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We study generalization in a simple framework of feedforward linear 
networks with n inputs and n outputs, trained from examples by gradi- 
ent descent on the usual quadratic error function. We derive analytical 
results on the behavior of the validation function corresponding to the 
LMS error function calculated on a set of validation patterns. We show 
that the behavior of the validation function depends critically on the 
initial conditions and on the characteristics of the noise. Under cer- 
tain simple assumptions, if the initial weights are sufficiently small, 
the validation function has a unique minimum corresponding to an 
optimal stopping time for training for which simple bounds can be 
calculated. There exists also situations where the validation function 
can have more complicated and somewhat unexpected behavior such 
as multiple local minima (at most n )  of variable depth and long but 
finite plateau effects. Additional results and possible extensions are 
briefly discussed. 

1 Introduction 

Generalization properties of neural networks trained from examples seem 
fundamental to connectionist theories but also poorly understood. In 
practice, the question to be answered is how should one allocate lim- 
ited resources and parameters, such as network size and architecture, 
initial conditions, training time, and available examples, to optimize gen- 
eralization performance? One conventional approach is to consider the 
problem of learning as a surface fitting problem. Accordingly, neural 
networks should be very constrained, with a minimal number of param- 
eters, to avoid the classical "overfitting" problem. In practice, however, 
not too much is known about overfitting, its nature, and its onset both 
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as a function of network parameters and training time. Furthermore, the 
conventional view has sometimes been challenged in light of simulation 
results and may need to be revised to some extent. It may be the case, 
for instance, that a suitable strategy consists rather in using networks 
with a few more parameters than the most constrained ones and train- 
ing these slightly larger networks for shorter times, based on a careful 
monitoring of the evolution of the validation error during training and 
its minimization. 

Partial interesting results on generalization have been obtained in re- 
cent years in terms of VC dimension and statistical mechanics (see, for 
instance, Baum and Haussler 1989; Tishby et a l .  1989; and Sompolin- 
sky et al. 1990). Most of these results, however, are static in the sense 
that they study generalization as a function of network architecture and 
number of examples. Here, we propose a different and complementary 
approach consisting in a detailed analysis of the temporal evolution of 
generalization in simple feedforward linear networks. This setting is not 
as restricted as it may seem because parametrically linear networks have 
been gaining popularity recently (e.g., radial basis functions or polyno- 
mial networks). Additional motivation for investigating these architec- 
tures can be found in Baldi and Hornik (1989, 1991). Even in this simple 
framework, the question is far from trivial. Thus we have restricted the 
problem even further: learning the identity map in a single layer feed- 
forward linear network. With suitable assumptions on the noise, this 
problem turns out to be insightful and to yield analytical results that 
are relevant to what one observes in more complicated situations. With 
hindsight, it is rather remarkable that the complex phenomena related 
to generalization that are observed in simulations of nonlinear networks 
are already present in the linear case. 

In Section 2, we define the framework and derive the basic equations 
first in the noiseless case and then in the case of noisy data. The basic 
point is to derive an expression for the validation function in terms of 
the statistical properties of the population and the training and valida- 
tion samples. Section 3 contains the main results, which consist of an 
analysis of the landscape of the validation error as a function of training 
time. Simple simulation results are also presented and several interesting 
phenomena are described. The results are discussed and some possible 
extensions are briefly mentioned in the conclusion. Mathematical proofs 
are deferred to the Appendix. 

2 Formal Setting 

2.1 Noiseless Data. We consider a simple feedforward network with 
n input units connected by a weight matrix W to n output linear units. 
The network is trained to learn the identity function (autoassociation) 
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from a set of centered training patterns X I ,  . . . , xT. The connection weights 
are adjusted by gradient descent on the usual LMS error function 

1 
E(W) = T c 11% - WXf ( I 2  (2.1) 

f 

The gradient of E with respect to the weights W is given by 

VE = ( W - I )C (2.2) 

where C = C X X  is the covariance matrix of the training set. Thus, the 
gradient descent learning rule can be expressed as 

wk+' = wk - r( Wk - I )C (2.3) 

where Wk is the weight matrix after the kth iteration of the algorithm 
and 7 is the constant learning rate (7 > 0). If el and A1(A1 2 . . .A, > 0) 
denote the eigenvectors and eigenvalues of C, then 

Wk+'eI = vX,e, + (I - 7 1 ~ ~ )  Wke, (2.4) 

A simple induction shows that 

Wk = W(I - 7C)k - [(I - 7C)k -I] (2.5) 

and therefore 

Wke, = [I - (1 - 7 ~ ~ , ) ~ ] e ,  + (I - 71A,)kW'e, (2.6) 

The behavior of equation 2.6 is clear: provided the learning rate is less 
than twice the inverse of the largest eigenvalue (rl < 2/A1), then Wk 
approaches the identity exponentially fast. This holds for any starting 
matrix Wo. The eigenvectors of C tend to become eigenvectors of Wk and 
the corresponding eigenvalues approach 1 at different rates depending 
on A, (larger eigenvalues are learned much faster). As a result, it is not 
very restrictive to assume, for ease of exposition, that the starting matrix 
Wo is diagonal in the el basis, i.e., W' = diag(a,(0)) (in addition, learning 
is often started with the zero matrix). In this case, equation 2.5 becomes 

(2.7) 

A simple calculation shows that the corresponding error can be written 
as 

W e ,  = [I - (1 - ~ A , ) ~ ( I  - at(o))le, = a,(k)e, 

E (  Wk) = 2 - 1)2 = f: A,(1 - 0 1 ( O ) ) ~ ( 1  - ~ J X , ) ~ ~  (2.8) 
,=I 1=1 

'Superscripts on the sequence Q are in parenthesis to avoid possible confusion with 
exponentiation. 
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2.2 Noisy Data. We now modify the setting to introduce noise ef- 
fects. To fix the ideas, the reader may think for instance that we are 
dealing with hand-written realizations of single digits numbers. In this 
case, there are 10 possible patterns but numerous possible noisy realiza- 
tions. In general, we assume that there is a population of patterns of 
the form xp + np, where xp denotes the signal and np  denotes the noise, 
characterized by the covariance matrices C X X ,  C N N ,  and C X N .  Here, as 
everywhere else, we assume that the signal and the noise are centered. 
A sample xt + nf(1 5 t 5 T )  from this population is used as a training set. 
The training sample is characterized by the covariance matrices C = CXX, 
C" and Cx, calculated over the sample. Similarly, a different sample 
x,, + n,, from the population is used as a validation set. The validation 
sample is characterized by the covariance matrices C' = Cl,,, C;,, and 
Cl,,. To make the calculations tractable, we shall make, when necessary, 
several assumptions. First, C = C = C', thus there is a common basis 
of eigenvectors el and corresponding eigenvalues A, for the signal in the 
population and in the training and validation sample. Then, with respect 
to this basis of eigenvectors, the noise covariance matrices are diagonal 
C" = diag(v,) and ChN = diag(v:). Finally, the signal and the noise are 
always uncorrelated C X N  = Cl,, = 0. Obviously, it also makes sense to 
assume that C N N  = diag(v,) and CX, = 0 although these assumptions 
are not needed in the main calculation. Thus we make the simplifying 
assumptions that both on the training and validation patterns the covari- 
ance matrix of the signal is identical to the covariance of the signal over 
the entire population, the components of the noise are uncorrelated, and 
the signal and the noise are uncorrelated. Yet we allow the estimates v, 
and I( of the variance of the components of the noise to be different in 
the training and validation sets. 

For a given W, the LMS error function over the training patterns is 
now 

(2.9) 
1 

E(W) = T C llxt - W(xt + nr)I12 
t 

By differentiating 

VE w(c + CNX f CXN 4- C N N )  - c - C X N  (2.101 

and since CXN = CNX = 0, the gradient is given by 

VE = ( W  - I)C + WC" 

Wk+le, = r\X,e, + (1 - I ~ X ,  - rp,)Wke, 

(2.11) 

To compute the image of any eigenvector el during training, we have 

(2.12) 

Thus by induction 

W k  = WMk - C(C + C")-'(Mk - I) (2.13) 
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where M = I - 7j(C + CNN), and 

[l - (1 - 7 j X ,  - ~ p , ) ~ ] e ,  + (1 - qX, - rp,)kl@el 
XI Wke, = __ 

A + y, 
(2.14) 

Again if we assume here, as in the rest of the paper, that the learning rate 
satisfies 7 < min[l/(A, + v,)], then the eigenvectors of C tend to become 
eigenvectors of Wk and Wk approaches exponentially fast the diagonal 
matrix diag[A,/(X, + v,)]? Assuming that Wo = diag(alO)) in the e, basis, 
we get 

(2.15) 

whereb, = l-c~,'*'(X~+v,)/X, anda, = (l-?]Al-qvl). Notice that 0 < a ,  < 1. 
Since the signal and the noise are uncorrelated, the error in general can 
be written in the form 

Using the fact that CNN = diag(u,) and Wk = diag(cry)), we have 
n 

E(Wk)  = CIAl - 2X,cu,'k) + X,(o~))* + V ~ ( C ~ , ' ~ ' ) ~ ]  
1=1 

and finally 

(2.17) 

E (  W k )  = k[Al(l - C Y , ' ~ ) ) ~  + v ; ( N ~ ( ~ ) ) ~ ]  (2.18) 

It is easy to see that E(Wk) is a monotonically decreasing function of k 
that approaches an asymptotic residual error value given by 

1=l 

(2.19) 

For any matrix W, we can define the validation error to be 

(2.20) 

Using the fact that C i N  = 0 and ChN = diag(v:), a derivation similar to 
equation 2.18 shows that the validation error €"( Wk) is given by 

1 
E" (W = v c IIxu - W(xu + nu)l12 

U 

(2.21) 

'As in equation 2.6, the convergence in fact holds for 7 < 2minlZ/(X, + q)]. The 
slightly more restrictive assumption has been chosen to ensure that the numbers a, are 
positive. 
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Clearly, as k ---f ccj, EV( W k )  approaches its horizontal asymptote, which is 
independent of CY,(" and given by 

(2.22) 

However, it is the behavior of EV before it reaches its asymptotic value, 
which is of most interest to us. This behavior, as we shall see, can be 
fairly complicated. 

3 Validation Analysis 

Obvi~usly,~ from equation 2.15, dtujk)/dk = -(X,biaf loga, ) / (X,  + vJ) .  Thus 
using equation 2.21 and collecting terms yieIds 

or, in more compact form, 

with 

and 

(3.1) 

(3.4) 

The behavior of EV depends on the relative size of u, and v: and the 
initial conditions trjo), which together determine the signs of b,, A,, and 
B,. The main result we can prove is as follows. 

Assume that learning is started with the zero matrix or with a matrix having 
sufficiently small weights satisfying, for every i, 

'Here and in what follows we take time derivatives with respect to k. Although k 
was originally introduced as an integer, we can easily consider that and E"( Wk) 
are continuous functions of k, defined by equations 2.15 and 2.21, and study them 
everywhere. 
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1.  lffor every i, u( 5 ui, then the validation function EV decreases mono- 
tonically to its asymptotic value and training should be continued as long as 
possible. 

2.  If for every i, u: > ui, then the validation function E" decreases monoton- 
ically to a unique minimum and then increases monotonically to its asymptotic 
value. The derivatives of all orders of E" have also a unique zero crossing 
and a unique extremum. For optimal generalization, EV should be monitored 
and training stopped as soon as E" begins to increase. A simple bound on the 
optimal training time kept is given by 

1 - A  1 -A, min __ log 2 5 k"pt 5 max ___ log __ 
I loga, B, I loga, B, (3.6) 

In the most general case of arbitrary initial conditions and noise, the valida- 
tion function E" can have several local minima of variable depth before converg- 
ing to its asymptotic value. The number of local minima is always at most n. 

The main result is a consequence of the following statements, which 
are proved in the Appendix. 

First case: For every i, u: 2 ui, i.e., the validation noise is bigger than 
the training noise. Then 

a. If for every i, a?) 2 Xi / (X i  + vi), then EV decreases monotonically to 

b. If for every i, Xi/(X; + u:) 5 @lo) I Xi/(X, + ui), then E" increases 

c. If for every i, 5 Xi/(X, +v:) and vi f v:, then EV decreases mono- 
tonically to a unique global minimum and then increases monoton- 
ically to its asymptotic value. The derivatives of all orders of E" 
have a unique zero crossing and a unique extremum. 

its asymptotic value. 

monotonically to its asymptotic value. 

Second case: For every i, v: 5 v,, i.e., the validation noise is smaller 

a. If for every i, a!') 2 X,/(Xi+v:) and vi f v:, then EV decreases mono- 
tonically to a unique global minimum and then increases monoton- 
ically to its asymptotic value. The derivatives of all orders of E" 
have a unique zero crossing and a unique extremum. 

b. If for every i, X,/(Xi + ui) I tilo) 5 Xi/(Xi  + v:), then EV increases 

c. If for every i, al(') 5 X;/(Xi + i/i), then EV decreases monotonically to 

than the training noise. Then 

monotonically to its asymptotic value. 

its asymptotic value. 

Several remarks can be made on the previous statements. First, notice 
that in both (b) cases, E" increases because the initial Wo is already too 
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good for the given noise levels. The monotone properties of the valida- 
tion function are not always strict in the sense that, for instance, at the 
common boundary of some of the cases EV can be flat. These degenerate 
cases can be easily checked directly. The statement of the main result 
assumes that the initial matrix be the zero matrix or a matrix with a di- 
agonal form in the basis of the eigenvectors e;. A random initial nonzero 
matrix will not satisfy these conditions. However, EV is continuous and 
even infinitely differentiable in all of its parameters. Therefore the results 
are true also for random sufficiently small matrices. If we use, for in- 
stance, an L2 norm for the matrices, then the norm of a starting matrix is 
the same in the original or in the orthonormal e, basis. Equation 3.5 yields 
a trivial upperbound of n1/2 for the norm of the initial diagonal matrix, 
which roughly corresponds to having random initial weights of order at 
most n-1/2 in the original basis. Thus, heuristically, the variance of the 
initial random weights should be a decreasing function of the size of the 
network. This condition is not satisfied in many of the usual simulations 
found in the literature where initial weights are generated randomly and 
independently using, for instance, a centered gaussian distribution with 
fixed standard deviation. In nonlinear networks, small initial weights are 
also important for not getting stuck in high local minima during training. 

When more arbitrary conditions are considered, in the initial weights 
or in the noise, multiple local minima can appear in the validation func- 
tion. As can be seen in one of the curves of the example given in Figure I, 
there exist even cases where the first minimum is not the deepest one, 
although these may be rare in some sense, which is not completely under- 
stood at this time. In addition, in this particular case, an indication that 
training should not be stopped at the first minimum comes from the fact 
that at that point the LMS curve is still decreasing significantly. Also in 
this figure, better validation results seem to be obtained with smaller ini- 
tial conditions. This can easily be understood, in this small dimensional 
example, from some of the arguments given in the Appendix. 

Another potentially interesting and relevant phenomena is illustrated 
in Figure 2. It is possible to have a situation where after a certain number 
of training cycles, both the LMS and the validation functions appear to 
be flat and to have converged to their asymptotic values. However, if 
training is continued, one observes that these plateaux can end and the 
validation function comes back to life starting to decrease again. In the 
example, the first minimum is still optimal. However, it is possible to 
construct examples of validation functions, in higher dimensions, where 
long plateaux are followed by a phase of significant improvements (see 
Chauvin 1991). 

Finally, we have made an implicit distinction between validation and 
generalization throughout most of the previous sections. If generaliza- 
tion performance is measured by the LMS error calculated over the entire 
population, it is clear that our main result can be applied to the gener- 
alization error by assuming that C" = diag(v,), and v; = V;  for every 
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0 

0 50 100 150 200 250 
Number of Cycles 

Figure 1: LMS error functions (lower curves) and corresponding validation error 
functions (upper curves). The parameters are n = 3, A, = 22, 0.7, 2.5, v, = 4, 
1, 3, 11: = 20, 20, 20, r r r )  = @) = 0. From top to bottom, the third initial 
weight corresponding to a?) takes the values 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5. The 
horizontal asymptote of the validation curves is at 23.34. Notice, in particular, 
the fourth validation curve ( n p )  = 0.9), which has two local minima, the second 
one being deeper than the first one. At the first minimum, the LMS function is 
still far from its horizontal asymptote. Also in this case, the validation improves 
as the initial conditions become closer to 0. 

i. In particular, in the second statement of the main result, if for every 
i fi; > vi, then the generalization curve has a unique minimum. Now, if 
a validation sample is used as a predictor of generalization performance 
and the vi’s are close to the P;’s, then by continuity the validation and 
the generalization curves are close to each other. Thus, in this case, the 
strategy of stopping in a neighborhood of the minimum of the validation 
function should also lead to near optimal generalization performance. 
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4 Conclusion 

In the framework constructed above, based on linear single layer feed- 
forward networks, it has been possible to analytically derive interesting 
results on generalization. In particular, under simple noise assumptions, 
we have given a complete description of the validation error EV as a 
function of training time. Although the framework is simplistic, we be- 
lieve it leads to many nontrivial and perhaps mathematically tractable 
questions related to generalization. This analysis is only a first step in 
this direction and many questions remain unanswered. More work is 
required to test the statistical significance of some of the observations 
(multiple local minima, plateau effects) and their relevance for practical 
simulations. For instance, it seems to us that in the case of general noise 
and arbitrary initial conditions, the upper bound on the number of local 
minima is rather weak in the sense that, at least on the average, there are 
many fewer. It seems also that in general the first local minima of E" is 
also the deepest. Thus, "pathological" cases may be somewhat rare. In 
the analysis conducted here, we have used uniform assumptions on the 
noise. In general, we can expect this not to be the case and properties 
of the noise cannot be fixed a priori. Therefore one needs to develop 
a theory of EV over different possible noise and/or sample realizations, 
that is to find the average curve EV (one could also consider averages 
with respect to initial weights). It would also be of interest to study 
whether some of the assumptions made on the noise in the training and 
validation sample can be relaxed and how noise effects can be related 
to the finite size of the samples. Finally, other possible directions of in- 
vestigation include the extension to multilayer networks and to general 
input/output associations. 

Appendix: Mathematical Proofs 

Let us study E" under uniform conditions. We shall deal only with the 
case v: 2 v, for every i (the case v: 5 v, is similar). 

a. If for every i, a!') 2 A,/(A, + v,), then b, I 0, A, I 0, and B, I 0. 
Therefore, d E V / d k  5 0 and EV decreases to its asymptotic value. 

b. If for every i, X,/(A, + u:) 5 oyl(O) 5 A,/(A, + v,), then 0 I b, 5 
(v: - v,) / (X,  + u:), A, 2 0, B, I 0, and A, + B ,  2 0. Since u? decays to 
0 faster than uf, dE"/dk  2 0 and E" increases its asymptotic value. 

c. The most interesting case is when, for every i, a!') 5 A,/(A,+v:), i.e., 
when b, 2 (v: - v,)/(X, + u:). Then A, 2 0, B, 5 0, and A, + B, 5 0 so 
that d E V / d k  is negative at the beginning and approaches zero from 
the positive side as k + 00. Strictly speaking, this is not satisfied 
if A, = 0. This can occur only if b, = 0 or A, = 0 (but then B, = 0 
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also) or if u, = v:. For simplicity, let us add the assumption that 
v, # u:. A function which first increases (respectively decreases) 
and then decreases (respectively increases) with a unique maximum 
(respectively minimum) is called unimodal. We need to show that 
EV is unimodal. For this, we shall use induction on n combined 
with an analysis of the unimodality properties of the derivatives of 
any order of E V .  In fact we will prove the stronger result that the 
derivatives of all orders of EV are unimodal and have a unique zero 
crossing. 

For p = 1.2.. . ., define 

dr’EV F”(k) = - 
dkP 

Then 

Fl’(k) = Ef,’(k) = CAYaZ + BYafk 
I I 

(4.1) 

(4.2) 

with A,’ = A,, Ei; = B,,  A! = A,(loga,)~p‘ and BY = BI(2loga,)~-’. Clearly, 
for any p 2 1, sign (A:)  = ( - l )k ’+’ ,  sign (BY) = ( - l ) P ,  and sign ( j lP)(0)  = 
sign (AY+Bf’) = (-l)!’. Therefore sign [ F P ( O ) ]  - ( - 1 ) Y  and, ask + m, FP(k) 
approaches zero as 1, Aflaf, thus with the sign of A; which is ( - l ) P + l .  

As a result, all the continuous functions FP must have at least one zero 
crossing. If FP is unimodal, then FP has a unique zero crossing. If FP+’ 
has a unique zero crossing, then FP is unimodal. Thus if for some po,  
FPa has a unique zero crossing, then all the functions FP (1 I p < pol are 
unimodal and have a unique zero crossing. Therefore, EV has a unique 
minimum if and only if there exists an index p such that Fp has a unique 
zero crossing. By using induction on n, we are going to see that for p 
large enough this is always the case. Before we start the induction, for 
any continuously differentiable function f defined over [0, m), let 

zerov) = inf{x : f(x) = 0) (4.3) 

and 

ext(j) = inf x : -(x) = 0 { :: } (4.4) 

Most of the time, zero and ext will be applied to functions that in fact 
have a unique zero or extremum. In particular, for any i and p ,  it is 
trivial to see that the functions f: are unimodal and with a unique zero 
crossing. A simple calculation gives 

1 -A, - 1 u; - u, 
zeroCf,”) = - log - - - log 

loga, 2P-’B1 loga, 2Pp’b,(X, + 1):)  
(4.5) 
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and 

Also notice that for any p 2 1 

min zeroKP) 5 zeroFP 5 max zero(fp) 
I I 

and 

minextCf?) I extFP 5 maxextNp) 
I t 

(4.7) 

(4.8) 

(equations 4.7 and 4.8 are in fact true for any zero crossing or extremum 
of FP). 

We can now begin the induction. For n = 1, EV has trivially a unique 
minimum and all its derivatives are unimodal with a unique zero cross- 
ing. Let us suppose that this is also true of any validation error function 
of n - 1 variables. Let A1 2 . . . 2 A, > 0 and consider the corresponding 
ordering induced on the variables a, = 1 - qX, - qv,, 1 > a,, 2 . . .a,,l 2 0. 
Let i, be a fixed index such that a,, 2 all 2 a,,, and write, for any p 2 1, 
FP(k) = GP(k) + f , r ( k )  with GP(k) = ~ , , , f ~ ( k ) .  fl: is unimodal with a 
unique zero crossing and so is GP by the induction hypothesis. Now it 
is easy to see that FP will have a unique zero crossing if 

(4.9) 

By applying equations 4.7 and 4.8 to GP, we see that Fp will have a unique 
zero crossing if 

(4.10) 

Substituting the values given by equations 4.5 and 4.6, we can see that 
for large p, equation 4.10 is equivalent to 

zero(GP) 5 zerou,") 5 ext(GP) 

%?,xzero(f,P) 5 zero($) I minextCfp) 
'#I, 

log 2 log 2 max-p- < - p -  log2 5 mip-p- 
loga, - logai,j ,#I, logai 

(4.11) 

and this is satisfied since a,, 2 . . . 2 a,". Therefore, using the induction 
hypothesis, we see that there exists an integer po such that, for any p > pol 
F p  has has a unique zero crossing. But, as we have seen, this implies that 
F p  has a unique zero crossing also for 1 I p 5 PO. Therefore EV is 
unimodal with a unique minimum and its derivatives of all orders are 
unimodal with a unique zero crossing. 

Notice that F ( k )  cannot be zero if all the functions f i ( k )  are simultane- 
ously negative or positive. Therefore, a simple bound on the position of 
the unique minimum kept is given by 

(4.12) m!n zero&) 5 zero(F) 5 max zero($) 
I 
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or 

1 - A  1 -A,  min ~ log 2 5 kept 5 max - log - 
1 loga, B, i loga, R, 

(4.13) 

[It is also possible, for instance, to study the effect of the initial a;') on the 
position or the value of the local minima. By differentiating the relation 
F ' ( k )  = 0 one gets immediately 

(4.14) 

(see Fig. 2)]. 
To find an upper bound on the number of local minima of E" in the 

general case of arbitrary noise and initial conditions, we first order the 
2n numbers a, and af into an increasing sequence c,, i = 1, , . . ,2n. This 
induces a corresponding ordering on the 2n numbers A, and B, yielding 
a second sequence C,, i = 1,. . . ,2n. Now the derivative of E" can be 
written in the form 

dEV 
~ = F'(k) = / C ( a ) a k d p ( a )  
dk (4.15) 

where p is the finite positive measure concentrated at the points a, and 
af. The kernel ak in the integral is totally positive. Thus (see, for instance, 
Karlin 1968, theorem 3.1, p. 233) the number of sign changes of F1(k) is 
bounded by the number of sign changes in the sequence C. Therefore 
the number of sign changes in F' is at most 2n - 1 and the number of 
zeros of F' is at most 2n - 1. So the number of local minima of E" is at 
most n.  
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