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Temporal genetic association and temporal genetic
causality methods for dissecting complex networks
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A large amount of panomic data has been generated in populations for understanding causal

relationships in complex biological systems. Both genetic and temporal models can be used

to establish causal relationships among molecular, cellular, or phenotypical traits, but with

limitations. To fully utilize high-dimension temporal and genetic data, we develop a multi-

variate polynomial temporal genetic association (MPTGA) approach for detecting temporal

genetic loci (teQTLs) of quantitative traits monitored over time in a population and a

temporal genetic causality test (TGCT) for inferring causal relationships between traits linked

to the locus. We apply MPTGA and TGCT to simulated data sets and a yeast F2 population

in response to rapamycin, and demonstrate increased power to detect teQTLs. We identify

a teQTL hotspot locus interacting with rapamycin treatment, infer putative causal regulators

of the teQTL hotspot, and experimentally validate RRD1 as the causal regulator for this

teQTL hotspot.
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A
mong the top objectives in modeling living systems is the
construction of mathematical models capable of predict-
ing future states of a system given a set of initial starting

conditions. Whether predicting the risk of a disease at any point
along one’s life course given genetic, environmental, and clinical
data1, or predicting the molecular response to perturbations on a
given protein or proteins2 and the consequences of that molecular
response at the cellular and ultimately physiological levels,
identifying the complex web of causal relationships among
molecular features and between molecular and higher-order
features is central to achieving an accurate understanding of
complex biological systems3–5. Whereas descriptive models may
achieve a high degree of accuracy in classifying individuals based
on any number of features (e.g., distinguishing poor from good
prognosis in breast cancer based upon tumor gene expression
data6), predictive models seek to represent causal relationships
between variables of interest and as a result reflect information
flow through the system, thus enabling the identification of key
modulators of a given biological process7, key points of ther-
apeutic intervention8, or other interesting aspects of system
behavior that can aid in our understanding of it9–11.

Building highly accurate predictive models depends on estab-
lishing causal relationships among the variables of interest. Elu-
cidating physical interactions have been the primary means by
which biologists establish causal relationships. For example, a
transcription factor binding to a stretch of DNA12 and thus
facilitating the transcription of a gene that in turn activates a
given biological pathway13. Another type of causal relationships
inferred through statistical causality tests has achieved widespread
utility5,14. This type of causal relationships is considered as a
weak form of causality and experimental follow-ups are generally
needed to validate them. However, this weak causality enables us
to orient the vast sea of correlations observed among hundreds of
thousands of molecular phenotypes that can be simultaneously
assayed, according to the direction of information flow.

Methods such as Bayesian network reconstruction algorithms
have been devised to infer causal relationships among correlated
traits3,15,16. However, such methods based on correlation data
alone are well known to be generally unable to uniquely resolve
the causal relationships among traits, given the different types of
possible relationships between traits may not be statistically dis-
tinguishable from one another (e.g., see Fig. 1a). To break this
statistical symmetry so that causal relationships can be more
precisely resolved, a systematic source of genetic and/or envir-
onmental perturbations must be introduced. Genetics-based
causal (GC) inference anchors on the genetic locus, information
can only flow from the genetic locus, so that other Markov
equivalent structures are not biologically possible (Fig. 1b). GC
have demonstrated widespread utility in biology over the last
decade14,17–19. Panomic quantitative trait loci relating DNA
variants to panomic data and higher-order phenotypes such
as disease state have been appropriately leveraged to infer
causal relationships between molecular data and higher-order
phenotypes7,20. The successes of GC inference notwithstanding,
these approaches are not without their weaknesses. For example
(Fig. 1c), if two traits are related via a negative feedback loop, the
sign of their correlation and the direction of the causal relation-
ship inferred from a GC approach would be determined by the
average strength of the genetic perturbations on each trait in the
population9 (the causal relationship would flow in the direction of
the dominant genetic perturbation).

Similarly, a broad range of data, from imaging data to panomic
and clinical data, have been scored longitudinally in populations.
Time-series based causal (TSC) inference21–24 such as dynamic
Bayesian networks or Granger causality has been developed to
infer causal relationships from such data (Fig. 1d). However, TSC

inference often cannot resolve even simple causal relationships.
For example, if a trait (gray node in Fig. 1e) causes changes in two
other traits (green and blue nodes in Fig. 1e), but a longer lag for
the impact of the gray node on the blue node is observed com-
pared with the green node, then the time-series signal for the
green node may well predict the behavior of the signal from the
blue node, leading to a false causal inference (Fig. 1e). Both
genetic and temporal data are needed to solve these problems.

To date, inferring causality by jointly considering temporal and
genetic dimensions in a formal modeling framework has not been
systematically explored in high-dimension omics data. Integrat-
ing these two dimensions, which have a fundamental role in
enabling causal inference, has the potential to enhance the power
to resolve causal relationships and to provide a more accurate
view of regulatory networks in biological systems. Previous
method25 proposed to model growth-related temporal traits using
a multivariate normal distribution and assumed that the mean
vectors followed a logistic growth curve. In the context of tem-
poral gene expression traits, the trajectories are usually much
more complex and thus require more flexible fitting options.

Here we present a multivariate polynomial temporal genetic
association (MPTGA) model that formally integrates genetic and
temporal information to identify genetic association and a tem-
poral genetic causality test (TGCT) to infer causal relationships
among quantitative traits. To highlight the utility of this type of
integrated tests, we apply it to transcriptomic data generated in a
segregating population of yeast that were profiled at six different
time points in response to treatment with the drug rapamycin.
From these data, we demonstrate that the MPTGA test identifies
significantly more genetic associations than the sum of the rela-
tionships identified via a genetic association test independently
applied at different time points. In addition, we demonstrate that
this approach has increased power to detect the causal regulators
of expression quantitative trait loci (eQTL) hotspots that have
been previously defined in this population, including the identi-
fication of regulators that had previously evaded direct detection.
Finally, we identify and experimentally validate new causal reg-
ulators for temporal eQTL (teQTL) hotspots in this yeast popu-
lation that explain the gene-by-drug interactions identified in our
experiment.

Results
Overview of temporal genetic association and causality tests.
As living systems are dynamic, constantly changing over time to
adjust to different states and environmental conditions, the extent
to which different genetic loci will impact a given trait may vary
over time. There are multiple ways to model the behavior of a
trait over time with respect to a given genetic locus. A simple
approach is to perform eQTL analysis at each time point inde-
pendently, then combine the results from analysis of all time
points (referred as the union method) or perform meta-analysis
based on Fisher’s method (referred as the Fisher’s method). We
can also apply multivariate analysis of variance (MANOVA) to
detect the difference of gene expression levels across different
time points between different genotype groups. Alternatively, we
can model time-series data by different autoregressive (AR)
models, then assess whether the AR models are different with
regard to different genotypes (referred to as the AR model).
Alternatively, we can consider a quantitative trait following a
polynomial function with regard of time and then employ a
straightforward regression approach to model the trait with
respect to a given genetic locus (referred as the regression
method). If we further assume that for each genotype the trait
over time follows a multivariate normal distribution similar to Ma
et al.25 and the variances across subsequent time points are
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correlated, we develop MPTGA as a genetic association testing
framework (see Methods). Instead of assuming the mean vectors
of the multivariate normal distribution follow a logistic growth
curve as in Ma et al.25, we model the mean vectors of the
expression trajectories using a polynomial function, which is
able to capture diverse types of temporal responses.

Temporal QTL can be treated as a systematic source of
perturbation to infer causality among traits associated with the
QTL. There are a limited number of causal relationships possible
between two traits associated with a given genetic locus14,17

(Supplementary Fig. 1): simple causal/reactive models (M1
and M2), an independent model (M3), and partial causal/
reactive models (M4 and M5). Based on these possible relation-
ships, in the context of static QTL, a likelihood-based causality
model selection (LCMS) procedure had been developed to
infer causal relationships14. This approach has been widely
validated as predicting causal relationships with reasonable
accuracy2,3,9,14,15,17. In the context of multi-dimensional time-
series data, we now seek to combine temporal and genetic
information to infer causal relationships between two time series.
Granger26 formalized the idea of a time series-based causality test
in the context of linear regression, where the prediction of a time
series could be significantly improved by incorporating informa-
tion from previous time points in a second time series. Several
mediation models for longitudinal data were developed based
on Granger causality27, but no model takes genetic data into
consideration. To develop a causality test based on genetics and
time to assess how two traits are related, we adopted the idea of
including the lagged values of the time series from one temporal-
genetic associated trait to augment when comparing to the time
series of the second temporal-genetic trait. More specifically, after

identifying two traits X and Y with temporal-genetic association
to the same locus, there are five possible causal/reactive relation-
ships as shown in Supplementary Fig. 1. In a causal model (M1:
X→ Y), the genetic effect (or the association with the marker) of
Trait Y is solely explained by Trait X, so that the time-series
values of Trait Y can be predicted with values of Traits X and Y at
previous time points. In an independent model (M3: X⊥Y), the
genetic effect of Trait Y cannot be explained by Trait X. In a
partial causal model (M4), the genetic effect of Trait Y can only
partially be explained by Trait X, so that the time-series values of
Trait Y can be predicted with values of Traits X and Y at previous
time points, as well as the genotype information at the associated
locus. When traits X and Y were switched in models M1 and M4,
the causal and partial causal relationships can be represented in
models M2 and M5, respectively. First, we assess TGCT’s power
to distinguish causal/reactive relationships (M1 vs. M2) in general
by comparing the joint likelihood L(X, Y) (Methods). Then, we
focus on the cis–trans trait pairs as the following: Trait X has a
cis-teQTL and Trait Y has a trans-teQTL at the same locus so
that models to be assessed are limited to M1, M3, and M4. We
applied a linear regression on the corresponding time-series
data for Trait Y and selected the model that best explains the data
according to a given model selection criterion (e.g., Akaike
information criterion (AIC) or Bayesian Information Criterion
(BIC)) as detailed in Methods.

Evaluating temporal-genetic association methods. To compare
the performance of multiple approaches for detecting temporal-
genetic associations, we applied these methods to a set of simu-
lated data (see Methods). Various time-series patterns were
simulated (Supplementary Fig. 2), which were similar to the
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patterns observed in the yeast time-series data. As each time point
in a time series is not independent, the residues at each time are
correlated (auto-correlation). We generated time-series data
assuming different strength of auto-correlation. Temporal genetic
association results (Fig. 2) show that MPTGA performed the best
in the context of strong auto-correlated data (MANOVA as the
second best, the Fisher’s method performed the worst), whereas
MPTGA was essentially equivalent to the regression method in
the context of weak auto-correlated data (the union method
performed the worst). When the auto-correlation coefficient was
around 0.7, all methods performed similarly, except MANOVA.
The distribution of auto-correlation coefficients estimated from
the empirical yeast time-series data was centered around 0.85
(Supplementary Fig. 3), at which the MPTGA performed best. In
general, the MPTGA is robust over a broad range of operating
conditions (Fig. 2d). The AR method was not included in Fig. 2,
as it performed worse than other methods across all conditions
(Supplementary Fig. 4). We also compared the power of these
methods with different sample sizes, the pattern was similar as
shown in Fig. 2 with MPTGA performing the best when auto-
correlation was high (Supplementary Fig. 4). To assess a model’s
robustness when there are missing data (detailed in Methods), we
randomly dropped data points in simulated time series at various
rates and applied the above methods to the data sets with missing
data. The performances of the MPTGA, Regression, and AR

methods were not sensitive to missing data, whereas the perfor-
mances of the Union, Fisher, and MANOVA methods decreased
as the missing data rate increased (Supplementary Fig. 5).

Evaluating the TGCT test. To evaluate the performance of
TGCT, we simulated pairs of time-series data according to causal,
independent, or partial causal models (see Methods). We applied
TGCT only to the pairs in which both time-series traits X and Y
had temporal-genetic associations (MPTGA p < 10−6) to the
tested locus. First, we simulated pairs of traits according to the
causal model (M1), then assessed whether the causal (M1: X→ Y)
or reactive (M2: Y→ X) model fit the data better (Methods).
TGCT identified the correct model in most cases with the accu-
racy of 99.54%, 99.82%, 99.95%, and 99.97% for the sample size of
20, 50, 100, 150, respectively (Supplementary Fig. 6, the log
likelihood ratio (LR) of M1 vs. M2 is shown in Supplementary
Fig. 7). When genetic information is known, we can focus on
relationships between cis-regulated genes and trans-regulated
genes instead of testing all possible pairs. In the rest of the tests,
we assumed Trait X had a cis-teQTL so that we can simplify our
tests without considering models M2 and M5. When comparing
models M1, M3, and M4, we needed to model only Trait Y
without explicitly modeling Trait X (Methods). For pairs simu-
lated under the causal model (M1), TGCT identified the causal
model as the best model in all cases across a wide range of
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strength of AR and causal effects (Supplementary Fig. 8). The BIC
differences between the causal model and other models are shown
in Supplementary Fig. 9. For pairs simulated under the inde-
pendent model (M3), TGCT identified the independent model as
the best model in most cases with accuracy of 95.8%, 97.7%,
97.7%, and 98.9% for the sample size of 20, 50, 100, and 150,
respectively, across a wide range of parameters (Supplementary
Fig. 10). Simulations under the partial causal model (M4) were
complicated as there were three parameters for representing the
strength of genetic and causal effects (Supplementary Fig. 11).
TGCT identified the partial causal model as the best model in all
cases except when the genetic or causal effect was close to zero.
For example, when β2 is close to 0, the partial model (M4) is
converted to the independent model (M3). In such cases, TGCT
identified the independent model as the best model. When
both β10 and β11 are close to 0, the partial model (M4) is con-
verted to causal model (M1) and TGCT identified the causal
model as the best model in such cases.

Dissecting regulatory networks response to rapamycin. We
applied multiple methods to expression data generated in a
population of 95 genotyped haploid yeast segregants that were
treated with the macrolide drug rapamycin28 and compared
teQTLs identified at a 5% false discovery rate (FDR) (teQTLs are
listed in Supplementary Tables 1–5). The yeast segregants were
profiled at six different time points starting with a baseline
expression profile just before treatment and then five subsequent
time points post treatment. The aim in applying the teQTL and
causality analysis in this population was to dissect the causal
regulators most strongly modulating the treatment response
across individuals in the population. Given traditional eQTL
detection methods considering gene expression levels in a static
state (without considering the time-series data), for a baseline
to use in the comparisons, we mapped eQTLs based on gene
expression data at the first time point.

Compared with the teQTL approaches, the static eQTL
approach detected fewer QTLs (Table 1) at a fixed FDR. Among
the four teQTL methods MPTGA, union, regression, and the
Fisher’s p-value methods resulted in the highest to lowest
numbers of teQTLs, respectively. When comparing teQTL
confidence intervals for constraining the true location of variant
(s) underlying the teQTL, the QTL 95% confidence intervals
(Methods) for all teQTL methods were tighter compared with the
static methods (Table 1). These results suggest that the methods
that take into account the time-series data refine the QTL
location, thus reducing the number of potential candidate causal
regulators to consider in the linkage region. The regression
method resulted in fewer but sharper eQTLs than the MPTGA
method. MPTGA is the best model with balance of the number of
eQTLs identified and average confidence intervals.

Similar to the eQTLs in this yeast cross that have been
previously reported3,15,29,30, the teQTLs were clustered into
teQTL hotspots (Fig. 3). Across all methods a total of 18 hotspots
were identified (Table 2, expression traits linked to each eQTL
hotspot are listed in Supplementary Tables 6–10). Of the 14 eQTL
hotspots identified by the static eQTL method, 10 overlapped

with eQTL hotspots previously identified in this same yeast F2
cross3,29,30. Among the ten eQTL hotspots, seven of them
identified by the static were identified by all four times series
based methods. In addition, three and three additional teQTL
hotspots were identified by the MPTGA and regression methods,
respectively (Table 2). Despite rapamycin treatment inducing a
large impact on cell cycle and metabolism in yeast31, none of the
14 static eQTL hotspots were enriched for genes in the rapamycin
transcriptional response signature31. Of the 11 teQTL hotspots
identified by MPTGA, eight were significantly enriched for this
signature. A key mechanism for cell growth is the regulation of
ribosome biogenesis. Ribosomal protein gene expression is
regulated by mTOR, the target of rapamycin32. Six of the eight
teQTL hotspots identified by MPTGA enriched for the rapamycin
response signature were also enriched for the GO term structural
constituent of ribosome (Table 3), demonstrating the ability of
MPTGA to capture both static and dynamic genetic associations.

In contrast, only one (chrXV:150,000) of the teQTL hotspots
identified by the union method were enriched for the rapamycin
response signature, suggesting that although this approach
increases the power to detect static eQTL, the union method is
not as sensitive for detecting a dynamic response. The regression
method is closely related to the MPTGA method, but only one
(chrXV:150,000) of its identified hotspots was enriched for genes
in the rapamycin response signature, suggesting this approach in
a temporal context may be prone to sporadic associations.

Inferring causal regulators of teQTL hotspots. Similar as we
have previously shown for static eQTL hotspots3,15,29, we applied
TGCT to resolve the causal regulators underlying teQTL hot-
spots. For each teQTL hotspot, candidate causal genes were
defined as genes with cis-teQTLs linked to the teQTL hotspot. We
applied TGCT to infer the causal regulators of the teQTL hotspots
identified by MPTGA (Table 4, all predicted causal relationships
are listed in Supplementary Table 11). The distribution of BIC
difference between causal model M1 and the second best fit
models is shown in Supplementary Fig. 12. The top putative
causal regulators for each teQTL hotspot were ranked based on
the number of causal relationships that the regulator had. We
compared the causal regulators identified in this dataset to those
we previously predicted and validated3,29,30.

Of the 11 teQTL hotspots identified by MPTGA, 7 overlapped
previously identified static eQTL hotspots in this population
(Table 2) for which we had predicted and validated static causal
regulators3,29. All previously validated causal regulators were
identified as putative key causal regulators by TGCT (bolded
genes in Table 4). In addition to the eQTL hotspots identified by
the static method, MPTGA identified 3 dynamic teQTL hotspots.
The teQTL hotspot at chrV:190,000 was the largest in terms of
the number of expression traits linking to the locus, with 162 gene
expression traits linked to this locus versus only 7 expression
traits identified by the static eQTL approach. The genes linked to
this teQTL hotspot were significantly enriched for the rapamycin
response signature (3.9-fold enrichment; Fisher’s exact test(FET)
p= 1.28 × 10−10). The top putative causal regulator predicted by
TGCT for this hotspot was ISC1, inositol phosphingolipid

Table 1 Number of eQTL identified and average 1-LOD drop CI by different approaches (static, MPTGA, union, regression, and

Fisher’s method)

Static (T0) MPTGA Union Regression Fisher

#eQTLs identified 3288 3819 3669 3453 3011

Avg. 95% CI (kb) 37.5 28.7 30.8 17.9 35

CI confidence interval, MPTGA multivariate polynomial temporal genetic association
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phospholipase C, a gene involved in ceramide production33. ISC1
was supported as causal for 136 of the 162 genes linked to this
teQTL hotspot. Rapamycin induces insulin resistance via
mTORC234, which regulates de novo ceramide synthesis35.
Ceramide and its metabolites also play a pathogenic role in
insulin resistance36. Taken together, these data support ISC1 as a

causal regulator for rapamycin response differences among the
yeast segregants. The identification of this teQTL hotspot and of
ISC1 as a causal regulator could not have happened by analyzing
any single time point after the rapamycin treatment. The genetic-
by-drug perturbation interaction at this locus was only detectable
in light of the time-series data considered in full.
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In addition to the ISC1 teQTL hotspot, the teQTL hotspot at
locus chrIX:70,000 was only identified by the MPTGA method.
A general temporal pattern of genes linked to the hotspot is
shown in Fig. 4. The gene expression level differences between
segregants carrying different genotype at the locus were small
but consistently getting larger (Fig. 4a, Supplementary Fig. 14).
Testing each time point individually, the differences were not
significant, which may explain why the static, union, and Fisher’s
method could not identify the teQTL hotspot. MPTGA, the
regression, and the union methods (Fig. 4b–d) suggested a
putative teQTL at the locus, but p-values for the regression and
the union methods were not significant at an FDR < 0.05.
Without constraining on residues, the regression method is
prone to sporadic association37 (detailed in Discussion) so that p-
value cutoff for 5% FDR is much lower than the one for the
MPTGA, which explained why the regression method missed the
teQTL hotspot.

The chrIX:70,000 teQTL hotspot was also significantly
enriched for rapamycin signature genes (5.0-fold enrichment,
FET p= 1.4 × 10−7), which suggests this teQTL hotspot was
driven by gene-by-rapamycin interactions. The top putative
causal regulator predicted by TGCT for this hotspot was RRD1
(Table 4, the distribution of BIC difference between causal model
M1 and the second best fit models is shown in Supplementary
Fig. 13). RRD1 is an activator of PP2A, a gene involved in G1
phase progression. PP2A is required for rapamycin response38,
directly supporting our prediction that RRD1mediates rapamycin
response variation among the yeast segregants. To validate RRD1
as a causal regulator of the teQTL hotspot at chrIX:70,000 driven
by gene-by-rapamycin interactions, we compared genome-wide
gene expression profiles of the RRD1 knockout strain to the wild-
type strain, both with and without rapamycin in the culture
media (Methods). At an FDR < 1%, 64 differentially expressed
genes (DEGs) were identified between the RRD1 knockout and

Table 2 Hotspots identified by different approaches and enrichment analysis of rapamycin response signature

Hotspot Chr Pos Size of eQTL hotspot Enrichment for the rapamycin signature

T0 MPTGA UNION Regre. Fisher T0 MPTGA UNION Regression Fisher

perc
(%)

p-
value

perc
(%)

p-
value

perc
(%)

p-
value

perc
(%)

p-
value

perc
(%)

p-value

1 1 50,000 34a NA NA NA NA 2.9 1 NA NA NA NA NA NA NA NA
2 1 190,000 35 NA NA NA NA 0 1 NA NA NA NA NA NA NA NA
3 2 430,000 44a NA NA 44 NA 0 1 NA NA NA NA 5.9 0.61 NA NA
4 2 550,000 367a 662 584 607 372 5.4 0.24 7.7 9.59e−5b 4.8 0.42 5.9 0.06 5.9 0.13
5 3 90,000 60a 38 40 105 40 10 0.0551 18.4 1.45e−3b 12.5 0.034 8.6 0.05 12.5 0.034
6 3 170,000 34 NA NA 26 28 8.8 0.2022 NA NA NA NA 11.5 0.11 10.7 0.13
7 4 90,000 NA 63c NA 25c NA NA NA 20.6 3.85e−6b NA NA 4.0 1 NA NA
8 5 190,000 NA 162c NA 57c NA NA NA 17.9 1.28e−10b NA NA 8.8 0.12 NA NA
9 7 410,000 43 43 38 NA NA 2.3 1 0 1 0.0 1 NA NA NA NA
10 8 110,000 97a 256 121 111 87 6.2 0.28 4.3 0.63 4.1 0.66 2.7 0.89 3.4 0.77
11 9 70,000 NA 65c NA NA NA NA NA 23.1 1.44e−7b NA NA NA NA NA NA
12 9 250,000 NA NA NA 27c NA NA NA NA NA NA NA 3.7 1 NA NA
13 12 670,000 363a 171 295 267 248 2.8 0.97 4.1 0.67 2.7 0.97 2.2 0.99 2.8 0.94
14 13 70,000 239a 237 201 163 172 7.1 0.046 9.7 4.64e−4b 6.0 0.21 5.5 0.33 7.0 0.095
15 13 910,000 42 NA NA 26 NA 4.8 0.58 NA NA NA NA 7.7 0.34 NA NA
16 14 410,000 145a NA NA 46 NA 2.1 0.97 NA NA NA NA 6.5 0.35 NA NA
17 15 150,000 486a 1000 1183 742 987 6.8 0.0131 7.7 7.71e−7b 6.1 0.0042b 6.7 0.0026b 6.3 0.0041b

18 16 510,000 138a 168 52 147 67 3.6 0.76 11.9 7.08e−5b 7.7 0.21 4.8 0.51 4.4 0.6

An NA in the table means the locus was not an eQTL hotspot in the corresponding method. When comparing with the rapamycin response signature, the percentage of genes in a hotspot overlapping

with the rapamycin signature and the Fisher’s exact test p-value are reported. The expected percentage by chance is 4.6%. The hotspots significantly enriched for the rapamycin signature were marked (p

< 0.05 after multiple testing correction)
aHotspots overlapped with those previously defined static eQTL hotspots
bThe hotspots significantly enriched for the rapamycin signature (p < 0.05 after multiple testing correction)
cThe hotspots identified only via time-dependent approaches

eQTL expression quantitative trait loci, MPTGA multivariate polynomial temporal genetic association

Table 3 GO term enrichment analysis for eQTL hotspots identified by MPTGA

Hotspot GO-Term p-value

Chr Pos

2 550,000a Structural constituent of ribosome 3.97E−57

3 90,000a Branched chain family amino acid 2.08E−10

4 90,000a Structural constituent of ribosome 2.03E−37

5 190,000a Structural constituent of ribosome 1.27E−126

7 410,000 Protein folding 6.85E−14

8 110,000 Mating projection tip 7.27E−6

9 70,000a Structural constituent of ribosome 1.77E−50

12 670,000 Ergosterol biosynthesis 6.37E−25

13 70,000a Phosphate transport 2.52E−5

15 150,000a Structural constituent of ribosome 7.25E−43

16 510,000a Structural constituent of ribosome 4.00E−28

aThe hotspots were enriched for the rapamycin signature as in Table 2

eQTL expression quantitative trait loci, MPTGA multivariate polynomial temporal genetic association
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wild-type strains, without exposure to rapamycin. These 64 DGEs
were significantly overlapped with the rapamycin signature (5.1-
fold enrichment, FET p= 1.1 × 10−7). When compared with
genes linked to the 11 teQTL hotspots identified by MPTGA, the
RRD1 knockout signature significantly overlapped with 5 teQTL
hotspots (Fig. 5a), which were also enriched for the rapamycin
signature (Table 2). The teQTL hotspot ChrIX:70,000 was
enriched for the RRD1 knockout signature (4.1-fold enrichment,
FET p= 0.036) and the teQTL hotspot ChrXV:150,000 was most
significantly enriched for the RRD1 knockout signature (2.5-fold
enrichment, FET p= 8.3 × 10−7). When compared with the
eQTL hotspots based on static T0 data, the RRD1 knockout
signature significantly overlapped with the eQTL hotspot at
ChrXV:150,000 (4.2-fold enrichment, FET p= 8.1 × 10−10). The
RRD1 knockout signature was enriched for the GO biological
process response to stress (12.9-fold enrichment, FET p= 3.1 ×
10−9), which is consistent with the functional annotation of this

static eQTL hotspot3,29. These results were consistent with RRD1
expression levels being regulated both in cis and in trans by DNA
variations at ChrXV:150,000 (Fig. 5b). When comparing the
RRD1 knockout and wild-type strains in the presence of
rapamycin, 582 DGEs were identified at an FDR < 1%. The
RRD1 rapamycin signature overlapped seven teQTL hotspots
(Fig. 5a), which were all enriched for the rapamycin signature.
Among these teQTL hotspots, the teQTL hotspot ChrIX:70,000,
where RRD1 is physically located, was with the highest fold
enrichment (7.1-fold enrichment, FET p= 3.7 × 10−33). More
specifically, directions of changes for all genes in the overlap
between genes linked to the teQTL hotspot ChrIX:70,000 and
DGEs in RRD1 knockout signature are consistent between the
time course and RRD1 knockout experiments. The segregants
carrying RM allele at the RRD1 locus had low RRD1 expression
level in comparison with the segregants carrying BY allele
(Supplementary Fig. 15). Among 65 genes linked to the teQTL

Table 4 Causal regulators for teQTL hotspots inferred by the TCGT test

Hotspot Yvert et al. BN full TGCT

Chr Pos

2 550,000a AMN1, MAK5 TBS1, TOS1,ARA1, CSH1, SUP45, CNS1, AMN1 ICS2, RPB5, UBS1, TYR1, YSW1, SLI15, AMN1, TBS1, TOS1

3 90,000a LEU2 LEU2, ILV6, NFS1, CIT2, MATALPHA1 LEU2, FRM2, YCL021W-A

4 90,000a NA NA ASF2, YDL203C, PRR2

5 190,000a NA NA ISC1, SPC25, GPA2

7 410,000 NA NA MST27, TIF4632

8 110,000 GPA1 GPA1 ERG11, LAG1, YHL008C, SHU1, GPA1

9 70,000a NA NA RRD1, ECM37, YIL151C, CCT2

12 670,000 HAP1 HAP1 DCS1, HAP1, PIG1, LCB5, PDR8

13 70,000a None None MDM1, RPM2,TAF13, COQ5

15 150,000a None PHM7 MSH2, PKH2, HAL9, RFC4, YOL098C, COQ3, PHM7

16 510,000a NA NA MET12, RMI1, PHO85

The putative causal regulators were compared with previous predictions in Yvert et al.29 and Zhu et al.3

Genes in bold font are overlapping with previous findings
aThe hotspots were enriched for the rapamycin signature as in Table 2

NA not applicable, teQTL temporal expression quantitative trait loci, TGCT temporal genetic causality test
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hotspot chrIX:70,000, 56 genes were expressed higher in the
segregants carrying RM allele and 42 of them overlapped with
upregulated in RRD1-KO strain (FET p= 2.4 × 10−39), whereas 9
genes were expressed lower in the segregants carrying RM allele
and 6 of them overlapped with downregulated genes in RRD1-KO
strain (FET p= 2.0 × 10−7). In addition to the hotspot
ChrIX:70,000, the top three teQTL hotspots with the highest
fold enrichment include ChrV:190,000 and ChrIV:90,000 (fold
enrichment= 6.2 and 4.7, FET p= 1.2 × 10−24 and 2.9 × 10−14,
respectively), which are the three unique teQTL hotspots
compared with static eQTL hotspots (Table 2). The teQTL
hotspot at chrXV:150,000 was with the most significant
enrichment p-value (2.6-fold enrichment, FET p= 1.3 × 10−64),
consistent with RRD1 expression variation being linked in cis to
ChrIX:70,000 and in trans to ChrXV:150,000 (Fig. 5b). Genes
putatively regulated by RRD1 inferred by TGCT were also
regulated by other genetic perturbations (Fig. 5c). The RRD1
rapamycin signature was significantly enriched for the GO term
structural constituent of ribosome (4.0-fold enrichment, FET p=
1.6 × 10−33), which is consistent with the GO functional
annotations of the set of genes simultaneously linked to these
teQTL hotspots (Table 3). These results combined indicate that
RRD1 interacts with rapamycin to give rise to the teQTL hotspot
at chrIX:70,000, and that this gene-by-rapamycin interaction was
only detected by our TGCT test.

Discussion
In this study, we developed MPTGA to optimally integrate
genetic and temporal information to identify genetic associations
for gene expression traits. With respect to other methods we
tested, MPTGA was the most robust and sensitive in our simu-
lation study. When applied to a yeast F2 time-series data set
profiled in response to a rapamycin perturbation, MPTGA

detected more biologically relevant teQTL hotspots, along with
tighter eQTL confidence intervals compared with the static
method (Table 1), which may lead to fewer candidate causal
regulators to consider for each eQTL hotspot. We also developed
the causal inference test, TGCT, which simultaneously considers
temporal and genetic data to infer causal relationships system-
atically. Temporal-genetic data together has more power to dis-
tinguish which gene is the true causal regulator among correlated
genes colocalizing at a locus than the static method. Application
of TGCT in the F2 yeast cross in the context of treatment with
rapamycin resulted in the identification the key causal regulators
ISC1 and RRD1, which modulated response to this perturbation,
revealing the molecular mechanisms related to rapamycin
response. Our prediction of RRD1 as a causal regulator of gene-
by-rapamycin interactions was experimentally confirmed.

For each teQTL hotspot, we tested all cis–trans gene pairs at
the locus for potential causal relationships. For a gene with a
trans-eQTL at a hotspot, the TGCT may report multiple candi-
date causal genes. On the other hand, for two genes (X1 and X2)
with cis-eQTLs at a hotspot, both may be causal to an overlapped
set of genes (Ys) with trans-eQTLs linked the locus, e.g., X1→ Y
and X2→ Y. In these cases, TGCT cannot distinguish which cis-
eQTL gene is the true causal gene. Thus, multiple putative causal
genes were reported for hotspots with a large number eQTLs
(Table 4). To distinguish which causal relationship, X1→ Y or
X2→ Y, is true, more data are needed, such as more F2 strains to
breakdown linkage disequilibrium (LD) structures or more time
points to break correlation relationships among colocalized genes
so that the TGCT has more power to distinguish which gene is
true causal regulator among correlated genes colocalizing at a
locus than static methods. Follow-up experiments are recom-
mended to validate putative causal regulators.

Rapamycin has been shown to extend lifespan in mice39, but
then chronic usage has also been shown to lead to insulin
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resistance34. Identifying what molecular and physiological states
stand to benefit from rapamycin treatment is critical before such a
drug can be considered as an anti-aging treatment. A systematic
screen identifies 238 genes whose deletion extends replicative
lifespan in yeast40. The 238 aging related gene set marginally
overlapped with the rapamycin signature31 (1.7-fold enrichment,
FET p= 0.03). However, the three unique teQTL hotspots iden-
tified by the MPTGA were significantly enriched for the aging
related genes (fold enrichment= 3.0, 4.3, and 4.4, FET p= 0.004,
1.3 × 10−11, and 1.2 × 10−5, for ChrIV:90,000, ChrV:190,000, and
ChrIX:70,000, respectively), whereas none of the static eQTL
hotspots nor eQTL hotspots identified by the union nor the
Fisher’s method was enriched for the aging genes at p < 0.01
(Table 5). As we show in Fig. 3 and Table 2, gene-by-rapamycin
interactions were only detected when a time series was considered
as a whole, not when individual time points were considered
separately, directly demonstrating the importance of a temporal
genetic association study. Most gene-by-perturbation interaction
screens, such as synthetic lethal small interfering RNA screen41,
monitor effects at only one time point. Our results suggest that
monitoring such effects at multiple time points and analyzing
them together as a time series can dramatically increase the power
of detecting gene-by-perturbation interactions, as well as causal
relationships among traits.

MPTGA and the regression methods are closely related
(Methods). Even though the p-values of the two methods are not
directly comparable (as the underlying functions for modeling are
different), the association p-values based on the two methods
were closely tracked with each other (an example in Fig. 4b, c;
Supplementary Fig. 16) in general. However, there were multiple
differences in the yeast teQTL results. Given variance observed in
a given variable of interest, the regression model attempts to fit as
much of the variance as possible so that it is more prone to
sporadic associations or overfitting37. In contrast, MPTGA is a
regularized regression method, which is constrained by regular-
ization terms and so can only fit a portion of the variance. To
access the tendency of sporadic association or overfitting in each
method, we compared p-values of neighboring single-nucleotide
polymorphisms (SNPs) (Methods). The p-values for peak SNPs

and neighboring SNPs were highly correlated, with correlation
coefficients of 0.89 and 0.69 for MPTGA and the regression
method, respectively (Supplementary Fig. 17, detailed in Supple-
mentary Discussion), suggesting that MPTGA is less prone to
overfitting than the regression method.

We also checked statistical validity and potential inflation of p-
values of MPTGA (detailed in Methods). First, we simulated a set
of gene expression traits and genotypes. As they were simulated
independently, no gene association was expected. The QQ plot
for the simulated data (Supplementary Fig. 18a) suggests that p-
values of MPTGA are slightly inflated. We then generated per-
muted data from the yeast F2 data set by permuting strain labels
so that the genetic structure is intact. As there are LD structures
in the genetic structure, the QQ plot for the permuted data
(Supplementary Fig. 18b) is slightly different from the QQ plot
for the simulated data. The QQ plot for the yeast F2 data (Sup-
plementary Fig. 18c) is significantly different from the plots for
simulated and permutated data. The QQ plot comparing the
results of the real data and permuted data (Supplementary
Fig. 18d) indicates that the result of the real data was significantly
different from the result of the permutated data. These results
together suggest that p-value itself is not accurate and it is better
to use FDR values to control errors.

MPTGA and TGCT share similarity with common genetic
association methods and temporal causality methods. Other
methods have been developed to integrate genetic, gene expres-
sion and temporal information to construct global regulatory
networks28,42. Instead of focusing on inferring individual reg-
ulations, MPTGA is mainly for genetic association and TGCT is
powerful for identifying gene-by-perturbation interactions.
Brodt et al.43 proposed the DyVER method44, which analyzes
genetic effect at each individual time point first, then discretize
genetic effects at different time points into two states. Our
simulation results indicate that the MPTGA method is more
sensitive than methods considering individual time points sepa-
rately when variances were not independent (Fig. 2). More
importantly, when there are missing data, there is no perfor-
mance degradation for methods modeling all time points toge-
ther, but there is clear performance degradation for methods

Table 5 Enrichment analysis of genes that can extend yeast replicative lifespan in hotspots

Hotspot T0 MPTGA UNION REGRESSION FISHER

CHR Pos Fold
enrichment

p-value Fold
enrichment

p-value Fold
enrichment

p-value Fold
Enrichment

p-value Fold
Enrichment

p-value

1 50,000 0a 1 NA NA NA NA NA NA NA NA
1 190,000 1.37 0.43 NA NA NA NA NA NA NA NA
2 430,000 0a 1 NA NA NA NA 1.63 0.28 NA NA
2 550,000 0.72a 0.91 1.77 3.27E−5b 0.98 0.57 1.14 0.24 0.97 0.6
3 90,000 0.4a 1 0 1 0.6 1 0.68 0.82 0 1
3 170,000 0 1 NA NA NA NA 0 1 0 1
4 90,000 NA NA 3.04c 0.004b NA NA 0c 1 NA NA
5 190,000 NA NA 4.29c 1.29E−11b NA NA 5.04c 2.81E−6b NA NA
5 330,000 NA NA NA NA NA NA 0.86 1 NA NA
7 410,000 2.79 0.03 1.67 0.27 1.89 0.21 NA NA NA NA
8 110,000 0a 1 0.47 0.98 0.2 1 0.22 1 0.28 1
9 70,000 NA NA 4.42c 1.20E−5b NA NA NA NA NA NA
9 250,000 NA NA NA NA NA NA 0.89c 1 NA NA
12 670,000 0.99a 0.55 0.98 0.58 1.14 0.35 1.17 0.32 1.35 0.15
13 70,000 0.5a 0.97 0.61 0.94 0.83 0.74 0.88 0.68 0.84 0.73
13 910,000 2.28 0.1 NA NA NA NA 3.69 0.02 NA NA
14 490,000 1.13a 0.42 NA NA NA NA 1.56 0.3 NA NA
15 150,000 0.89a 0.74 1.25 0.05 0.87 0.87 0.87 0.81 0.83 0.91
16 510,000 1.39a 0.22 2 0.01 0.92 0.65 0.98 0.58 0.72 0.78

Similar to Table 2
aHotspots are overlapped with those previously defined static eQTL hotspots
bThe hotspots were enriched for the rapamycin signature
cThe hotspots were identified only via time-dependent approaches

MPTGA multivariate polynomial temporal genetic association, NA not applicable
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considering individual time points separately (Supplementary
Fig. 5). Comparing the results of Brodt et al.43 and our results, all
modules identified in Brodt et al.’s Fig. 5A were also identified by
all methods (Table 2), except the ChrIII MATalpha hotspot. Both
the static and Fisher methods identified the ChrIII MATalpha
hotspot, but the number of traits linked to the locus was less than
the cutoff for the MPTGA (Fig. 3 shows that there is a small peak
at the locus). On the other hand, multiple teQTL hotspots
identified by the MPTGA method are not reported in Brodt et al.
For example, the ChrIX70,000 hotspot includes gene expression
with genetic effects gradually changing over time (Fig. 4a).
Considering the last time point alone, the Wilcoxon rank-sum
test p-value was < 0.01 (Fig. 4d), but not significantly at the
genome level. The DyVER method44 (as well as the method
proposed by Francesconi and Lehner45), which aims to group
genetic effects at each individual time point into two discrete
states is unlikely to work well in the cases with moderate genetic
effect changes over time. This also highlights the advantage of the
MPTGA method that simultaneously takes all time points into
consideration.

In the current study, MPTGA and TGCT are simplified based
on a haploid system. They can be generalized for diploid systems
(detailed in Methods). When applying the MPTGA and TGCT to
diploid systems in which there are three possible genotypes, 00/
01/11 (or 0/1/2), at each SNP, we can apply these methods
directly to detect dominant/recessive effects. To detect full genetic
effects, we can estimate parameters for each genotype, then
compare them with the estimated parameters without considering
genotype (null model). In addition, in the current TGCT test, we
explicitly modeled the causal variable in an AR form. If long time-
series data are available, a more flexible model can be used to
unify the models used in MPTGA and TGCT, such as polynomial
functions in both tests (detailed in Methods).

The integration of both genetic and temporal information in
our study represents only the beginning step needed to dissect the
dynamic regulation. There are also many other directions for
improvement in temporal-genetic data analysis. First, other types
of available high-throughput data have not been integrated in the
analysis yet. To integrate multiple types of data, Zhu et al.3

reconstructed causal networks and predicted the causal regulators
for the eQTL hotspots of gene expression activity in a segregating
yeast population. Second, the accuracy of MPTG depends on the
amount of data available and data associated measurement errors.
The integration of other types of high-throughput data might
reduce the influence of these errors. Furthermore, the proposed
TGCT method could only address the relationship between a pair
of gene expression traits and a locus. More complicated models
might be further considered to assess and represent more com-
prehensive regulation relationships as a larger network, e.g.,
multiple QTLs affect the expression of multiple transcripts and
these RNAs in turn act on another complex trait. Finally, our
procedure focuses on identifying causal and reactive relationships
which is a very simplistic view of the gene networks. However, the
true biology is much more complicated. The genes interacting in
a large network may be subject to negative and positive feedback
control. Despite these issues, the ability to integrate both the
genetic and temporal information in the eQTL analysis offers a
promising approach to understand the dynamic regulation.

In practice, the power of MPTGA and TGCT is limited by the
number of time points observed, the number of individuals
included in a study, and confounding factors. Comparing with
the yeast experiments where all experimental conditions are
carefully controlled to be similar, there are multiple confounding
factors that may contribute to variations to a human time course
study, such as age, amount of sleep or physical exercise, food or
drug taken, and diseases. Furthermore, genetic architecture of

human is more complex than that of yeast. Blood is the most
accessible human tissue for temporal-genetic studies. We pre-
viously studied genetic regulation of human blood transcriptome
at static state11 and in time series24,46. A large amount of trans-
eSNPs for human blood transcriptome were identified using
1002 subjects11. Only cis-eSNPs but no trans-eSNP was identified
with 40 subjects46, suggesting it was underpowered for detecting
trans-eSNPs. An eQTL study in Japanese population47 indicates
that trans-eSNPs can be detected with 76 subjects. To identify
more trans-eSNPs, more subjects are needed in genetic studies.
We previously showed that it is possible to infer temporal causal
relationships in transcription regulation of human blood tran-
scriptome using 7 time points24. To effectively apply the
temporal-genetic association and causality tests to a human study,
we estimate that at least 8 time points and 200 individuals are
needed. It is worth noting that the time intervals in a time series
are not needed to be the same. For example, given a polynomial
function, we sampled five time points at random intervals and
simulated 100 traits (Supplementary Fig. 19a). Then, we fit the
simulated traits to a cubic polynomial function, which almost
perfectly matches with the pattern underlying the simulated traits
(Supplementary Fig. 19b). Thus, when designing a temporal
experiment, it is better to sample more time points around the
time when derivatives of temporal patterns change.

Methods
Yeast data. A set of time-series messenger RNA gene-expression data is available,
which measured the gene expression levels of 95 genotyped haploid yeast F2 se-
gregants after a perturbation with the macrolide drug rapamycin28. These segre-
gants were constructed and genotyped by Brem et al.48 and were derived from two
genetically diverse parental yeast strains BY4716 (BY) and RM11-1a (RM). Each
yeast segregant in this set of time-series data was sampled at 10 min intervals for up
to 50 min after rapamycin addition, and RNA was extracted and profiled with
Affymetrix Yeast 2.0 microarrays. This dataset was used for constructing predictive
networks by taking advantage of both genetic variations and time
dependencies28,42. A total 5703 gene expression traits and 2956 SNPs were used in
the current study.

Methods for time series-based eQTL analysis. To model the behavior of a
quantitative trait over time with respect to a given genetic locus, we can model the
behavior of the trait using different continuous functions for each possible geno-
type at a given locus. For example, in the case of a haploid organism, consider a
gene expression trait, Y, assayed in individual i at time t at a particular marker
location with two genotypes. In this case we can generally represent the expression
levels of the trait as yi(t)= δi0g0(t)+ δi1g1(t)+ εi(t), where δi0 and δi1 are the
indicator variables for the two possible genotypes at the marker for individual i,
and g0(t) and g1(t) are functions representing the dynamic process for individuals
with different genotypes (the two possible genotypes here have been encoded as 0
and 1).

Although the functions could take on any form that can be appropriately
parameterized (e.g., exponential, polynomial, and so on), we consider K degree
polynomial forms here given they are flexible and commonly used in fitting
complex curves: g tð Þ ¼

PK
k¼0 βkt

k , with coefficient βk for the exponent k. Given
this form of trait behavior over time, the trait with respect to a given genetic locus
can be expressed as: yi(t)= δi0

PK
k¼0 βk0t

k
+ δi1

PK
k¼0 βk1t

k þ εiðtÞ.
For each genetic association approach described below, FDR was estimated by

permutation tests in which the strain labels are randomly permuted so that the
correlation of the expression traits was maintained, while any genetic associations
were destroyed49.

When applying to the yeast data set, we divided whole yeast genome into 602
bins of 20 kb in size. The thresholds for declaring eQTL hotspots are based on
binomial test p-value cutoff 0.05/602. We assumed that the number of eQTL in a
bin follows the binomial distribution with parameters n= total number of linkage
identified across the whole genome and p= 1/602, which assumes equal probability
of linkage among the 602 bins. Thus, under the hypothesis of binomial distribution,
the threshold N0 was selected such that the probability of observing at least N0

eQTL linkage is less than 0.05/602.

Static method. Traditional eQTL analysis is restricted to gene expression levels at
a static state, among which a straightforward method is to split segregants into two
groups according to their genotypes at a marker and perform the t-test or Wil-
coxon rank-sum test to check whether there is sufficient evidence that the gene
expression levels are significantly different between the two groups.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06203-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3980 | DOI: 10.1038/s41467-018-06203-3 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Union method. A straightforward approach to leverage gene expression data of
whole time series is to perform eQTL analysis at each time point independently,
then combine the results from analysis of all six time point at a locus as the
following: pj ¼ argmint pt;j , where pt,j is the Wilcoxon rank-sum test p-value for
the gene expression trait j at the time point t. It means that if a gene expression trait
was significantly linked to a locus at any of the six time points, the trait was linked
to the locus in the union method. The significant p-value cutoff is determined by
permutation tests with FDR < 0.05.

Meta-analysis: Fisher’s p-value. A meta-analysis approach over a time-series
data assumes that data at different points are repeated measurements of the same
underlying data. Similar to the union method, we perform eQTL analysis at each
time point independently, then combine the results from analysis of all six time
point at a locus as the following: pj=

Q

t pt;j , where pt,j is the Wilcoxon rank-sum
test p-value for the gene expression trait j at the time point t. The significant p-
value cutoff is determined by permutation tests with FDR < 0.05.

Multivariate analysis of variance. MANOVA takes into account the covariance
between multiple dependent variables and thus is specifically appropriate in testing
for association between a SNP and multiple correlated gene expression traits across
different time points. In particular, we test the hypothesis:

H0 : μ0t ¼ μ1t ; for all t

vs.

H1 : μ0t ≠ μ1t ; for at least one t

Where μgt represents the mean gene expression level in the genotype g group at the
testing locus at time point t. If MANOVA identifies significant difference of gene
expression levels across different time points between groups of samples with
different genotypes, we declare an eQTL for the trait at the testing locus.

Regression method. Many gene expression changes in time-series were not
monotonic and sometimes have more than one fluctuation (Supplementary
Fig. 20). Neither linear function nor quadratic polynomial was sufficient to capture
underlying these dynamic patterns. On the other hand, there were only 6 time
points in our time-series data. A cubic polynomial was sufficient to capture all
dynamic patterns in this study (Supplementary Fig. 21). We also tried to use higher
degree polynomials to fit the dynamic gene expression changes. The average mean
squared errors were similar to the one with the cubic polynomials used (Supple-
mentary Fig. 22). Therefore, we selected the cubic polynomial curve fitting
throughout this paper: gj(t)= β0j+ β1jt+ β2jt2+ β3jt3. A general regression model
with cubic polynomial fitting for a trait yi is yi(t)= β0+ β1t+ β2t2+ β3t3+ εi, in
which the predictor variables are (t, t2, t3). Thus, each set of time-series data
contributed six observations in the regression model and the total number of
observations was 6N, where N is the total number of segregants in the yeast F2 data
set. To examine the difference between segregants with different genotypes, we
compared the reduced model H0 (single fitting yi(t)= β0+ β1t+ β2t

2+ β3t
3+ εi)

with a full model H1 (separate fitting for each genotype) as

yi tð Þ ¼ δi0 β00 þ β10t þ β20t
2 þ β30t

3
� �

þδi1 β01 þ β11t þ β21t
2 þ β31t

3
� �

þ εi
;

where δi0 and δi1 are the indicator variables for genotype 0 and genotype 1. We
performed an F-test to compare the reduced model against the full model to detect
eQTL association.

Multivariate polynomial temporal genetic association. MPTGA was similar to
the regression model described above. Regression model assumed variances at each
time points were independent while MPTGA assumes variances are related. Similar
to Ma et al.25, we assumed that for each genotype, the time-series gene expression
trait followed a multivariate normal density, in which the mean vector is modeled

by a polynomial function gj= gj tð Þ
h i

1´m
=

P

K

k¼0

βkjt
k

� �

1´m

, where m is the number

of time points in time-series data. Variance at each time point follows a first order

AR model AR(1)50,51 as: Σ= σ2e

1 ρ � � � ρm�1

ρ 1 � � � ρm�2

� � � � � � � � � � � �
ρm�1 ρm�2 � � � 1

2

6

6

4

3

7

7

5

. The density for time-

series data could be written as fj(y)=
1

2πð Þm=2
Σj j1=2

exp y � gj

� �

Σ
�1 y � gj

� �T

=2

� �

.

In our studies, the mean vector was then modeled by the cubic curve gj=
[gj(t)]1×m= [β0j+ β1jt+ β2jt2+ β3jt3]1×m. The joint likelihood for N=

95 segregants was then L(Θ)=
Q

N

i¼1

δi0f0ðyiÞ þ δi1f1ðyiÞ
� 	

, where Θ= (β0j, β1j, β2j,

β3j, ρ, σ
2
e ) is the set of unknown parameters in the statistical model. Maximum

likelihood estimates (MLEs) were calculated by taking derivative of log L(Θ)with

respect to each unknown parameter. To solve these equations, we first expressed
β’s, σ2e and log L(Θ) as functions of ρ as below, then looked for the critical point of
log L(Θ) which reached its maximum.

Notation: T0 ¼
P

N

i¼1

δi0yi , T1 ¼
P

N

i¼1

δi1yi , I0= [1⋯1]1×m, I1= [1⋯m], I2 = I21� =

1 � � �m2½ �, I3 = I31� = 1 � � �m3½ �, Q ρ;U;Vð Þ= 1
1�ρ2 U1V1 þ UmVmð Þ−

ρ
1�ρ2

P

m�1

i¼1

UiViþ1 þ Uiþ1Vi

� �

� �

+
1þρ2

1�ρ2

P

m�1

i¼2

UiVi, where U= [U1,⋯, Um] and V=

[V1, ⋯, Vm].
By taking derivative of log L(Θ) with respect to β.0’s, the following linear system

was obtained:

α11β00 þ α12β10 þ α13β20 þ α14β30 ¼ b1

α21β00 þ α22β10 þ α23β20 þ α24β30 ¼ b2

α31β00 þ α32β10 þ α33β20 þ α34β30 ¼ b3

α41β00 þ α42β10 þ α43β20 þ α44β30 ¼ b4

2

6

6

6

4

3

7

7

7

5

;

where αij= n0Q(ρ, Ii−1, Ij−1) and bi=Q(ρ, T0, Ii−1). Here, n0 ¼
P

N

i¼1

δi0 and

n1 ¼
P

N

i¼1

δi1 . Then, the coefficients for the linear system could be obtained by

β00
β10
β20
β30

2

6

6

6

4

3

7

7

7

5

¼

α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

2

6

6

6

4

3

7

7

7

5

�1

�

b1

b2

b3

b4

2

6

6

6

4

3

7

7

7

5

:

β.1’s could be obtained similarly. Taking derivative with respect to σe, we had σ2e =
PN

i¼1
Q ρ;yi ;yið Þþ

P

i¼0;1
Q ρ;Ti ;Tið Þ�

P3

j¼0
2βjiQ ρ;Ti ;Ijð Þþ

P3

j¼0

P3

k¼0
niβjiβkiQ ρ;Ij ;Ikð Þ

h i

mN
. Since we

already had β’s in terms of ρ, here σ2e was expressed as a function of ρ, too. The log

likelihood could be written as logL Θð Þ=�mN
2
log2π− N

2 m� 1ð Þlog 1� ρ2ð Þ þm logσ2e
� 	

−

mN
2
, thus the MLE ρ̂ could be obtained by looking for the critical point that

maximizes log L(Θ). Then the MLE for (β0j, β1j, β2j, β3j, σ
2
e ) could also be obtained.

After determining parameters with MLE procedure, LR test was performed to
test the hypothesis of the existence of eQTL by comparing a reduced model H0

(single gene-expression trait curve) against the full model H1 (different gene
expression trait curve for different genotypes):

H0 : β00 ¼ β01; β10 ¼ β11; β20 ¼ β21; β30 ¼ β31
H1 : at least one of the equalities does not hold:

It is noteworthy that MPTGA is equivalent to the regression method when the
AR coefficient ρ is forced to be zero, assuming independent relationship among
observations in the time series as the regression method. Therefore, it is expected
that the regression method would have similar performance as the MPTGA
method when the time-series data is of low self-dependency.

The AR model. Time-series data are commonly modeled by a time-lagged AR
model (first ordered AR model as an example):

Yi;t ¼ β0 þ β1Yi;t�1 þ εi;t:

To access whether Trait Y is associated with a genetic locus, we compared a null
model

H0 : Yi;t ¼ β0 þ β1Yi;t�1 þ εi;t ; t ¼ 2; � � � ; 6

vs. a full model (fitting each genotype separately) as

H1 : Yi;t ¼ δi0ðβ00 þ β10Yi;t�1Þ þ δi1ðβ01 þ β11Yi;t�1Þ þ εi;t ; t ¼ 2; � � � ; 6;

where δi0 and δi1 are the indicator variables for genotype 0 and genotype 1. It is
noteworthy that this formulation corresponds to the independent model M3 in the
TGCT test section below and we will refer to this method as the AR method in
temporal-genetic association tests. We performed a linear regression to estimate
the parameters under each model and used an F-test to compare the null model
against the full model to detect eQTL associations.

Estimating confident intervals of eQTLs. We employed the χ2 quantile method
in the LOD score test described in Mangin et al.52, in which the corresponding
statistic T(d0) follows a chi square distribution with N degree of freedom under the
null hypothesis that d0 is the QTL position. The (1− α) confidence interval is then
defined as ½dinf ; dsup�, where dinf (dsup) is the smallest (the greatest) value of d0 such

that T(d0) is smaller than χ2N;α , where χ
2
N;α is the α quantile of a χ2 with N degree of

freedom. Here, Tðd0Þ= supd ½RðdÞ� � Rðd0Þ and R(d) is the − 2*log-LR statisticR

(d)=�2log likelihood of data with no eQTL
likelihood of data with an eQTL at d

.
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Temporal-genetic causality test. Temporal QTL can be treated as a systematic
source of perturbation to infer causality among traits associated with the QTL. We
and others have previously demonstrated that for two traits associated with a given
genetic locus there are a limited number of causal relationships possible between
the traits14,17 (Supplementary Fig. 1): (1) Trait X is causal for Trait Y (M1); (2)
Trait Y is causal for Trait X (M2); (3) Trait X is independent of Trait Y (M3); (4)
Trait X is partially causal for Trait Y (M4); (5) Trait Y is partially causal for Trait X
(M5). Models M1 and M2 are the simplest causal relationships between two traits
in which a given locus acts on one of the traits through the other. Model M3 is the
fully independent model in which the genetic locus acts independently on each
trait. Models M4 and M5 represent partial causal relationships in which one trait is
causal for the other, but the genetic locus acts independently on each trait.

Static eQTLs and teQTLs were not evenly distributed along the whole genome.
There were loci referred to as eQTL hotspots where many gene expression traits
were linked. It is important to dissect causal regulators underlying these eQTL
hotspot loci, which can regulate a large number of gene expression traits. To
identify causal regulators for a given hotspot, Zhu et al.3 first identified genes with
cis-eQTL in the corresponding eQTL hotspot region and inferred their
downstream-regulated genes as the set of genes that could be reached in the
integrative molecular Bayesian Network. If the downstream set of a cis regulated
gene at an eQTL hotspot locus is significantly enriched for eQTLs linked to the
locus, the cis regulated gene is inferred as a key regulator of the eQTL hotspot.
Instead of integrating diverse data into a global causal network3,28,42,53, we aim to
test pairwise causality by leveraging time-dependent genetic data.

The LCMS proposed by Schadt et al.14 used normal distributions to model the
static time expression trait data. Here with multi-dimensional time-series data, we
seek to combine both the dynamic information and genetic information to infer the
causal relationship between two time series more precisely. Granger26 formalized
the idea of time series-based causality test in the context of linear regression. The
idea of Granger causality is to test whether the prediction of the time series could
be significantly improved by incorporating information from previous time points
in a second time series, and thus to test whether the second time series has a causal
effect on the first time series. Mathematically, Granger causality test compares the
reduced model with the full model, which adds the lagged information of another
time series as a predictor in regression, and tests whether the improvement in
fitting the data is significant. We adopted the idea to include the lagged values of
one time series to augment the autoregression when comparing the causal relation
and independent relation. Due to a small number of time points available, we used
first-order autoregression model AR(1). Specifically, the five models in
Supplementary Fig. 1 were represented as:

M1 : Xi;t ¼ δi0ðα00 þ α10Xi;t�1Þ þ δi1ðα01 þ α11Xi;t�1Þ þ εi;t

Yi;t ¼ β0 þ β1Yi;t�1 þ β2Xi;t�1 þ μi;t
M2 : Yi;t ¼ δi0ðβ00 þ β10Yi;t�1Þ þ δi1ðβ01 þ β11Yi;t�1Þ þ μi;t

Xi;t ¼ α0 þ α1Xi;t�1 þ α2Yi;t�1 þ εi;t

M3 : Xi;t ¼ δi0ðα00 þ α10Xi;t�1Þ þ δi1ðα01 þ α11Xi;t�1Þ þ εi;t

Yi;t ¼ δi0ðβ00 þ β10Yi;t�1Þ þ δi1ðβ01 þ β11Yi;t�1Þ þ μi;t
M4 : Xi;t ¼ δi0ðα00 þ α10Xi;t�1Þ þ δi1ðα01 þ α11Xi;t�1Þ þ εi;t

Yi;t ¼ δi0ðβ00 þ β10Yi;t�1Þ þ δi1ðβ01 þ β11Yi;t�1Þ þ β2Xi;t�1 þ μi;t
M5 : Yi;t ¼ δi0ðβ00 þ β10Yi;t�1Þ þ δi1ðβ01 þ β11Yi;t�1Þ þ μi;t

Xi;t ¼ δi0ðα00 þ α10Xi;t�1Þ þ δi1ðα01 þ α11Xi;t�1Þ þ α2Yi;t�1 þ εi;t

We used different autoregression parameters for different genotypes to account
for the genetic effect and added the lagged value of one time series to represent the
causal effect of one time series on the other. The parameters in each model were
estimated using ordinary linear regression. The log likelihood of X and Y are
calculated as

ln L̂ðXÞ
� �

¼ �
N

2
ln 2πð Þ �

N

2
ln

X

i;t>1

Xi;t � X̂i;t

� �2
 !

þ
N

2
ln Nð Þ �

N

2

and

ln L̂ðYÞ
� �

¼ �
N

2
ln 2πð Þ �

N

2
ln

X

i;t>1

Yi;t � Ŷi;t

� �2
 !

þ
N

2
ln Nð Þ �

N

2

When assessing the causal (M1: X→ Y) and reactive (M2: Y→ X) models, we
calculated log joint likelihood ln L̂ (X, Y)= ln L̂ Xð Þ þ ln L̂ (Y) under these two
models. As the total numbers of parameters in M1 and M2 are the same,
comparing ln L̂ (X, Y) under these two models and comparing BICs are equivalent.

One of our major goals of the TGCT test is to identify the cis-regulators of
teQTL hotspots. If we assume Trait X with a cis-eQTL linked to a teQTL hotspot,
then we can restrict the model selection among causal (M1: X→ Y), independent
(M3: X⊥Y), and partial causal (M4) models without considering the reactive (M2:
Y→ X) and partial reactive (M5) models. In such cases, the three models share the
same regression model for Trait X. Thus, we perform model selection based only
on the regression on Trait Y. The corresponding log likelihood was estimated as

follows:

ln L̂
� �

¼ �
N

2
ln 2πð Þ �

N

2
ln

X

i;t>1

Yi;t � Ŷi;t

� �2
 !

þ
N

2
ln Nð Þ �

N

2

And BIC is defined as BIC= ln Nð Þk� 2lnðL̂Þ, where k is the number of
parameters estimated in the corresponding model. BIC penalizes complex models.
The model with the smallest BIC was identified as the model best supported by
the data.

For each teQTL hotspot, we first identified genes with cis-teQTLs linked to the
hotspot as candidate causal genes, then pair these cis-eQTL genes with all genes
with trans-eQTLs linked to the hotspot for the causality test. The cis-eQTL genes
with the number of causal relations significantly more than expected by chance
(the cutoff value for defining a teQTL hotspot) were selected as the putative key
regulators of the eQTL hotspot.

MPTGA and TGCT in diploid systems. The above MPTGA and TGCT are
simplified based on a haploid system. When applying the MPTGA and TGCT to
diploid systems in which there are three possible genotypes, 00/01/11 (or 0/1/2),
at each SNP, we can apply these methods directly to detect dominant/recessive
effects. To detect full genetic effects, the genetic association test can be expressed

as yi(t)= δi0
P

K

k¼0

βk0t
k
+ δi1

P

K

k¼0

βk1t
k
+ δi2

P

K

k¼0

βk2t
k
+ εiðtÞ for a given trait Y, then

the reduced model H0 (single-gene expression trait curve):

βk0 ¼ βk1 ¼ βk2 forall k

can be compared against the full model H1 (different gene expression trait curve for
different genotypes): at least one of the equalities does not hold.

To test the hypothesis of the existence of eQTL at a locus, we can estimate these
parameters with an MLE procedure and performing LR test as we described in the
above section. Similar generalization can be applied to the TGCT.

A generalized TGCT. One potential drawback in the current TGCT test is that we
explicitly modeled the causal variable in an AR form, which is not as powerful in
identifying genetic effects as other methods (Supplementary Fig. 4). This also leads
to the results that the proposed temporal-genetic association test (MPTGA) and
the causality test (TGCT) are based on two different forms of models instead of a
unified function. If long time-series data are available, a more flexible model can be
used to unify the approaches used in temporal-genetic association and causality
tests. Specifically, the models can be specified as follows: given Trait X with cis-
eQTL, Xit= δi0f

t�1
x0 tð Þ þ δi1f

t�1
x1 tð Þ þ εt , and Trait Y with trans-eQTL, then the

three possible models of the causal relationships between them can be rewritten as
the following

M1 causalmodelð Þ : Yi;t ¼ f t�1 tð Þ þ β2Xi;t�1 þ εt

M3 independentmodelð Þ : Yi;t ¼ δi0f
t�1
0 tð Þ þ δi1f

t�1
1 tð Þ þ εt

M4 partial causalmodelð Þ : Yi;t ¼ δi0f
t�1
0 tð Þ þ δi1f

t�1
1 tð Þ þ β2Xi;t�1 þ εt ;

Where f t�1
0 tð Þ and f t�1

1 tð Þ correspond to polynomial fitting functions using pre-
vious time points of each genotype, respectively; f t−1(t) corresponds to a single
polynomial fitting function using previous time points of both genotypes. Then, we
can test for temporal-genetic causality using the same model selection approach as
described in the TGCT method. We can set the degrees of polynomial functions
f t−1(t), f t�1

0 tð Þ, and f t�1
1 tð Þ as the same as the polynomial function f(t) used in

MPTGA. If the number of time points is not large enough for the unified model
described above, but larger than the size in our current study, we can make TGCT
more flexible by using higher order AR models instead of first-order AR models.

Permutation tests. Two types of information are critical to temporal-genetic
association tests: (1) temporal relationships; (2) genetic structures (LD structures
across the genome). Thus, in the permutation procedure, we preserved the tem-
poral relationships and genetic structure, and only permuted the strain labels. We
left the gene expression data unchanged and permuted the strain labels in the
genetic data so that true generic associations were destroyed while the
correlation relationship of expression traits was maintained. We performed
the permutation 10 times. At a specific p-value cutoff, the FDR was calculated as:

FDR=
average # associations<p in permuted data

# associations<p in original data
. The p-values cutoffs needed to

control the FDR at the 5% level were used in our temporal-genetic association tests.

Simulation studies for temporal genetic associations. We simulated time-series
data sets from multivariate normal distribution, with mean vector modeled by
various patterns that are similar to the observed experimental results (Supple-
mentary Fig. 2). Each set of data was then drawn either from a single model or two
separate models with equal probability, which mimic the situation of existence and
absence of eQTL effects. Ten thousand data sets were simulated, in which each data
set consisted of N six-point time series either from a single multivariate normal
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distribution or two separate multivariate normal distributions. The number of
samples N varied from 20 to 100. The covariance matrix was modeled as above,
where ρ was between 0.1 and 0.9 with ρ ~N(0.9, 0.02) for high-correlation data set
or ρ ~N(0.1, 0.02) for low-correlation data set.

Robustness of temporal-genetic association methods. We assessed the
robustness of temporal-genetic association methods by randomly dropping data
points in the simulated time series with data missing rate varying from 0.02 to 0.1.
For methods that involve fitting a curve to the data within each genotype, i.e.,
MPTGA, regression and AR, the samples with missing time points were masked
first, then each method was applied to the remaining samples (corresponding
forms of curves fitted to the remaining data), then the missing time points were
imputed based on the fitted curves and the temporal-genetic association methods
were applied to the imputed data. For the other methods that do not fit curves to
the data, i.e., union, Fisher and MANOVA, the samples with missing data were
masked first and each method was applied to the remaining data.

Simulation studies for TGCT. To evaluate the performance of the TGCT test, we
simulated pairs of time series for traits X and Y under different models. We
performed two sets of simulation studies. In the first set of studies, we simulated
10,000 trait pairs for each parameter setting. Each Trait X consisted of 6 time
points for N samples with the mean vectors following one of the patterns shown in
Supplementary Fig. 2. The genetic effects were simulated by drawing variations
from two separate multivariate normal distributions. Each Trait Y was simulated
from Trait X according to the causal model (M1). The covariance matrices were
modeled similarly with ρ ~N(0.8, 0.1) for each dataset. The above simulation
scheme was repeated to generate 10,000 trait pairs for each sample size N that
varied from 20 to 150 and with each set of parameters in the causal model M1. For
the pairs with both traits linked to the tested locus (MPTGA p-value < 10−6), we
compared the joint likelihood L(X,Y) based on the causal model (M1) with the
reactive model (M2). In the second set of studies, we simulated 10,000 trait pairs.
Each Trait X consisting of six time points for N samples was simulated similar as
above, and Trait Y was simulated according to the causal (M1), independent (M3),
or partial causal (M4) model with different parameter settings. For the pairs with
both traits linked to the tested locus (MPTGA p-value < 10−6), we calculated the
likelihoods of Y based on the causal (M1), independent (M3), and partial causal
(M4) models, and selected the best fit model based on BIC (detailed in the Methods
section above).

Assessing overfitting problem. Both the MPTGA and the regression method, or
the polynomial regression based methods in general, are prone to sporadic asso-
ciations or overfitting37. To assess the tendency of sporadic association or over-
fitting in the MPTGA or the regression method, we compared p-values of
significant associations in both empirical and permuted data and the p-values of
neighboring SNPs that are in strong LD. If a significant trait-SNP association is
detected (a statistical model is trained) and the trained model describes the true
underlying relationship, then neighboring SNPs in high LD, where genotypes for
SNPs in high LD data vary slightly (according to the strength of the LD structure),
should be able to predict the trait or strongly associate with the trait (model
testing). On the other hand, if a significant trait-SNP association detected (a sta-
tistical model is trained) and the trained model describes noise instead of the true
underlying relationship, then neighboring SNPs in high LD are unlikely to be able
to predict the trait or strongly associate with the trait (model testing). Thus, by
comparing the consistency/correlation of the strengths of associations between
peak SNPs and neighboring SNPs in high LD to a trait we can assess overfitting
problem, less overfitting will lead to a higher consistency/correlation.

Assessing statistical validity. To assess the statistical validity of the MPTGA test,
we compare the QQ plots from the p-values of the MPTGA test based on (1)
simulated data, (2) real data, and (3) permuted real data.

The simulation scheme is as follows: first, we simulate a genotype vector for
95 samples with each cell taking a random 0/1 value with 0.5 probability; then we
simulate a random gene expression trait (95 samples × 6 time points) from a
multivariate normal distribution with a mean vector corresponding to a random
pattern in Supplementary Fig. 2 as we use in the Simulation studies for temporal
genetic associations section; finally, the MPTGA test is applied to the simulated
genotype and gene expression traits. The gene expression matrix is simulated
independently from the genotype matrix, this simulation is depicting a scenario
with no association between the gene expression trajectories and the genotypes. For
the yeast dataset, we tested 5703 gene expression traits v.s. 2956 SNPs, resulting in a
5703 × 2956 p-value matrix. Next, we permuted the strain labels and performed
MPTGA test, resulting in another 5,703 × 2956 p-value matrix in each permutation.

RRD1 KO experiments. The wild type strain BY4730 and RRD1 knockout strain
YSC6273-201925697 were obtained from Thermo Scientific Open Biosystems.
Yeast was grown in YPD medium to log-phase in shaken flasks at 30 °C. Total RNA
was extracted as described previously54. For rapamycin treatment, 100 nM rapa-
mycin (Cayman Chemical, Ann Arbor, MI) was added to the medium after yeast

grew to log-phase. After culture for 50 min, total RNA was extracted the same as
above. All experiments were repeated 3 times on three different days.

Approximately 250 ng of total RNA per sample was used for library construction
by the TruSeq RNA Sample Prep Kit (Illumina) and sequenced using the Illumina
HiSeq 2500 instrument with 100nt single-read setting according to the manufacturer’s
instructions. Sequence reads were aligned to yeast genome assembly using Tophat55.
Total 6932 yeast transcripts were quantified using Cufflinks55, and 5542 of them
overlap with transcripts on Yeast Genome 2.0 Arrays from Affymetrix, which was
used for generating the yeast F2 time course data. The 5542 transcripts were used in
further analysis. DEGs were defined by CuffDiff55. At q-value < 0.01, 64 and 581 were
in RRD1 ko signature without rapamycin (RRD1 ko no treatment vs. wild-type no
treatment) and RRD1 ko signature with rapamycin (RRD1 ko with rapamycin vs. wild
type with rapamycin), respectively. The RNA sequencing data generated are available
at GEO data base with accession number GSE86786.

eQTL hotspots. The yeast genome is divided into 20 kb bins and the number of (t)
eQTLs associated with markers in each bin is counted. For those bins with sig-
nificantly more (t)eQTLs than expected by chance, the genetic location corre-
sponding to the bin is defined as a (t)eQTL hotspot29,56. If neighboring bins were
(t)eQTL hotspots, then they are merged into a single (t)eQTL hotspot.

Gene-set enrichment. The yeast GO categories were derived from the SGD
database (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder). We restricted
attention to GO terms based on the slim mapping from SGD, which is comprised
of roughly 100 categories. We applied the hypergeometric test using the annotation
database. The annotations with the most significant p-values were reported in
Table 3. We also applied the hypergeometric test for enrichment analysis for all
signatures comparison.

Code availability. Codes for MPTGA and TGCT can be found at http://research.
mssm.edu/integrative-network-biology/Software.html.

Data availability
The RNAseq data generated in this study is available at GEO database with accession

number GSE86786.
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