to be

indirectly regulated by the viruses such as those involved in

inflammatory responses. Taken together, the results independently

validate the functional relevance of the molecular signatures

identified in our challenge study and suggest that many cluster 6

genes might be directly regulated by viruses.

The host antiviral program is activated 36 hours before
peak symptom time
An examination of the highest ranked genes in cluster 3

(Anc,S
up
mid ) reveals strong activation of host antiviral defense

program (Table 1). These genes include several PRR genes such

as Toll-like receptor 7 (TLR7), the RNA helicases (RIG-I), and

interferon induced with helicase C domain 1 (IFIH1) – genes

encodes proteins that are key to innate immune responses by

acting as viral RNA sensors [12,26–28]. These are among the

most statistically significant (q-value,0.0001; EDGE), exhibiting

dramatic increase of expression starting at 45 hpi in Sx hosts

(Figure 4B, Figure S8). Previous studies have demonstrated that

the downstream signaling triggered by these PRRs converge at

TANK-binding kinase 1 (TBK1), resulting in direct phosphory-

lation of interferon regulatory factor 7 (IRF7) [29]. Both TBK1

and IRF7 (Figure S1) have similar expression dynamics and are

found in cluster 3. In total, cluster 3 contains 11 genes from the

to the enrichment factor score determined by BLU. The higher the score, the warmer (red) color representation of the sample. The numbers (1 to 4)
are the disease state (class) designation determined by BLU (3 and 4) and inoculation time (1 and 2). The boundary between 3 and 4 occurs at
samples that are labeled (To) denoting the critical transition point (onset time) of Sx subject transcriptome profiles. The grey color (absolute 0
loading) corresponds to samples that were not assayed. (B) Clinical symptom chart of corresponding subjects (rows) and times (columns) that are
ordered in the same manner as A. (C) Heatmap of groups of genes that are most highly associated with differences between pairs of classes
according to a logistic regression model. For purposes of visualization, the heatmaps show gene expression profiles that are averaged over Asx (left)
and Sx (right) phenotypes and are smoothed over time using the same cubic spline fitting method as used for heatmaps shown in Figure 2B.
doi:10.1371/journal.pgen.1002234.g001

Temporal Host Molecular Responses to Influenza A
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Figure 2. Self-organizing map clusters show distinct transcriptional dynamics in Influenza H3N2/Wisconsin virus challenge study.
(A) Polar plots of the 8 SOM clusters and their associated gene expression patterns. Each segment plot represents the prototype of a cluster.
Individual time points are scaled and ordered in sequence and phenotype around the circle. Specifically, the temporal expression of Asx resides on
the top portion of the circle while Sx expression occupies the bottom half. Each phenotype’s expression values are placed in time sequence, with

Temporal Host Molecular Responses to Influenza A
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TLR signaling pathway, including MyD88, TRAF6, and STAT1.

As a group, they showed an aggregated effect that is significantly

associated with the symptomatic disease. This association reaches

statistical significance (p,0.05; Globaltest) at 53 hpi with an

increasing trend appearing as early as 36 hours before peak

symptom time. By 93 hpi, the association attains its maximum

level of significance with all 11 member genes significantly upre-

gulated (Figure 4A, Figure S1).

The activation of PRRs by viral ligands triggers downstream

signaling cascades that include both antiviral and inflammatory

responses. In line with this, cluster 3 contains many such

downstream effector genes that were fully activated with similar

dynamics. Several interferon-stimulated antiviral genes, such as

MX1, OAS1, RSAD2, PKR, exhibit Sx-specific significant tem-

poral activation beginning at 36–45 hpi (Figure 4C, Figure S3,

Figure S9). This increase persists many hours beyond symptom

peak time, suggesting non-rescinding efforts in viral resolution by

the host. It is noteworthy that none of the type-I interferon genes

themselves is differentially expressed between the Sx and Asx

phenotypes. Similarly, cluster 3 also contains many elements of the

inflammatory branch of TLR signaling, e.g., the interferon regu-

latory factor 5 (IRF5). As a master regulator of the inflammatory

arm of TLR7 signaling [9], IRF5 directly activates proinflamma-

tory cytokine tumor necrosis factor alpha (TNF), which has been

directly implicated in flu-like symptoms in many types of diseases

with excessive inflammation. These and other mediators of

inflammatory response such as IL15 and IL10 genes share similar

Asx-specific increasing pattern (Figure 4D, Figure S7). Of interest,

the sialic acid binding Ig-like lectin 1 (SIGLEC1 or Sialoadhesin)

was strongly activated in Sx hosts at mid-to-late stage of infection

(Figure 4D). As a macrophage-specific adhesion molecule,

SIGLEC1 has recently been related to pro-inflammatory function

of macrophages in HIV infections [30]. These results show that

the expression kinetics of cluster 3 genes constitutes a transcrip-

tional signature of host antiviral program. This signature fully

presents itself 36 hours before the peak symptom time and it is

indicative of disease severity. Moreover, its activation intensity

maintained high level through 108 hpi.

An active asymptomatic state is characterized by down-
regulated expression of the NLRP3 inflammasome,
CASP5, and the IL1B pathway
Members of cytoplasmic Nod/NACHT-LRR (NLR) family

have recently been linked to pathogen pattern recognition. Ori-

ginally identified in bacterial infections, this family of molecules is

important to the function of innate immunity [31–33]. A recent

study showed that nucleotide-binding oligomerization domain 2

(NOD2) recognizes ssRNA of both Influenza and respiratory

syncytial viruses [34]. Furthermore, activated NODs were linked

to the activation of receptor-interacting serine-threonine kinase

2 (RIPK2) and subsequently nuclear factor kappa-B (NFkB)

activation whereas activated NLPRs result in forming so-

called inflammasome complexes. This process involves caspase-

1 (CASP1) and caspase-5 (CASP5) and ultimately the release of

time increasing in the counterclock-wise direction, inside its own half circle. The degrees of angle are equally divided among segments within the
circular plot. The different lengths of radii of the segments represent the deviation of a time point from the average expression level of the complete
time course. (B) Heatmaps of EDGE-estimated temporal profiles of the top 5 genes from each SOM cluster (EDGE averages over Asx (left) and Sx
subjects (right) and smoothes over time using a fitted cubic spline). Genes in each cluster are ordered in decreasing order of EDGE significance level
(See Figure S18 for heatmaps of all significant genes found by EDGE). (C) Centroids of each SOM cluster show individual cluster average expression
profile and corresponding +two standard deviations. The statistical significance of phenotype-specific trend of expression monotonicity can be
found in Table S3. hpi: hours post inoculation.
doi:10.1371/journal.pgen.1002234.g002

Table 1. Canonical pathways and representative genes enriched in individual SOM clusters.

SOM Cluster # of Genes Pathway Representative Genes

1 450 immune cell trafficking; antigen presentation CD74, HLA-DMA, HLA-DPA1, HLA-DPB1, CCR5, CCL4, TBX21, IL10RA,
CD244, ICAM2

2 759 inflmmation; chemotaxis of macrophage,
neutrophils, and dendritic cells; antigen
presentation, JAK-STAT signaling

SOCS1, SOCS3, NOD2, NLRP3, CASP5, IL1B, STAT3, ADM,C5, CCL2/7/8/11,
CCR1, CCR4, CD14, CD59, CD163, CD209, CEACAM3, CXCL9, CXCL10,
CXCL11, FAS, HLA-B, ICAM1, IL17RB, IL18R1, IL18RAP, LILRA2, LTBR, MX2,
TGFB1, TLR1, TLR2, TLR4, TLR5, TLR8, TREM2, TRIM21, SERPINA1, CASP4,
IFITM2

3 739 inflammatory response; dendritic cell and
neutrophil activation; IFN-signaling

TLR7, MYD88, IRF7, IRF5, IRF9, TNF, JAK2, PSMB8, STAT1, DDX58, IFIH1,
IL18, IL10, MX1, RSAD2, OAS1, SIGLEC1, NOD1, CASP1, PKR, TRIM22,
LILRB1, ISG20, IFNAR1, IFI44, CD86, CD40, CD63, C1QA, IL10RB, TNFRSF14,
TNFSF10, TNFSF12, BTK, RNASE2; C3AR1, CYBB, FASLG, APOL3, ANXA2,
IFI35, IFIT1, IFIT3, IFITM1, IFITM3

4 1175 oxidative stress; ca+ induced T cell
apoptosis; iCOS signaling

CCL5, RPS6KA5, ACTG1, CUL3, PRKC GENES, C-JUN, PIK3 family, MAP2K4,
CD3E, CD247, CD40LG, CAMK4M, IL2RB, ITK, ITPR1, ITPR3, LAT, NFATC1,
NFATC3, ICOS, FYN

5 228 antigen presentation; innate immune
response

CD97, THBD, DDX17, IL1R2, ORM1, TREM1, AOC3, FOXO3, IL1R1, IL1RAP,
AQP9, CA4, CAMK1D

6 1326 protein synthesis; oxidative stress; RNA
trafficking; JAK-STAT signaling

SOCS2, SOCS5, SOD1, SOK1, RPL3, EIF3 FAMILY GENES, CCR7, RPS9,
RPS14, RPL22, C1QBP, DDX21, DDX50, ICOS

7 228 natural killer cell signaling; cell apoptosis SIGLEC7, ASC, SHC1, MAPK7, KIR2DL1, KIR2DS4, KIR3DL1, SERPINF1, RAC1,
CD4, CX3CR1, HLA-G, TNFRSF1B, ITGB2, CTSD

8 171 cell morphology; cell signaling EIF2AK1, LY96, BCL2L1, KRAS, PIM1, TGM2, RGS1, PKN2

doi:10.1371/journal.pgen.1002234.t001
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pro-inflammatory and pro-oxidant cytokine interleukin 1-beta

(IL1B) [35,36].

The NLR-related genes are among the most highly differentially

expressed genes discovered in our study. These genes appear

in two clusters, cluster 2 (Adw
early,S

up
mid ) and cluster 3 (Anc,S

up
mid ),

exhibiting markedly different temporal patterns (Figure 2). Resid-

ing in cluster 3, NOD1, RIPK2 and CASP1 showed no significant

change in Asx subjects (q-value.0.01; EDGE) but highly increased

among Sx individuals (q-value,0.0001; EDGE) (Figure 5A, Figure

S2). On the other hand, NOD2, NLPR3, and CASP5 are found in

cluster 2. Their expression decreased in Asx but increased

evidently in Sx (Figure 5B, Figure S2). In addition, the expression

level of IL1B (cluster 2) was evidently suppressed in the Asx

phenotype while activated in the Sx phenotype (Figure 5C). Given

the importance of NOD2 and NLPR3 to the processing of IL1B,

the Asx specific lower expression of IL1B may be contributed

directly to the similar downregulation patterns of NOD2 and

NLRP3. This hypothesis is supported by a new study in which

Nod2-deficient mice showed decreased levels of TNF and IL1B in

PBMC [34].

Of relevance to the phenotypically different expression dynamics

of NLR-mediated inflammasome activation, an opposite trend is

observed in two cluster 6 (A
up
early,S

dw
mid ) genes that are related to

cellular response to oxidative stress. The superoxide dismutase

(SOD1) and serine/threonine kinase 25 (STK25 or SOK1) are

markedly activated in Asx subjects, contrasting to the transient

suppression pattern (45–60 hpi) in Sx hosts (Figure 5D, Figure S10).

As SOD1 and STK25 both have been linked to anti-oxidant/stress

response and reduced concentration of ROS [37–39], their sustained

up-regulation in Asx hosts highlights a host response signature

unique to the Asx phenotype. This signature may relate to the

concomitant suppression of NLRP3 and IL1B in Asx individuals.

Collectively, our data reveal a phenotypically divergent expression of

NLR family genes and inflammasome signaling, which may be

related to the host anti-oxidant response.

Distinct temporal kinetics of JAK-STAT pathway and
SOCS family genes reveals a potential anti-inflammatory
and viral control mechanism in Asx hosts
A hallmark of host recognition of viral RNA is the activation of

Janus kinase-signal transducer and activator of transcription (JAK-

STAT) pathway, which is crucial for the antiviral function of

interferons. However, such activation is tightly controlled to limit

the possibility of over-stimulating inflammatory cytokine-receptor

signals. As an integral component of the JAK-STAT pathway, the

family of suppressor of cytokine signaling (SOCS) proteins have

recently been reported to negatively regulate the response of

Figure 3. Strong correlation of molecular signature with disease severity. (A) Clinical symptom scores of symptomatic subjects with
individuals represented by curves in different colors. (B) Cluster 3 gene expression of symptomatic subjects (top) and Asx subjects (bottom). (C) The
correlation coefficients (total variance explained) between standardized symptom scores and SOM clusters. (D) Cluster-wise distribution of genes
encoding proteins that are known to interact with H1N1/PR8 and H3N2/Udorn viruses. The proportion of genes encoding virus-human interaction
proteins in a cluster is compared to the relative size of that cluster for determining significance of distributional differences (Fisher’s exact test;
*,0.05, **,0.005).
doi:10.1371/journal.pgen.1002234.g003
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immune cells to cytokine signals [40]. Using pathway analysis, we

detected significantly distinct JAK-STAT signaling dynamics (p-

value,0.05; Globaltest), involving two different sets of SOCS

genes. The first set included SOCS1 and SOCS3 from cluster 2

(Adw
early,S

up
mid ) while the second group consists of SOCS2 and

SOCS5 from cluster 6 (A
up
early,S

dw
mid ). The expression of SOCS1 and

SOCS3 declines at early time points among Asx but strongly

increases among Sx (Figure 6A, Figure S11). Growing evidence

suggests that SOCS1 and SOCS3 are important inhibitory modu-

lators in limiting the inflammatory effect of interferon signaling

during viral infection [41,42]. Our data supports such a protective

role of SOCS1 and SOCS3 given their much higher levels of

expression during late infection phase (45 hpi onward).

Consistent with cluster 6 but contrasting with the cluster 2

expression pattern (Figure 2), SOCS2 and SOCS5 exhibits

expression dynamics that clearly differ from that of SOCS1 and

SOCS3. Starting from the early infection stage (&12 hpi), SOCS2

and SOCS5 show marked increasing trend in Asx and this trend

persists throughout the entire infection period (Figure 6B, Figure

S11). In contrast, their expression diminishes in Sx, especially

between 45 hpi and 69 hpi. A recent study showed that the anti-

inflammatory actions of aspirin-induced lipoxins depend upon the

function of SOCS2 [43]. Highly expressed in lymphoid organs,

SOCS5 was hypothesized to be important for the generation of

Th1 responses by repressing IL-4-induced signals that promote

Th2 differentiation [44]. In addition, we observed a significant

positive association of interleukin 7 (IL7) and STAT4 (Figure 6B).

Of these, STAT4 transduces IL12 and IFN-A cytokine signals in T

cells and monocytes [45] whereas IL7 is critical for proper T cell

response and expansion during viral infection [46–48]. Taken

together, the distinct expression patterns of SOCS family genes

and related JAK-STAT signaling suggest possible early involve-

ment of Th1-type adaptive immune response in Asx hosts with no

sign of excessive inflammation.

Ribosomal protein synthesis genes are upregulated in
Asx subjects as compared to Sx subjects
In addition to expression changes in magnitude, genes in

clusters 2 (Adw
early,S

up
mid ) and 6 (A

up
early,S

dw
mid ) also exhibit directional

contrast between two phenotypes. As the largest cluster with a total

of 1,326 member genes, cluster 6 contains genes with expression

profiles similar to those of SOCS2 and SOCS5. Among them, we

found an unusual saturation of genes related to ribosomal protein

synthesis. Out of 47 significant genes in this pathway, 35 (76%) of

them are located in cluster 6 (p-value,0.0001; x2test). Together,

these 35 genes correlated positively with Asx phenotype (p-

value,0.05; Globaltest) and their expression increased over the

course of the study (Figure 6C). Such association emerges at 45–

53 hpi and peaks at 60 hpi, at which point every one of the 35

genes becomes highly expressed. Individually, all genes showed

increased expression trend (Figure S4). This trend can be seen at

as early as 5 hpi and as late as 108 hpi. In contrast, Sx subjects

showed sustained down-regulation of the same set of genes, with

lowest expression level at 60 hpi. This decreasing trend continues

until ,84 hpi, which coincides with the peak symptom time

observed in symptomatic subjects (Figure 3). In addition, these 35

genes include 53% of 13 genes whose expression are characteristic

of peripheral blood lymphocytes (Figure 6D) [49], suggesting

prominent presence of lymphocytes in the blood of Asx subjects

during infection. This is further supported by the increased

number of whole blood leukocytes in Asx subjects (Figure S17).

Given the markedly contrasting trends observed between Asx and

Sx phenotypes, we conclude that Asx hosts responded differently

to the viral insult by inducing leukocyte response with enhanced

cellular protein biosynthesis.

Discussion

Pathogenic influenza A viral infection is a complex and dynamic

process that involves various components of the host immune

system at different stages of infection in response to virus-induced

physiological changes. Dissecting the temporal host response to

invading viruses and subsequent symptomatic disease process are

crucial for studying disease pathogenesis and related host factors.

Equally important is to understand the complexity of the host

response in individuals who are exposed but effectively contain the

infection and avoid symptomatic disease. This study presents key

transcriptional differences between Asx and Sx host responses, and

highlights an active state (on a gene transcription level) of viral

control in both Sx and Asx hosts.

Viral sensing, inflammation, and symptomatic disease
We showed that the viral sensing and inflammation in Sx hosts

clearly correlate to clinical symptom development over time. As

mounting evidence has established the role of various PRRs in

sensing viral components of influenza viruses, our results confirm

the concurrent activation of all known classes of PRRs and their

signaling cascades by influenza viruses in human challenge

models. In contrast, Asx hosts showed not only an absence of

such activation, but also negative regulation of related inflamma-

tory signals, especially in the case of NLRP3 and NOD2. This

corresponds to their lack of clinical apparent symptoms.

It has long been postulated that multiple PRRs represent a

functional redundancy of host defense and that there exists

signaling crosstalk among them, stimulating similar cytokine

profiles that are both pro-inflammatory and pro-oxidant [36].

Here we found simultaneous and continued activation of all

known PRRs in Sx hosts with particular emphasis on NLR family

genes. Of important relevance, two recent studies showed that

H1N1 1918 pandemic virus induced upregulation of inflamma-

some components in a macaque model while avian H5N1 virus

Vietnam/1203/04 caused increasing expression of NLR family

genes in mice [50,51]. In both cases, the early and sustained

upregulation of inflammasome component genes was directly

associated with lethal or detrimental host responses. Abnormal

expression of NOD2 has been implicated in inflammatory bowel

disease [52,53]. Conversely, it was shown in a study on chronic

arthritis that Nod2 gene-deficiency resulted in reduced joint

inflammation and increased protection against early cartilage

damage in mice [54]. Our results provide new evidence for a

much broader role played by NLR-family genes during influenza

viral infection that is likely to be shared by multiple viral strains

Figure 4. Similar expression dynamics of TLR7-pathway effector genes in cluster 3. (A) Significance of association (p-value) between Toll-
like receptor (TLR) pathway and overall symptom severity. Significant positive association between TLR-pathway genes and symptom severity is
shown at 53 hpi (top left). The temporal expression of representative significant genes on TLR-pathway that are related to pattern recognition (TLR7
and RIG-I) (B); antiviral: myxovirus resistant 1 (MX1) and 29,59-oligoadenylate synthetase 1 (OAS1) (C); and pro-inflammatory: TNF and SIGLEC-1 (D).
The expression intensities are plotted on a log base 2 scale and all genes are differentially expressed between Asx and Sx (q-valueƒ0.0001; EDGE).
doi:10.1371/journal.pgen.1002234.g004
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Figure 5. Divergent expression patterns of Nod/NACHT-LRR (NLRs) family of genes from cluster 2 and cluster 3 with contrasting
expression of anti-oxidant/stress genes SOD1 and STK25 (or SOK1). (A) SOM cluster 3 genes nucleotide-binding oligomerization domain
containing 1 (NOD1) and caspase 1 (CASP1) display strong temporal upregulation in symptomatic subjects. (B) SOM cluster 2 genes NOD2 and
NLRP3 exhibit downregulation in Asx hosts and upregulation in symptomatic subjects. (C) SOM cluster 2 gene interleukin 1 beta (IL1B) shows
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and influenced by specific cellular context. Their contrasting

expression dynamics in Sx versus Asx points to potential benefit in

controlling inflammation by regulating NLRP3-mediated inflam-

masome activation or other inflammatory responses [55].

Link between anti-oxidant response and Asx infection
The inflammasome and pro-inflammatory cytokines have been

linked to increased level of oxidative stress during viral infection

[56–58]. A recent report showed in mouse model that Nlrp3

inflammasome activation depends on reactive oxygen species

(ROS) and inhibition of ROS induction abolished IL1B

production during influenza infection [59]. It is intriguing that

our data shows a temporal Asx-specific upregulation versus Sx-

specific suppression of SOD1 and SOK1. This coincides with the

observed negative correlation between these genes and NLRP3.

Since SOD1 and SOK1 are capable of reducing ROS and of

suppressing oxidative stress [37], their increased expression in Asx

hosts may play a role in negatively regulating NLRP3 expression

and inflammasome signaling. In support of this hypothesis is a

study on the efficacy of antioxidant therapy found that pyran

polymer-conjugated SOD1 protected mice against potentially

lethal influenza virus infections [38]. Together, our results provide

evidence for a protective role of antioxidants SOD1 and SOK1.

Their increased mRNA expression may constitute an effective

antiviral mechanism by which aberrant immune responses are

avoided in Asx hosts.

The nature of Asx phenotype
It is estimated that Asx infections account for 30–50% of

seasonal flu cases [2], which is consistent with the attack rate in our

study. Since both Asx and Sx subjects were challenged under the

same protocol and displayed inoculation dosage-independent viral

shedding, this raises a critical question concerning the nature of

the observed Asx phenotype. We have strong evidence that the

observed Asx molecular signatures are a consequence of rapid

innate response rather than being due to failed inoculation. Firstly,

50% of Asx subjects had evident viral shedding. This is on par with

that of ‘‘subclinical’’ or ‘‘secondary’’ infections reported in the

literature. In addition, serum neutralizing antibody (nAb) titre

were nearly identical in Asx and Sx subjects on day 0 and day

7 with pre-inoculation nAb independent of disease severity.

Critically, the nAb titre increased over time in both Asx and Sx

individuals (Figure S12). This indicates a boosting effect of

immunity, and suggests that even if viral replication was inhibited,

enough viruses were detected by the Asx host immune system to

cause expansion of Ab producing cells. Secondly, there was no

apparent dosage effect – subjects who received relatively lower

amount of inoculation do not necessarily become more ill than

individuals who received higher dose of virus. We found no

statistically significant dependence between disease outcome and

inoculation dosage (Figure S13A). Furthermore, the amount of

viral shedding from the site of infection did not appear to differ

among groups who received varying inoculation doses (Figure

S13B). Thirdly, Asx subjects presented dramatic transcriptional

responses towards inoculation. When their expression profiles

were studied alone, more than 3,000 genes showed significant

post-infection expression changes. These changes do not correlate

with the amount of virus detected. Two subjects (#3 and #17)

who never yielded detectable virus (,1.25 TCID50/mL) in their

nasal wash appeared to have the most significant temporal

suppression of gene NLRP3 (Table S2; Figure S14; Figure S15).

Additionally, the responses of two seroconverted Asx subjects (#2

and #3), according to haemagglutination inhibition (HAI) assay,

are not different from those of other Asx individuals (Table S2;

Figure S14; Figure S15).

With all presented evidence supporting the activation of a

robust Asx immune response, our findings point to an important

host factor that may lead to such Asx subclinical infections.

Shutting down protein synthesis helps control infection by

inducing apoptosis of infected cells [60–62]. Consistent with this,

we observed marked downregulation of protein biosynthesis and

apoptosis related genes in Sx hosts at mid-to-late stages (Figures

S4, S5, S6). A similar lowering expression of ribosomal proteins

has been reported in measles-infected dendritic cells [63]. What is

surprising is the sustained upregulation of as many as 35 ribosomal

proteins in only Asx subjects (Figure 6C, Figure S4). The increased

ribosomal gene expression has been associated with peripheral

blood lymphocytes [49] and our data also showed significant

increase of white blood cells in Asx subjects (Figure S17). Lacking

strong PRRs activation, and hence an absence of adaptive

immune response, these Asx hosts appeared to be capable of

mounting a more potent cell-mediated innate immune response

than the symptomatic subjects.

Uncontrolled factors
As our study mainly focuses on gene expression in whole

peripheral blood, it is possible that the changes observed in gene

expression levels are at least partially due to changes in cell

population. However, this is unlikely for two reasons. First, the

maximum observed change in cell populations for both Asx and

Sx hosts was no more than 80% from baseline (Figure S17).

Second, the distribution of leukocyte subpopulations is not

correlated with phenotype at baseline or throughout the time

course of the study (Table S6). Thus, the dramatic changes in gene

expression described here cannot be attributed greatly to cell

population changes. Another uncontrolled factor is that certain

subjects may have come into the study with related preconditions.

While we cannot completely dismiss the possibility of previous

exposure to other respiratory viruses, all subjects were healthy and

tested negative for H3N2 influenza antibody at pre-inoculation

time. None of the volunteers had been vaccinated for any

influenza virus in the previous 3 years. Finally, while we did not

observe subject demographics such as age, gender, or ethnicity to

be influential of final disease outcome (Table S1b), we cannot rule

out the possibility of small sample bias. We have been careful to

provide statistical safeguards against model overfitting by reporting

significance measures (p-values and q-values with qualifying

confidence intervals) that are associated with our findings.

Concluding remarks
To our knowledge, this multi-institutional collaborative study

presents the first systematic analysis of the full temporal spectrum

of pathogen-elicited host responses during influenza viral infection.

This work represents by far the most extensive in vivo human

challenge study on influenza viruses. Combined with key clinical

parameters, our results offer an opportunity to look beyond

individual signaling events and into their collective effects on

symptomatic disease pathogenicity. The detailed timing of various

symptomatic-specific upregulation versus Asx-specific downregulation over time. (D) SOM cluster 6 genes superoxide dismutase (SOD1) shows
upregulation versus downregulation in Asx and Sx hosts, respectively. The expression values are plotted on a log base 2 scale and all genes are
significantly differentially expressed between Asx and Sx (q-valueƒ0.0001; EDGE).
doi:10.1371/journal.pgen.1002234.g005
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Figure 6. Asymptomatic hosts showed unique temporal expression kinetics of cluster 6 genes related to JAK-STAT signaling
transduction and protein biosynthesis. (A,B) Distinct expression pattern of gene members in JAK-STAT pathway and their association with
symptom severity. (A) Significant positive association between genes and disease severity is shown for 60 hpi (left); temporal gene expression pattern
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immune response events in vivo will advance our understanding of

their biological and clinical relevance to influenza virus-mediated

disease progression.

Materials and Methods

Human influenza viral challenges
We performed a healthy volunteer dose-ranging intranasal

challenge with influenza A A/Wisconsin/67/2005 (H3N2) at

Retroscreen Virology, LTD (Brentwood, UK). We enrolled 17

pre-screened volunteers aged 18 to 45 years of age who provided

informed consent. All volunteers were without recent influenza-

like illness in the preceding 45 days, tested influenza A H3N2

antibody negative by HAI at pre-inoculation screening and had

not been vaccinated with a seasonal influenza vaccine within the

preceding 3 years. On day of inoculation, a dose of 106 TCID50

Influenza A manufactured and processed under current good

manufacturing practices (cGMP) by Bayer Life Sciences (Vienna,

Austria) was inoculated intranasally per standard protocol at a

varying dose (1:10, 1:100, 1:1000, 1:10000) with four to five

subjects receiving each dose. Subjects were not released from

quarantine until after the 216th hour. Blood and nasal lavage

collection continued throughout the duration of the quarantine.

All subjects received oral oseltamivir (Roche Pharmaceuticals)

75 mg by mouth twice daily prophylaxis at day 6 following

inoculation. All patients were tested negative by rapid antigen

detection (BinaxNow Rapid Influenza Antigen; Inverness Medical

Innovations, Inc) at time of discharge. All exposures were ap-

proved by the relevant institutional review boards and conducted

according to the Declaration of Helsinki.

Case definitions
Symptoms were recorded twice daily using standardized

symptom scoring [2]. The modified Jackson Score requires

subjects to rank symptoms of upper respiratory infection (stuffy

nose, scratchy throat, headache, cough, etc) on a scale of 0–3 of

‘‘no symptoms’’, ‘‘just noticeable’’, ‘‘bothersome but can still do

activities’’ and ‘‘bothersome and cannot do daily activities’’. For all

cohorts, modified Jackson scores were tabulated to determine if

subjects became symptomatic from the respiratory viral challenge.

A modified Jackson score of .=6 over the first five days period

was the primary indicator of successful viral infection [18,64] and

subjects with this score were denoted as ‘‘Symptomatic’’ (Sx). Viral

titers from daily nasopharyngeal washes were used as corrobora-

tive evidence of successful infection using quantitative PCR (Table

S2) [18,64,65]. Subjects were classified as ‘‘Asymptomatic’’ if the

Jackson score was less than 6 over the first five days of observation

and viral shedding was not documented after the first 24 hours

subsequent to inoculation. Successful inoculation in Asx hosts was

further validated by analysis of multimodal data including serum

neutralizing antibody and haemagglutination inhibition titers. For

additional evidence see discussion in Text S1. Standardized

symptom scores were tabulated at the end of each study to

determine attack rate and time of maximal symptoms (time ‘‘T’’).

The clinical disease is mild (only a single fever was observed).

Immune activation assays (such as antibody response) over the full

time course of the challenge study were not available for our

analysis.

Biological sample collections
During the challenge study, subjects had samples taken 24 hours

prior to inoculation with virus (baseline), immediately prior to

inoculation (pre-challenge) and at set intervals following challenge:

peripheral blood for serum, peripheral blood for RNA PAXgeneTM,

nasal wash for viral culture/PCR, urine, and exhaled breath

condensate. Peripheral blood was taken at baseline, then at 8 hour

intervals for the initial 120 hours and then 24 hours for the

remaining 2 days of the study. For all challenge cohorts,

nasopharyngeal washes, urine and exhaled breath condensates

were taken at baseline and every 24 hours. Samples were aliquoted

and frozen at 280uC immediately.

RNA purification and microarray analysis
RNA was extracted at Expression Analysis (Durham, NC) from

whole blood using the PAXgeneTM 96 Blood RNA Kit

(PreAnalytiX, Valencia, CA) employing the manufacturer’s

recommended protocol. While whole blood RNA is initially

extracted, a secondary procedure (B-globin reduction) was then

employed to remove the contribution of red blood cell (RBC)

RNA to the total RNA. A set of four peptide nucleic acid (PNA)

oligomers whose sequences are complementary to the 39 portions

of the alpha and beta hemoglobin RNA transcripts were added to

reduce globin RNA transcription due to RBC. The inhibition of

globin cDNA synthesis dramatically reduces the relative amount of

anti-sense, biotin-labeled cRNA corresponding to the hemoglobin

transcripts. Hybridization and microarray data collection was

performed using the Human Genome U133A 2.0 Array

(Affymetrix, Santa Clara, CA) and expression profiles were pre-

processed using robust multi-array (RMA) method [66] (Text S1).

Both raw and normalized gene expression data are available at

GEO (GSE30550).

Statistical analysis
Temporal gene expression was analyzed using EDGE [20] on

RMA normalized intensities. A total of 5,076 genes were identified

as most significantly differentially expression genes (q-value,0.01)

between Asx and Sx. Co-clustering of the significant genes found

by EDGE was performed using Self-Organizing Map [21] (Text

S1). We estimated the correlation between disease symptom scores

and temporal expression values of clusters using a standard linear

mixed model [67,68]. Specifically, for each individual symptom

measured, we regressed the scores onto the expression value vector

of each SOM cluster, separately, with a random-effects term

accounting for within-subject temporal correlation. Biological

pathway enrichment analysis was performed using Ingenuity

Pathway Analysis (IPA). We implemented the non-parametric

Jonckheere-Terpstra (JT) method [69] to test monotonicity of the

expression patterns of individual gene clusters. Briefly, the JT test

was applied independently to each cluster and configured to test

the null hypothesis that there exists no monotonic trend in the

temporal change of gene expression. This test was performed

separately for each one of two phenotypes separately. The resulted

of suppressor of cytokine signaling 1 (SOCS1) shows upregulation in symptomatic hosts. (B) Significant negative association between genes and
disease severity is shown for 60 hpi (left); temporal gene expression pattern of SOCS2 shows upregulation in Asx hosts versus downregulation in Sx
hosts. (C) Significance of negative association (p-value) between ribosomal protein synthesis (RPS)-related genes and overall disease severity; Pie
chart (top left) shows a high degree of enrichment of significant RPS genes in SOM cluster 6, which is characterized by a trend of upregulation (in Asx
hosts) versus downregulation (in symptomatic hosts) over time. (D) Proportion overlap between cluster 6 ribosomal protein synthesis genes and
lymphocyte signature ribosomal proteins genes [49].
doi:10.1371/journal.pgen.1002234.g006
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p-values were adjusted for multiple comparisons with Benjamini-

Hochberg method [70].

To identify canonical gene pathways in each SOM cluster that

are highly associated with disease phenotypes, we applied

Globaltest [71] using the pathway definition in MsigDB database

(v2.5) [72] that include both pathway components and targets. We

assessed the correlation between clinically determined symptom

scores and the temporal gene expression of SOM clusters using

standard linear mixed model regression. The correlation (R value)

was estimated using a signed coefficient of determination [67,68].

The BLU factor analysis was used to detect disease signature

shown in Figure 1A. Unlike our implementation of EDGE, SOM

and Globaltest, BLU is an unsupervised method requiring no prior

class information. Like other unsupervised Bayesian factor analysis

methods, BLU finds a decomposition of the data matrix Y, here a
p by n matrix of abundances of the p mRNA transcripts for each

of n gene expression profiles, into a matrix product MA where

each column of M is a factor and each column of A is a set of

factor loadings corresponding to individual factors in M for a

given chip:

Y~MAzN

In essence, BLU estimates two matrix valued latent variables M
and A, whose product best approximates the most important

information contained in the observation Y while minimizing the

residual model fitting error (denoted as N in the formula above)

with latent variable order selection according to an hierarchical

Bayesian model. However, unlike other factor analysis, BLU

decomposes the data into relative proportions such that the

columns of M and the columns of A are non-negative and the

columns of A sum to one. Intuitively, a BLU-discovered factor can

be viewed as a gene expression profile, whose amplitudes represent

the relative contribution of each gene present in that factor, and

the factor loadings are the proportions of these factors that are

present in each chip. Such positivity constraints aid in interpre-

tation and are natural in gene microarray analysis as the

expression intensity measurements of genes are always non-

negative.

BLU was run on all genes on the expression array and extracted

a total of three major BLU factors. The factor scores of the

samples were subsequently divided into two groups: samples taken

before inoculation (pre-inoculation samples) and samples taken

after inoculation (post-inoculation samples). We then tested for

significant difference between the scores of the pre-inoculation and

post-inoculation samples (t-test with p-value less than 0.01). At this

significance level only one of the factors passed this test – the acute

respiratory factor shown in Figure 1A. Based on the score of this

acute respiratory factor, we quantitatively determine the four

regions by a threshold criterion using the pre-inoculation samples.

The threshold was set to be more than 4 times the maximum pre-

inoculation sample score (corresponding to a t-test p-value less than

0.05) (Text S1). In this manner, all samples were labeled with one

of four classes, namely classes 1–4 (Figure 1A).The class

designation of a sample indicates distinct risk levels of four

intrinsic disease states – uninfected (class 1), infected with low-risk

for symptom development (class 2), infected with high-risk for

symptom development (class 3), and infected with overt symptoms

(class 4).

The genes exhibiting largest contrast between each pair of

classes were extracted from all genes on the expression array using

a LogitBoost classifier [73] as a contrast function. Note that our

objective is not to obtain a classifier between regions but rather to

use LogitBoost to identify groups of genes most associated with

differences between a pair of classes. As it uses boosting algorithm

to perform variable selection, our implementation of LogitBoost

yields a set of genes in addition to a classifier function. To do this,

we generated 200 bootstrap samples from each class [74]. We

randomly selected 2/3 of each bootstrap sample to construct the

boosting ensemble and the other 1/3 of data was used to evaluate

the variability of the association between the largest contrast genes

and each class pair. We defined the largest contrast genes as the set

of genes that were selected by LogitBoost algorithm for each class

pair more than 100 (50%) of the 200 bootstrap samples. The

average expression of these genes are shown in Figure 1C.

Supporting Information

Figure S1 Temporal expression of Toll-like receptor 7 pathway

member genes. Accompanying Figure 2c, temporal expression are

shown for TLR7-pathways genes (n = 11) including STAT1, IRF7,

MyD88, TLR7, TNF, CD40, IRF5, CD86, TRAF6, TBK1, and

IFNAR1. The expression intensities are averaged over subjects in

Asx and Sx phenotypes and plotted on a log base 2 scale.

(PDF)

Figure S2 Temporal expression of NLR family genes. 1) cluster

7 gene PYD and CARD domain containing (PYCARD or ASC);

2) cluster 3 gene receptor-interacting serine-threonine kinase 2

(RIPK2); 3) cluster 2 gene caspase 5 (CASP5). The expression

intensities are plotted on a log base 2 scale.

(PDF)

Figure S3 Increased temporal expression of antiviral RNA-

dependent eIF-2 alpha protein kinase (EIF2AK2 or PKR) in

cluster 3. The expression intensities are plotted on a log base 2

scale.

(PDF)

Figure S4 Phenotypically contrasting expression dynamics

ribosomal protein synthesis-related genes (n = 35) in cluster 6.

The expression intensities are averaged over subjects in Asx and

Sx phenotypes and normalized to have zero mean and unit

standard deviation.

(PDF)

Figure S5 Symptomatic-specific temporal downregulation of

cluster 4 genes (n = 9) that regulate programmed cell death

(apoptosis). A) Significance (p-value) of association between

phenotypes and the whole group of genes at all time points and

at time 45 hpi (top left panel). B) Average temporal expression

intensities are computed on subjects in Asx and Sx phenotypes and

normalized to have zero mean and unit standard deviation.

(PDF)

Figure S6 Symptomatic-specific temporal downregulation of

cluster 4 genes (n = 13) that are related to mitogen-activated

protein (MAP) kinase cascades. A) Significance (p-value) of

association between phenotypes and the whole group of genes at

all time points and at time 45 hpi (top left panel). B) Average

temporal expression intensities were computed on subjects in Asx

and Sx and normalized to have zero mean and unit standard

deviation.

(PDF)

Figure S7 Increased temporal expression of inflammatory

response regulators (cluster 3), interleukin 15 and interleukin 10.

The expression intensities are plotted on a log base 2 scale.

(PDF)

Figure S8 Temporal gene expression of cluster 3 gene

cytoplasmic double-strand viral RNA sensor IFIH1 (interferon
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induced with helicase C domain 1). The expression intensities are

plotted on a log base 2 scale.

(PDF)

Figure S9 Temporal expression of interferon inducible anti-viral

genes from cluster 3. The expression intensities are plotted on a log

base 2 scale.

(PDF)

Figure S10 Temporal gene expression of cluster 6 gene serine/

threonin kinase 25 (STK25 or SOK1). The expression intensities

are plotted on a log base 2 scale.

(PDF)

Figure S11 Temporal expression of genes from the family of

suppressor of cytokine signaling (SOCS), including cluster 2 gene

SOCS3 and cluster 6 gene SOCS5. The expression intensities are

plotted on a log base 2 scale.

(PDF)

Figure S12 Neutralizing antibody (nAb) measure prior to

inoculation shows no significant phenotypic difference and is not

correlated with disease outcome. A, B) nAb of all subjects at Day 0

(A) and day 7 (B). No difference were observed between Asx and

Sx on both days (non-parametric rank test). C) No evident

correlation between nAb on Day 0 and maximum Jackson

standardized score. A linear regression fit of score on nAb readings

is shown in dark black line. Correlation test was performed using

Spearman test. D) nAb increased in both Asx and Sx subjects from

day 0 to day 28. w No sample available on day 28.

(PDF)

Figure S13 The infection outcome and viral load are indepen-

dent of the dosage of viral inoculation. (A) There is no significant

correlation between disease outcome and inoculation dosage

(p-value = 0.2299; Fisher’s exact test). Each bar represents a

randomized group of four to five subjects receiving a varying dose

of Influenza A virus inoculation on day 0 (Supplementary

Materials). Within each group, subjects are divided into clinically

determined symptomatic (red) and asymptomatic (blue) subgroups.

(B) Viral shedding pattern (Table S2A) does not differ across

inoculation dosage groups. All nine symptomatic and four

asymptomatic subjects showed shedding $1.25. Two asymptom-

atic shedders (#14 and #16) are in lowest dosage group and the

other two (#2 and #4) are in the highest dosage group. The

amount of viral shedding are determined from nasal wash

obtained daily (Supplementary Methods). Shedding values ,1.25

are set to 1.25 in the plot.

(PDF)

Figure S14 Asymptomatic subjects demonstrated non-passive

transcriptional response program. As an example, we show a

significant temporal expression decrease of the inflammasome

related gene NLRP3 in eight individual asymptomatic subjects.

Each subpanel depicts the temporal expression of one individual

asymptomatic subject. The y-axis is the log base 2 signal intensity

of NLRP3 and the x-axis is the time from 212 hpi to 108 hpi

(hour post inoculation). A polynomial fitting of expression values

(solid line) was fitted using LOESS model and significance of

temporal trend was assessed with EDGE. Subjects #3 and #17

never showed detectable amount of virus (,1.25) in their nasal

wash (Table S2).

(PDF)

Figure S15 Serological conversion versus clinical symptom

outcome and gene expression. The RPL3 gene expression

trajectories for Asx (blue) and Sx (red) are representative of

SOM cluster 6. Legend at right gives the character encoding of

each subject along with their disease outcome (‘blue’ Asx and ‘red’

Sx) and their serologic conversion outcome (‘+’ converted and ‘2’

not converted). There is no significant relation between disease

outcome and serological conversion (p-value of 0.27 according to

likelihood ratio test of dependency between these two outcomes).

The two seroconverted asymptomatic individuals (subject #2 and

#3) are called out by orange arrows in the gene expression

trajectory plot. The RPL3 expression profiles of these two subjects

are not significantly different from those of the other asymptomatic

hosts.

(PDF)

Figure S16 Schematic outline of analysis pipeline. Unsuper-

vised: no clinical phenotype information was used. Supervised:

clinical phenotype was incorporated in analysis.

(PDF)

Figure S17 Daily white blood cell counts show mild change (less

than 80%) from baseline in Asx and Sx phenotypes.

(PDF)

Figure S18 Expression heatmap of genes that are significantly

differentially expressed between Asx and Sx. Genes are identified

using EDGE (q-value,0.01) and clustered with SOM. The

average expression are computed and normalized for each gene

to have zero mean and unit standard deviation. Within a cluster,

genes are shown in decreasing order of significance level.

(PDF)

Table S1 (A) Subject Demographic and Clinical Characteristics

of Viral Challenge Cohort. (B) Detailed subject demographics.

(PDF)

Table S2 Viral shedding and serological testing data for all

human volunteers (n = 17) challenged with Influenza H3N2

viruses. A) Measure of viral titre isolated from nasal wash over a

total of 9 days. B) Serological data on pre-screening, 224 hpi, and

+28 days.

(PDF)

Table S3 Significance of monotonic trend of gene expression in

SOM clusters. For the genes in each SOM cluster (Figure 1), we

implemented the Jonkheere-Terpstra (JT) test (Text S1) of

significance on Asx and Sx subjects, respectively, to test for

monotonic increase or decrease of gene expression over time.

Columns 2 and 3 show p-values associated with the null hypothesis

that genes in the cluster have no monotonic trend. Red colored

entries indicate clusters having highly significant monotonic

expression profiles for a particular phenotype.

(PDF)

Table S4 Discriminatory genes selected by each logistic boosting

model. Genes are listed in decreasing order based on their

discriminatory power in each model.

(PDF)

Table S5 Comparison of genes identified by Zaas et al with

significant genes in the present manuscript.

(PDF)

Table S6 The proportions of primary white blood cell (WBC)

subtypes are similar between Asx and Sx. White blood cells counts

were obtained daily through standard laboratory workout. *

Phenotype specific average percentage of cell subpopulation were

computed using Tukey’s biweight robust M-estimator. The null

hypothesis H0: the frequency distribution of WBC subtypes is

independent of disease phenotype was performed using Fisher-

exact test. H0 is rejected at significance level of 0.01.

(PDF)
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Text S1 Supplementary methods and supplementary discus-

sions.

(DOC)
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