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Abstract— Sit-to-stand(STS) motion is an important daily
activity, and many post-stroke patients have difficulty per-
forming STS motion. Previous studies found that there are
four muscle synergies (synchronized muscle activations) in
the STS motion of healthy adults. However, for post-stroke
patients, it is unclear whether muscle synergies change and
which features primarily reflect motor impairment. Here,
we use a machine learning method to demonstrate that
temporal features in two muscle synergies that contribute to
hip rising and balance maintenance motion reflect the motor
impairment of post-stroke patients. Analyzing the muscle
synergies of age-matched healthy elderly people (n = 12)
and post-stroke patients (n = 33), we found that the same
four muscle synergies could account for the muscle activity
of post-stroke patients. Also, we were able to distinguish
post-stroke patients from healthy people on the basis of the
temporal features of these muscle synergies. Furthermore,
these temporal features were found to correlate with motor
impairment of post-stroke patients. We conclude that post-
stroke patients can still utilize the same number of muscle
synergies as healthy people, but the temporal structure of
muscle synergies changes as a result of motor impairment.
This could lead to a new rehabilitation strategy for post-
stroke patients that focuses on activation timing of muscle
synergies.
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I. INTRODUCTION

T
HIS study aimed to investigate the muscle synergy struc-

ture of post-stroke patients during sit-to-stand (STS)

motion and to determine the primary features in muscle

synergies that reflect the motor impairment of the patients.

Stroke is the second leading cause of death and a major leading

cause of disability [1]. The absolute number of post-stroke

patients has increased because of the aging of the world’s

population [2]. As one of the most common causes of long-

term disability, stroke causes an immense economic burden

and places strain on caregivers [3]. Stroke survivors often

present sensorimotor impairments that limit their motor ability

to perform activities such as walking [4], standing [5], and

STS motion [6]. To date, disability, impairment, handicap,

and quality of life in post-stroke patients have been evaluated

using clinical scales [7], of which one of the most adopted

to evaluate impairment is the Fugl-Meyer Assessment (FMA).

Some post-stroke patients may have the same evaluation score

but different problems associated with their movement. Thus,

it would be helpful to develop a quantitative evaluation method

with respect to the specific motion of post-stroke patients that

can reveal the patients’ deficits and provide advice regarding

their rehabilitation.

STS motion is a fundamental functional ability that is

greatly affected in post-stroke patients. The important factors

in STS motion, such as muscular activation, angular displace-

ment, and center of mass (CoM) movement, have been investi-

gated for healthy adults [8] and post-stroke patients [9]. These

factors explain how STS transfer is accomplished and provide

important information that may improve the STS performance

of post-stroke patients. Some post-stroke patients employ a

compensatory strategy, where they incline their CoM forward

more before raising hips than healthy adults [6]. This study

shows that post-stroke patients alter their STS movement by

changing their movement strategy to avoid falling. Ada et al.

reported that some post-stroke patients showed a lack of

coordination between hip and knee joints; they completed knee
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extension earlier while their hips were still extending [10].

Cheng et al. found that when post-stroke patients extend

their body, the muscle soleus is activated earlier, almost

simultaneously, with the quadriceps and hamstrings [11], [12].

It was found that post-stroke patients have delayed muscle

activation compared with healthy adults [13]. These studies

found that there is abnormal muscle co-activation during the

STS motion of post-stroke patients. However, prior studies

typically focused on the kinematic information or muscle acti-

vation characteristics in individual muscles. The neural aspects

involved in the STS control of post-stroke patients remain elu-

sive. Stroke causes lesions in the central nervous system that

may essentially affect the central controllers, leading to abnor-

mal coordination of muscles. Abnormal muscle coordination

would directly result in impaired biomechanical output. There-

fore, investigating the muscle coordination in the STS transfer

of post-stroke patients is fundamental to developing improved

rehabilitation strategies and may provide greater insight into

the mechanisms that can improve STS performance.

To clarify how human movement is achieved by mus-

cle coordination, muscle synergies were first proposed by

Bernstein, who suggested that human movements could be

generated from a limited number of modules (called muscle

synergies) [14]. Bernstein decomposed the complex control

of individual muscles into a modular organization. Previous

studies have shown that the muscle activation of human motor

behaviors, such as locomotion, postural control, and STS

transfer, can be explained as the linear-summation of a small

number of muscle synergies [15]–[18]. These studies have

also suggested that these muscle synergies may exist in the

spinal cord [19], [20]. Ivanenko et al. found that muscle

synergy structures were similar in healthy humans walking

with different speeds and gravitational loads; however, they

adaptively changed the timing activation of muscle synergies

to adapt to different conditions [15]. These findings suggest

that humans may utilize different combinations or different

ways to activate the limited number of muscle synergies

to accomplish adaptive movements. In patients with motor

impairment, the question is whether these muscle synergies

are invariant. Previous studies analyzed the muscle synergy

structure in motor-impaired patients, such as those with brain

damage, spinal cord lesions, and other motor disturbances.

Clark et al., studying post-stroke patients, Rodriguez et al.,

studying Parkinson’s disease, and Fox et al., studying patients

with spinal cord injuries, found that patients have fewer muscle

synergies compared with healthy subjects, suggesting that the

former have decreased neuromuscular complexity as a result

of the dysfunction of parts of the central nervous system [16],

[21], [22]. Clark et al. also suggested that the decreased muscle

synergy numbers in human locomotion lead to the more

compensatory walking strategies used by post-stroke patients.

Previous studies have also emphasized plasticity and solutions

geared at reorganizing muscle patterns in patients with motor

impairment [23]. Therefore, clarification of the muscle synergy

structure in post-stroke patients with motor impairment will

provide useful information for research on rehabilitation.

Although there are many studies regarding muscle synergies

in human locomotion in patients with motor impairment, it is

TABLE I

PARTICIPANT DEMOGRAPHICS

not clear whether muscle synergies were altered in the STS

movement of post-stroke patients. For human STS move-

ments, our research group employed both forward dynamic

simulation [18] and experimental measurement [24] to clarify

the muscle synergy structure in healthy young adults. In the

present study, we first recorded the muscle activation data

from post-stroke patients with different severities and from a

subgroup of age-matched healthy controls, and then extracted

the muscle synergies. After this, we compared the features

in muscle synergies that led to the differences between the

STS movements of healthy controls and post-stroke patients.

We investigated the features that caused different STS move-

ments in post-stroke patients with different severities. The

first aim of the present study was to determine if there

were differences between the muscle synergies of post-stroke

patients and healthy subjects. The second aim was to clarify

the important features in muscle synergies that reflected motor

impairment. This study hypothesized that muscle synergies

might be abnormal in the STS motion of post-stroke patients.

The results indicated some important features in muscle

synergies that primarily reflect the motor impairment in the

STS movement of post-stroke patients and could be used as

physiological markers for evaluation.

II. METHOD

A. Subjects

Thirty-three post-stroke patients and twelve healthy age-

matched controls participated in this study. Both the healthy

elderly participants and post-stroke patients were asked to

stand up from their own comfortable feet location. All of the

subjects could stand up from a chair by themselves without

any support. For post-stroke patients, the average value of the

lower extremity FMA score was 23.8 ± 6.9 (see Table 1 for

demographic information). In order to clarify muscle synergy

feature that reflect motor impairment, patients were divided

into two groups based on FMA scores (predefined FMA

threshold is 20): the “mildly impaired” group (n = 24): FMA

≥ 20, and the “severely impaired” group (n = 9): FMA < 20.

To avoid arbitrary determination of the FMA threshold and to

investigate the effect of FMA threshold on results, we utilized

different FMA thresholds to divide the post-stroke patients

into two groups. If the prepared two groups were clearly

divided by muscle synergy feature, it indicated that the muscle

synergy features reflected motor impairment. Each participant

of the control group and each post-stroke patient performed
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Fig. 1. Experimental setting.

10 trials. Some measured trials were deleted because of signal

noise. The chair height was adjusted to the height of the lower

leg. The participants finished the motion without moving their

feet in all the trials. The informed consent of all participants

was obtained, according to the protocol of the Institute Review

Board of The University of Tokyo and Morinomiya Hospital,

Japan.

B. Experimental Setting

Two force plates (TechGihan Corp.) were used to record

the reaction force data at 2,000 Hz. The participant sat on

one force plate and placed his or her feet on the other. The

collected reaction force data was filtered with a low-pass filter

at 20 Hz. The force data was used to define the seat-off

time (when the vertical force on the chair became less than

10 N). A wireless surface EMG device (Cometa Corp.) was

used in this experiment to obtain the muscle activities data

at 2,000 Hz. Fifteen muscles related to STS motion were

measured according to their contributions to the extension

and flexion of the ankle, knee, hip, and lumbar: the tibialis

anterior (TA), gastrocnemius lateralis (GASL), gastrocnemius

medialis (GASM), peroneus longus (PER), soleus (SOL), rec-

tus femoris (RF), vastus lateralis (VL), vastus medialis (VM),

biceps femoris long head (BF), semimembranosus (SEMI),

gluteus maximus (GMAX), gluteus medius (GMED), rectus

abdominis (RA), abdominal external oblique muscle (EO), and

erector spine (ES), as shown in Fig. 1 (a). For post-stroke

patients, the muscles on the affected side were measured.

For healthy controls, five of them were measured on the left

side and seven of them were measured on the right side to

match the side of the corresponding post-stroke patients. All

of the EMG signals were band-pass filtered (4th-order zero-

lag Butterworth digital filter, passband 40-400 Hz) to attenuate

DC offset and high-frequency noise [16], [25], [26]. Then, the

filtered signals were rectified and low-pass filtered (4th order,

cut-off frequency 4 Hz) [16]. Participants repeated sit-to-stand

motion ten times, and there were at least 2 to 3 s intervals

between each trial. EMG data was measured throughout the

experiment. The information from the force plate was used

to define each repetition. Each repetition was cut from the

whole recorded EMG signals 1 s before and 2 s after the seat-

off time. Afterward, the EMG signal from each muscle was

normalized based on its peak value in each repetition of each

participant [16]. The schematic experimental environment is

shown in Fig. 1 (b).

C. Muscle Synergy Model

Human STS motion is a result of multi-joint movements

achieved by muscle coordination. For the muscle synergy

model, muscle activation can be expressed as the linear sum-

mation of spatiotemporal patterns in a mathematical expres-

sion, as in Eq. (1):

M = WC, (1)

where matrices M, W, and C indicate muscle activation, spa-

tial pattern, and temporal pattern matrices, respectively. Matrix

M consists of muscle activation vectors mi (i = 1, 2, · · · , n)

to represent the activation of n different muscles.

Figure 2 shows the schematic design of the muscle synergy

model. Three muscle synergies are used to express n muscle

activations. They are composed of spatial and temporal pat-

terns. Spatial patterns w1,2,3 show the contribution of each

muscle to the synergy. Temporal patterns c1,2,3 show the

timing activation of the synergy. During motion, the spatial

patterns are constant, but the temporal patterns change over

time. Muscle activation is generated from the linear production

of spatial and temporal patterns of muscle synergies. Muscle

activation is shown in the gray areas; muscle synergies 1,

2, and 3 are described by solid, dashed, and circled green

lines, respectively. To calculate the elements of the matrices

W and C, the non-negative matrix factorization (NNMF) [27]

was used. The muscle synergies were extracted from each

repetition of each subject. The order of muscle synergies

extracted by the NNMF algorithm can differ among subjects
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Fig. 2. Muscle synergies model.

and repetitions. Therefore, in order to cluster the similar mus-

cle synergies extracted by NNMF algorithm, it was necessary

to analyze the spatial and temporal patterns of healthy controls

and sorted the results based on the peak time of each temporal

pattern. We also checked the sorted results manually. Then,

we computed the Pearson correlation coefficient of spatial and

temporal patterns in every two synergies between the averaged

healthy controls and each repetition of each post-stroke patient.

The results of Pearson correlation coefficient were ranked, and

the muscle synergies of post-stroke patients were clustered

with the highest related muscle synergies of healthy controls.

We also manually checked the sorted results of each repetition

and post-stroke patient.

To investigate the change in muscle synergy after stroke

onset, this study first examined the number of muscle synergies

that could represent the muscle activation of the measured

muscles. Therefore, the coefficient of determination R2 was

calculated for different numbers of muscle synergies [28], as in

Eq. (2).

R2 = 1 −

n∑

i=1

∑tmax

t=1(mi
0(t) − mi (t))2

∑tmax

t=1(mi
0(t) − mi

0)
2

, (2)

where mi
0(t) is the measured EMG of muscle i at time t

after pre-processing. mi
0 is the mean EMG value in muscle

i . mi (t) is the EMG of muscle i at time t regenerated from

the muscle synergy structure obtained by the NNMF algo-

rithm. Afterward, the number of muscle synergies that could

well represent muscle activation was determined [29]. The

muscle synergy analysis was performed in MATLAB (Matlab

R2017a). The algorithm used was ALS, and the number of

iterations of the NNMF function was set to a default number

of 100. The number of repetitions was 50. After analysis, the

solution with the highest R2 value was selected.

D. Similarity of Muscle Synergies

To determine if spatial patterns changed after stroke onset,

the similarity between the muscle synergies of each post-stroke

patient and healthy controls was quantified using the cosine

of principal angles. Similarity represents the dimensionality of

the subspace shared between the spaces spanned by the muscle

synergy sets [29], [30]. Similarity between the i -th and j -th

muscle synergies were calculated using Eq. (3).

si j =
wi · w j

|wi ||w j |
. (3)

In addition to assessing absolute value of cosine similarity

between the healthy control and stroke patients, inter-subject

and intra-subject similarities were used to evaluate the level

of statistic significance. The same procedure was used as

the previous study [31]. When the inter-subject similarity is

significantly lower than the intra-subject similarity, it indicates

that the post-stroke group may have larger variances than the

healthy control group and utilize different spatial patterns of

muscle synergies from control healthy group.

E. Muscle Synergy Features

After evaluating the similarities in the spatial patterns of

the post-stroke patients and healthy controls, differences in

the temporal patterns were also investigated. Previous studies

found that temporal patterns were merged in the locomotion

of some post-stroke patients [16]. It has been suggested that

post-stroke patients change their temporal patterns to achieve

motion [26]. From these previous studies, it was found that

post-stroke patients prolonged and delayed the activation time

of some muscle synergies. However, it has been unclear which

temporal features primarily affect the movement performance

of post-stroke patients. Thus, several features in the temporal

patterns were selected to describe the temporal features of

post-stroke patients. First, the start, end, and duration time of

temporal patterns were chosen because previous studies found

that some post-stroke patients delayed or extended synergy

activation, compared with other patients [26]. In addition, our

previous study revealed that humans change the duration of

muscle synergy to realize adaptive STS motion when their

sensory information is impaired [32]. Then, the peak time

was selected because our previous study found that the peak

time affects STS strategies in healthy adults [24]. Therefore,

we suggested the peak time might also affect the STS of

post-stroke patients. Finally, the overlap time between two

synergies may affect the STS performance. Clark et al. found

that temporal patterns were merged in the locomotion of post-

stroke patients [16]. These features are more interpretable

than spatiotemporal patterns in muscle synergies and may

be physiological markers that can be used to evaluate STS

performance. First, the k-th muscle synergy was determined

to be activated at time t , when its timing activation ck(t) was

above the mean activation ck . ck was obtained during each

trial from the following equation:

ck =

∑tmax
t0

ck(t)

tmax − t0
. (4)

After it was determined whether each synergy was activated,

each of the selected temporal features was obtained as follows:

1) Start time tst
k : the first activated time of the k-th muscle

synergy.

2) End time ted
k : the last activated time of the k-th muscle

synergy.
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Fig. 3. Features selected in temporal patterns.

3) Duration time tdur
k : the length between the start time tst

k

and end time ted
k . It is obtained as follows: ted

k = ted
k −tst

k .

4) Peak time t
pk
k : the time when the maximum muscle

activation is achieved. It is obtained as follows: t
pk
k =

argmax ck(t).

5) Overlap time between every two muscle synergies k and

l: t
ovlp
k,l = ted

k − tst
l .

Figure 3 shows the features selected in the temporal patterns.

F. Classification

The selected temporal features had high variances in post-

stroke patients because of different severity levels. For exam-

ple, some patients mostly delayed the peak time of spe-

cific synergies, while others had longer overlap time. It was

difficult to evaluate which features primarily affected motor

improvement in STS. To clarify which temporal features were

important, this study employed the random forest classifier.

The random forest classifier can multi-compare the impor-

tance of all the features and sort the features based on their

importance. Furthermore, the random forest classifier can also

provide a result that is more robust to data size than other

methods, such as K-means or hierarchical clustering. The

random forest classifier is one of the most popular boosting

methods and has performed well in many applications [33],

[34]. It employs training set bagging and random subspaces

based on decision trees [35]. A single decision tree computes

the Gini impurity to find the best features in muscle synergies

and split the data. This algorithm takes a top-down, greedy

approach that is known as recursive binary splitting. It may

produce good predictions on the training set, but also overfit

the data and have low performance on the testing set. However,

the random forest builds a large number of decision trees and

randomly uses a subset of the features p of m input features

(p < m). The randomness allows the training to avoid getting

stuck at a local minimum, improves accuracy, and controls

overfitting. Random Forest in Rstudio was used to train 500

trees [36].

The feature importance was computed using the mean

decrease in both the Gini index and accuracy. In decision trees,

every node is a condition regarding how to split values in a

single feature, so that similar values of dependent features end

up in the same class-set after splitting. This condition is based

on the Gini impurity [35]. The Gini impurity is computed as

follows:

IG(p) =

J∑

i=1

pi

J∑

k �=i

pk = 1 −

J∑

i=1

(pi)
2 (5)

where pi is the probability of an item with label i(i ∈

{1, 2, · · · , J }) being chosen and pk(k �= i) is the probability of

an item being wrongly categorized. Therefore, when training

a tree, it computes how much each feature contributes to

decrease the weighted impurity or prediction accuracy. In the

Random Forest method, feature importance is computed by

averaging the condition over trees.

The input datasets were designed as follows. The first aim

of this study was to find the main effective features that might

cause differences in the STS movements of healthy controls

and post-stroke patients; the data from both the control group

and post-stroke patients’ group were merged to build the

first dataset. The labels of this dataset were “healthy” and

“stroke”. The second aim was to find important features that

led to mildly or severely impaired motor performance in post-

stroke patients. The second dataset contained data from the

post-stroke patients’ group. These patients were divided into

two groups based on their lower extremity FMA threshold.

Furthermore, “mildly impaired” and “severely impaired” were

used as two labels in this dataset. “Downsampling” was used

in random forest to solve problems that might be caused by

an imbalanced number of samples. The input features were

the selected timing features in the temporal patterns. The

random forest classifier was trained based on these features

and two labels in each dataset. After training, the random

forest classifier outputted the importance of each feature in

each dataset. For one dataset, the data were split into two parts.

One part, 70%, was designated as the training data, which was

used to build the random forest classifier. The other part, 30%

of the data, was used to test the performance of the random

forest classifier.

III. RESULTS

A. Muscle Synergy Number

Figure 4 shows the coefficient of determination R2 of

different muscle synergies numbers. The black dashed line

(Fig. 4 (a)) and the black solid line (Fig. 4 (b)) respectively

represent healthy participants and the affected side of the post-

stroke patients. When the number of muscle synergies was

four, the coefficient of determination R2 was 88.7% and 88.4%

for the control group and post-stroke patients, respectively.

This indicated that four muscle synergies could represent most

of the muscle activation during the STS motion of the control

group. In addition, there were significant differences in R2

between one and two, two and three, and three and four

muscle synergies in both post-stroke and control groups (one-

factor repeated measure ANOVA and post-hoc test, p < 0.05).

There was no significant difference in R2 between four and

five muscle synergies in the two groups. To compare the

characteristics of muscle synergy structure between the control

group and the post-stroke patients, four muscle synergies were

used to represent the muscle activation in STS motion.



YANG et al.: TEMPORAL FEATURES OF MUSCLE SYNERGIES IN STS MOTION REFLECT THE MOTOR IMPAIRMENT 2123

Fig. 4. Muscle synergy number. (a) Averaged R2 value of muscle synergies in different numbers obtained from 120 trials of 12 healthy controls.

(b) Averaged R2 value of muscle synergies in different numbers obtained from 320 trials of 33 post-stroke patients.

Fig. 5. Example of spatial patterns of muscle synergies during STS in one healthy subject and one post-stroke patient for 15 muscles. (a) Averaged
spatial patterns of muscle synergies 1-4 (top to bottom) obtained from 10 trials of one healthy control. (b) Averaged spatial patterns of muscle
synergies 1-4 (top to bottom) obtained from 10 trials on the affected side of one post-stroke patient.

B. Muscle Synergy

1) Spatial Patterns: Figure 5 shows spatial patterns with

two individuals respectively selected from healthy controls

and post-stroke patients as examples. The bars show the

contributions of muscles in the control group and affected side

of post-stroke patients, respectively. The horizontal axis in the

graphs shows the name of the fifteen selected muscles, and the

vertical axis shows the relative activation level of each muscle

in the muscle synergy. Each muscle synergy has a particular

contribution to human movement, according to the anatomical

characteristics of muscles. The average spatial patterns of

muscle synergies 1-4 (top to bottom) are represented by

blue, pink, brown, and gray bars. Muscle synergy 1 was

demonstrated to primarily activate the muscles RA and EO,

which flex the lumbar to bend the body forward and produce

the necessary momentum for STS motion. Muscle synergy

2 mostly activated the muscle TA to dorsiflex the ankle joint

to move the body forward, and the muscles RF, VM, and VL

activated to extend the knee joint and raise the hip. Muscle

synergy 3 primarily activated the ES, BF, SEMI, GMAX and

GMED to move the whole body upward. Muscle synergy

4 mostly activated the muscles GASL, GASM, PER, and SOL

to flex the knee and to plantarflex the ankle to decelerate the

movement of the CoM and control the body posture.

The similarity between each muscle synergy, compared

between the control group and every post-stroke patient, was

computed using cosine similarity, as shown in Table 2. The

results showed that the similarity between the spatial patterns

of healthy controls and the affected side of post-stroke patients
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TABLE II

SIMILARITY OF SPATIAL PATTERNS

was greater than 0.83. However, the comparison between

inter-subjects and intra-subjects groups showed that there are

significant difference in the similarity of muscle synergies 2,

3, and 4. This shows that stroke patients had larger variability

in spatial pattern than did healthy subjects.

2) Temporal Patterns: For the temporal patterns of muscle

synergies, Fig 6 shows the results obtained from the same

subjects that were used to depict the results of Fig. 5. The

horizontal axis in the graphs shows the duration time of the

STS motion, normalized to 100%, and the vertical axis shows

the timing activation of the muscle synergy. The blue, pink,

brown, and gray solid lines represent the mean of the temporal

patterns in muscle synergies 1, 2, 3, and 4, respectively. The

dashed lines show the variance in the temporal patterns. For

all the participants, muscle synergy 1 was first activated to

bend the upper trunk; muscle synergy 2 was activated next,

to flex the knee and raise the hip. The two muscle synergies

contribute to move the body forward. After the hip was raised,

muscle synergy 3 started to become activated to extend the

knee and trunk to move the whole body upward. Finally,

muscle synergy 4 was activated to plantarflex the ankle and

knee and decelerate the horizontal movement of the CoM to

maintain balance. Compared with the healthy control group,

the start and peak times of the temporal patterns in post-

stroke patients were delayed. Duration was also longer in the

post-stroke patients group. The features that primarily affected

the STS performance were classified using the random forest

classifier, as described in the next subsection.

C. Performance of Random Forest and Feature
Importance

1) Accuracy of Random Forest Classifier: In this study, the

random forest classifiers were trained and tested with two

datasets. In total, 22 features were selected as the input

features for the classifier, including the start, end, duration,

and peak time of four muscle synergies and six overlap times

between every two synergies. The results obtained from the

two classifiers are listed in Table 3. One dataset consisted of

the data from both the control and post-stroke patients’ groups.

This dataset was used to find the main effective features that

may cause the difference in the STS movements between

healthy people and post-stroke patients. Both the training and

testing accuracies were 84.5%. Another dataset only contained

the data from the post-stroke patients’ group. These patients

were divided into two groups based on their FMA scores

(“mildly impaired” group: FMA ≥ 20; “severely impaired”

group: FMA < 20). The training and testing accuracy were

82.9% and 83.0%, respectively.

TABLE III

PERFORMANCE OF THE RANDOM FOREST CLASSIFIER

TABLE IV

PERFORMANCE OF THE RANDOM FOREST CLASSIFIER

To investigate the effect of FMA threshold on training and

testing accuracies, we calculated the classification accuracy

using different FMA thresholds (1st Qu.: 19, Median: 24,

Mean: 23.9, 3rd Qu.: 30, Min: 9, Max: 34). Table 4 shows

results of training and testing accuracies depending on dif-

ferent FMA thresholds. The test accuracy decreased when

the FMA threshold increased from 20, and it particularly

decreased when the FMA threshold was above 23. This might

indicate that the temporal features of muscle synergies are use-

ful for distinguishing patients when the FMA score is less than

23, but other important features might exist in the higher FMA

score group. The above results were calculated using the whole

dataset, but we also checked the result using “Downsampling”

in random forest and found the imbalanced dataset did not

affect the results. Therefore, we determined an FMA score of

20 as the threshold to divide the mild and severe groups.

2) Important Features of Muscle Synergies: The most impor-

tant features were chosen based on the mean decrease in the

Gini impurity in predictions. For the dataset that consisted

of the control and post-stroke groups, the main features that

affected the STS performance were the peak, duration, and

start time of muscle synergy 2; peak, start, and end time

of muscle synergy 3; and overlap between synergies 2 & 4,

as shown in Table 5. Almost all of these features showed

significant differences between the post-stroke and healthy

control groups, except for the peak time of synergy 3.

For the post-stroke dataset, the main features that affected

the STS performance were the peak and end time of muscle

synergy 4; start, end, peak, and duration time of muscle

synergy 2; and overlap time between muscle synergies

1 & 2, as shown in Table 6. All of these features showed

significant differences between the mild and severe patients

groups. These results also showed that the characteristics

in the temporal pattern of muscle synergy 2 affected the

STS performance. In addition, muscle synergy 4 played

an important role in distinguishing the movements of the
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Fig. 6. Example of temporal patterns of muscle synergies during STS in one healthy subject and one post-stroke patient. Solid lines show the
average timing activation, and dashed lines show the standard deviation. (a) Average temporal patterns of muscle synergies 1-4 (top to bottom)
obtained from 10 trials of one healthy control. (b) Average temporal patterns of muscle synergies 1-4 (top to bottom) obtained from 10 trials on the
affected side of one post-stroke patient.

TABLE V

IMPORTANCE OF FEATURES: POST-STROKE AND HEALTHY CONTROL GROUPS

TABLE VI

IMPORTANCE OF FEATURES: MILD AND SEVERE GROUPS

post-stroke patients because of the postural control function.

For the important feature, the results showed that the features

of muscle synergy 2 always had higher ranking than other

features when the FMA threshold to divide patients into two

groups changed from 19 to 30.

IV. DISCUSSION

A. Spatial Features of Muscle Synergy

In this study, we found that post-stroke patients who can

perform STS transfer independently can control the same

number of muscle synergies as the healthy controls. However,

in other related work on muscle synergy, it was found that

some post-stroke patients had decreased muscle synergies in

locomotion [16]. This suggested that post-stroke patients who

have less independently timed muscle synergies walked more

slowly and had more asymmetrical step lengths. We suggest

that this occurred because some post-stroke patients had asym-

metric movements on different sides of their body when they

walked. Although the number of muscle synergies decrease,

and post-stroke patients cannot accomplish locomotion with
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normal joint trajectories, they still can walk using compen-

satory strategies. For example, some post-stroke patients lift

their hips and move the affected leg forward. However, the

STS motion of post-stroke patients is relatively symmetric,

where the non-affected side can lead the movement and the

affected side follows. The joints on both sides have similar

moving trajectories. These movements required similar control

of muscle synergies on both the affected and non-affected

sides; thus, the post-stroke patients retain the ability to control

four muscle synergies. In addition, this study only measured

patients who could at least stand up by themselves. Other

patients with more severe symptoms, who have asymmetric

movements in their STS motion, may have decreased muscle

synergy number.

B. Temporal Features of Muscle Synergy

The results showed that the random forest classifier per-

formed well at classifying the control and post-stroke groups,

as well as the mild and severe groups. The two random forest

classifiers investigated several main features that affect the

motor improvement in STS. By comparing the post-stroke

patients and healthy controls, it was found that the temporal

features related to muscle synergies 2 and 3, such as the

peak time, start time, and duration time, changed after post-

stroke onset. The peak time is significantly delayed in muscle

synergy 2, and the activation time is significantly longer in

both muscle synergies 2 and 3 in the stroke group. The two

muscle synergies contribute to raising the hip and extending

the body during STS transfer. Eriksrud et al. found that knee

extension is a strong predictor of independence during STS

transfer [37], and Lomaglio et al. also showed that both

knee extension and ankle dorsiflexion are related to STS

performance [38]. In our previous study, it was found that post-

stroke patients delayed the peak time of synergy 2 and required

larger hip and lumbar flexion to move forward compared with

healthy controls [39].

The results of the random forest classifier trained only

based on post-stroke patients’ data also showed that the

temporal features related to muscle synergy 4 play important

roles in STS transfer. The important features, the peak and

end time of muscle synergy 4, were significantly delayed in

the “severely impaired” group. Muscle synergy 4 primarily

activated GASM, GASL, PER, and SOL and contributed

to controlling the posture and maintaining stability. The

abnormal activation of muscle synergy 4 showed that post-

stroke patients belonging to the “severely impaired” group

had difficulty maintaining balance during STS transfer. These

post-stroke patients may not know the right time to control

their posture. This result suggests that training the activation

of synergy 4 may improve the STS performance of patients

with severe post-stroke impairments. Previous studies also

found similar results. Cheng et al. showed that post-stroke

patients activated muscle SOL earlier, at almost the same

time as they activated the hamstrings [11].

In addition to synergy 4, muscle synergy 2 is a key

factor to distinguish motor severity. Delayed activation of

muscle synergy 2 leads to delayed acceleration for moving

forward. Similar results were also found in our previous

study [40]. Kogami et al. showed that the peak time of synergy

2 was earlier after a period of rehabilitation, and post-stroke

patients who underwent rehabilitation also had better STS

performance. Our study found that rehabilitation changed the

peak of synergy 2, causing it to occur earlier during STS

transfer. These phenomena can be explained by our analysis.

The delay in peak time of muscle synergy 2 would delay

the time when the individual raised his or her hip, resulting

in movement whereby humans move forward before raising

their hips. In other words, post-stroke patients tend to move

their body closer to the base of support by delaying muscle

synergy 2 and tend to choose a stabilized strategy post-stroke.

Muscle synergies 2 and 4 play an important part in leading

the transitions of patients from the severely impaired group

to the mildly impaired group. The patients need to forward

shift the activation time of muscle synergies 2 and 4 to raise

the hip from chair and to decelerate movement and retain

balance.

V. CONCLUSION

In this study, the muscle synergy model was employed to

investigate the synergy features that primarily affect motor

improvement during STS transfer. The muscle activation in

post-stroke patients (n = 33) and age-matched healthy elderly

subjects (n = 12) was measured. First, this study verified that

post-stroke patients still utilized four muscle synergies, similar

to the healthy controls. Muscle synergies 1 to 4 contribute to

bending the upper body, raising the hips, extending the body,

and controlling posture, respectively. Post-stroke patients had

larger variability in the spatial patterns of muscle synergies

compared with those extracted from healthy controls. In other

words, different combinations of muscle activations might be

utilized in post-stroke patients, whereas healthy people have

more consistent coordinated muscle activation. The important

temporal features that reflect the motor impairment of the

STS motion were clarified by the random forest classifier. The

random forest classifier showed that the temporal features of

muscle synergies 2 and 4 primarily affect the STS performance

improvement in post-stroke patients. The result suggests that

it is necessary to teach post-stroke patients the right time to

lift their hip during STS transfer. The results also show that

the temporal features of muscle synergy 4 reflect the recovery

of STS performance in severe post-stroke patients. This result

shows that in the rehabilitation of severe post-stroke patients,

it may be important to teach them the appropriate time to

activate muscle synergy. For future work, the muscle synergy

structure in post-stroke patients performing STS motion with

the intervention of physical therapists will be clarified. The

temporal features clarified by the random forest classifier will

also be used to evaluate these post-stroke patients.
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