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We present detailed calculations of the temporal and spatial evolution of beam fanning in photorefractive crystals
that is initiated by scattering from noise. We show that fanning starts from beam coupling between the incident
radiation and part of the incident radiation scattered by noise at or near the input plane. We show that scattering
within the volume of the crystal has negligible effect on fanning, that absorption affects the time response but
not the spatial pattern of the fanning, and that the difference between calculations including only phase-matched
terms and those including non-phase-matched terms is negligible.

Beam fanning is the process of self-induced scat-
tering observed in almost all photorefractive crys-
tals. In its most common manifestation a single
beam entering one face of a crystal fans out in the
horizontal and/or vertical directions. It is now well
established that fanning is an example of stimulated
photorefractive scattering and is caused by energy-
exchange beam coupling between the incident beam
and radiation scattered by inhomogeneities in the
entrance face or within the bulk of the crystal.'-
The alternative view, that beam fanning is caused
by a whole-beam effect in which the trapped charge
follows the beam profile while the space-charge field
and refractive-index profiles follow a spatial integral
of the trapped charge,"11 now seems inapplicable
since it fails to predict fanning for an input wave that
is a single plane wave and gives fanning that is too
small relative to observations for collimated beams
with diameters of the order of a millimeter.

Previous calculations of beam fanning led to de-
tailed steady-state results and to limited results of
the temporal dependence.5 Here we present detailed
calculations of the temporal dependence of beam fan-
ning obtained by numerical solutions of the paraxial
wave equation for the optical beam and the equation
for the time dependence of the refractive-index per-
turbation produced by interference between the inci-
dent beam and radiation scattered by imperfections
in the crystal. Our calculations extend the results of
Ref. 5 for steady-state fanning to temporal evolution
and include the effects of absorption and Rayleigh
scattering distributed throughout the crystal.

We formulate the problem of beam propagation
in photorefractive materials by using the plane-
wave expansion technique that we have recently
used for stimulated photorefractive backscattering' 2

and for counterpropagating beams.'3 Similar ex-
pansions have been used previously for fanning by
Kukhtarev' 4 and by Obukhovskii and Stoyanov.2

Limitations inherent in this technique are discussed
by Crosignani et al.'5 To isolate the physics of
beam fanning alone, we neglect interactions between
orthogonal components (anisotropic scattering), as-

sume a monochromatic incident beam and stationary
scattering centers, and include only two spatial
dimensions.

The electric field E(x, z, t) of the optical beam prop-
agating in the z direction may be written in the form

E(x,z,t) = I [exp(ikz - iwot)A(x,z,t) + c.c.],

A(x, z, t) = Y. a(z, t)exp[-ikem(x + emz/2)],
m

(1)

(2)

where A(x, z, t) is the slowly varying part of the field,
x is the transverse coordinate, k = Wnb/C is the
optical wave number, nb is the background refractive
index in the crystal, e is the angular separation
of the plane waves, and am(z, t) are the expansion
coefficients. The amplitude A obeys the paraxial
wave equation

aA i d2A aA ikz 2k a2 + - = - 8n(x,z,t)A,az 2k aX2 2 nb
(3)

where the refractive-index perturbation 8n(x, z, t) is
determined by the interference of the individual plane
waves and a is the absorption coefficient. The equa-
tion for 6n may be written as

an + (1 + 1A12 )8n = i I ymnaman*
m,n

x exp[-ik(m - n)xe - ike2(m2 - n2)z/2], (4)

where Ymn are the coupling coefficients between the
individual plane waves as given in Ref. 5. Here we
assume that Ymn are real (no applied fields or internal
photovoltaic fields) since beam fanning is an energy-
transfer process caused by the nonlocal (or real) part
of the coupling coefficients. In Eqs. (1)-(4) the field
amplitudes, A and a,, are given in units of the square
root of the equivalent dark irradiance (the optical
irradiance necessary to produce a carrier density
equal to the dark carrier density) and time is in
units of the dielectric relaxation time evaluated at
the equivalent dark irradiance (see Ref. 12). The
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refractive-index perturbation 3n(x, z, t) may also be

expanded in the form

3 n(x, z, t) = I nm,n(Z t)
mn

x exp[ik(m - n)xe - ike2 (m2 - n2 )z/2]. (5)

In what follows, we neglect the transverse depen-

dence of the IA1
2 term on the left-hand side of Eq. (4).

This gives a good approximation when the mean

intensity is nearly independent of the transverse
direction (e.g., a single incident plane wave or an

unfocused beam of large cross section combined with

conditions in which the fanned intensity is small

compared with the incident intensity). It is also a

good approximation if the modulation index of the

interference pattern of all the plane waves is small

compared to unity, since the spatial dependence is

second order in the modulation index. One situation
in which the spatial dependence of the 1A12 term

cannot be neglected is that of a tightly focused beam,

which was considered in Ref. 5 for steady-state con-
ditions.

Substitution of Eqs. (1), (2), and (5) into Eqs. (3)

and (4), multiplication by the factor exp(ikpxe), and
integration over x yields

aa aa ik nmnap+n exp(-ikE 2 Az/2), (6)
az 2 nbmn

at + Ionmn = Ymnaman*, (7)
at

where Io is the spatial average of 1 + 1A12, A = 2(m -

n) (m - p), and ke 2 A/2 is the momentum mismatch
between a specific plane wave ap and the grating

non. Including only the phase-matched terms in the

summation in Eq. (6) yields the simpler equation
(recall that ymm = 0):

aap + aap = ik E npnan (8)
az 2 nbn

For steady-state conditions, substitution of Eq. (7)

into Eq. (8) yields Eq. (1) of Ref. 5. In the calcula-

tions that follow, we use the same parameters as
in Ref. 5, which are typical for BaTiO3 crystals and

provide a good match to the steady-state observa-

tions. Angles are measured with respect to the +c

axis, and 21 plane waves are used to describe the
transverse dependence (angular separation of 10).

In our calculations, we have used the numerical
methods of Ref. 12, which are explained in detail
therein. We have carried out calculations with as

many as 81 plane waves and shown that the differ-

ences between 21 and 81 plane-wave calculations are

small. Since our calculations show that non-phase-
matched terms are important only for propagation
distances of a few optical wavelengths, all our results
are based on a numerical solution of Eqs. (7) and (8).

We first obtain the time dependence of fanning for a

crystal in which absorption is negligible and in which
the fanning is seeded by inhomogeneities in the input

facet (i.e., no volume scattering). The initial condi-

tions assume a single plane wave of intensity Io = 1

(in units of the equivalent dark irradiance) incident

at 140 with respect to the +c axis and 20 noise plane
waves with an intensity of 10-4Io (i.e., an = 10-2,

and a uniform transverse phase). Figure 1 shows
the evolution of the fanning amplitude in the Fourier-
transform plane of the crystal output (which can be
regarded as the pattern in the far field of the crystal)
for a crystal thickness of L = 0.5 cm. Note that it
takes approximately 10 units of time to reach steady
state and that the pattern obtained in the steady
state is identical to that obtained in Ref. 5.

We added nonzero absorption to the calculation
of fanning and obtained a pattern that is virtually
identical to that shown in Fig. 1, but the time to reach
steady state is approximately 40% longer for an ab-
sorption coefficient a = 1 cm-'. This result can also
be shown analytically by setting ap' = ap exp(az/2)

and t' = t exp(-az).
We have also compared two alternative models for

the noise that starts the fanning process: surface
scattering at the input face and volume scattering
distributed throughout the crystal. The volume scat-
tering is modeled by adding a term up (in inverse
centimeters) to the right-hand side of Eq. (8). Inte-
gration of Eq. (8) along the direction of propagation
shows that this term contributes an amount upL

to ap. We have performed calculations for op =
7 x 10-3 cm-' and L = 0.5 cm for comparison with
the ap(0) = 10-2. As Fig. 2 shows, there is little

difference between starting the fanning from sur-
face scattering or volume scattering at these levels.
Direct comparison of the two levels is a little problem-
atical since the surface scattering has a single phase
front while the volume scattering has a phase that
varies throughout the medium and that is filtered
by the phase-matching condition. We estimate that
volume scattering of a level upL = 0.35 X 10-3 as

placed here in the phase-matched equations would
be approximately 2v/0.1 larger if it were placed in
the equations that contain the non-phase-matched
terms (assuming that phase matching occurs within
an interval of -0.1 rad). While adding volume scat-
tering of this level has little effect on the fanning,
doubling the surface scattering level [ap(O) = 2 x
10-2] completely changes the angular distribution as

2

U,

Z~~~~~~~~~~~

e~~~~~Dge

10~~~~~

Fig. 1. Temporal evolution of fanning at the output of a
photorefractive crystal characterized by parameters that
are typical of BaTiO3 , with no absorption and an inhomo-
geneous input surface. We plot amplitude versus angle
(degrees) with normalized time (as defined in the text).
The spike corresponds to the far field of the incident plane
wave.
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W therefore accurate and is a very good approximation
c rm -n - -for the temporal evolution.
0 i/ 'e'\ Finally, we compared numerical solutions to the

C S / U steady-state equations with and without non-phase-
._ i / BUS \ matched terms for L = 50, 100, 200 jtm. The results

in Fig. 3 show the solutions with non-phase-matched
N_ terms (dashed curves) and with phase-matched terms
0 ° // 'i \ (solid curves) for no absorption and noise only at

D 11 @ \ the input facet. Note that by 200 /,tm the two so-
U 11 '<\ \ lutions nearly overlay, with the exception of a small

- X : ripple. For typical propagation paths of a few mil-
limeters in photorefractive crystals, we conclude that

< o the non-phase-matched terms have little effect on20 1 5 1 0 5 0 the behavior of beam fanning. An important issue
Degrees is now the influence of the initial phase, which can

be random, on the fanning. It can be shown straight-Fig. 2. Steady-state fanning at the output of a photore- forwardly that, in the temporal steady state, thefractive crystal characterized by parameters that are typ- phase-matched (and therefore the total, including the
ical of BaTiO3 with zero absorption and seeded by varying
noise conditions. The dashed curve is the baseline case non-phase-matched part) behavior is dependent onwith the crystal seeded by surface scattering, the curve la 1, and hence the initial phase of each input (noise)next to it is with the crystal seeded by an inhomogeneous plane-wave component is maintained throughout the
input surface and by scattering distributed throughout process. Therefore the fanning amplitude compo-
the volume, and the solid curve is with the crystal seeded nents at the crystal output exhibit phases identical toby twice as much surface scattering. the phase of input noise at each individual direction.
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Fig. 3. Comparison of the plane-wave amplitudes after
propagation of 50 ,um (upper curves), 100 ,um (middle
curves), and 200 ,um (lower curves) with (dashed curves)
and without (solid curves) non-phase-matched terms in
the wave equation.

shown by the solid curve in Fig. 2. This feature
of the surface scattering has been used to initiate
fanning in a KNbO3 crystal.'6

Note that the inclusion of the volume-scattering
term by adding up to Eq. (8) seems to add energy
to the wave-mixing process. This is, of course, un-
physical since the scattered light originates from the
incident beam, and the additional energy comes from
an effective loss to all the plane-wave components.
Since all the spatial components are scattered in the
same manner, one may compensate for this with an
additional loss in the absorption coefficient a, which
slightly increases from its original value. We have
shown above that the loss does not affect the steady-
state spatial distribution of the fanning and only
lengthens its time response. The representation of
the volume scattering by up in the steady state is
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