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Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on
complex networks, and are often the only accessible way to explore their behavior. The development
of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used
for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical
processes on static networks. However, its adaptation to temporal networks remains non-trivial.
We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable
to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to
multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling.
We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily
applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-
Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation
in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-
Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates.
For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times
faster than rejection sampling.

AUTHOR SUMMARY

When studying how e.g. diseases spread in a pop-
ulation, intermittent contacts taking place between
individuals—through which the infection spreads—are
best described by a time-varying network. This object
captures both their complex structure and dynamics,
which crucially affect spreading in the population. The
dynamical process in question is then usually studied
by simulating it on the time-varying network represent-
ing the population. Such simulations are usually time-
consuming, especially when they require exploration of
different parameter values. We here show how to adapt
an algorithm originally proposed in 1976 to simulate
chemical reactions—the Gillespie algorithm—to speed up
such simulations. Instead of checking at each time-step if
each possible reaction takes place, as traditional rejection
sampling algorithms do, the Gillespie algorithm deter-
mines what reaction takes place next and at what time.
This offers a substantial speed gain by doing away with
the many rejected trials of the traditional methods, with
the added benefit of giving stochastically exact results.
In practice this new temporal Gillespie algorithm is tens
to hundreds of times faster than the current state-of-the-
art, opening up for thorough characterization of spread-
ing phenomena and fast large-scale applications such as
the simulation of city- or world-wide epidemics.

∗ cvestergaard@gmail.com

I. INTRODUCTION

Networks have emerged as a natural description of
complex systems and their dynamics [1], notably in the
case of spreading phenomena, such as social contagion,
rumor and information spreading, or epidemics [1–3].
The dynamics of contagion processes occurring on a net-
work are usually complex, and analytical results are at-
tainable only in special cases [3, 4]. Furthermore, such re-
sults almost systematically involve approximations [3, 4].
Numerical studies based on stochastic simulations are
therefore necessary, both to verify analytical approxima-
tions, and to study the majority of cases for which no
analytical results exist. The development of fast algo-
rithms is thus important for the characterization of con-
tagion phenomena, and for large-scale applications such
as simulations of world-wide epidemics [2, 5].
The Doob-Gillespie algorithm [6–11] (also known as

Gillespie’s Stochastic Simulation Algorithm—SSA or
Gillespie’s direct method), originally proposed by David
Kendall in 1950 for simulating birth-death processes and
made popular by Daniel Gillespie in 1976 for the simula-
tion of coupled chemical reactions, offers an elegant way
to speed up such simulations by doing away with the
many rejected trials of traditional Monte Carlo methods.
Instead of checking at each time-step if each possible re-
action takes place, as rejection sampling algorithms do,
the Gillespie algorithm draws directly the time elapsed
until the next reaction takes place and what reaction
takes place at that time. It is readily adapted to the
simulation of Poisson processes on static networks [12–16]
and can be generalized to non-Markovian processes [17].
Systems in which spreading processes take place, e.g.,

social, technological, infrastructural, or ecological sys-
tems, are not static though. Individuals create and break
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contacts at time-scales comparable to the time-scales of
such processes [18–20], and the dynamics of the networks
themselves thus profoundly affect dynamical processes
taking place on top of them [21–27]. This means that
one needs to take the network’s dynamics into account,
e.g., by representing it as a time-varying network (also
known as a time-varying graph, temporal network, or
dynamical network) [28]. The dynamical nature of time-
varying networks makes the adaptation of the Gillespie
algorithm to such systems non-trivial.
The main difficulty in adapting the Gillespie algorithm

to time-varying networks is taking into account the vari-
ation of the set of possible transitions and of their rates
at each time step. We show that by normalizing time
by the instantaneous cumulative transition rate, we can
construct a temporal Gillespie algorithm that is applica-
ble to Poisson (constant rate) processes on time-varying
networks. We give pseudocode and C++ implementa-
tions for its application to simulate the paradigmatic
Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Recovered (SIR) models of epidemic spreading,
for both homogeneous and heterogeneous [29] popula-
tions. We verify the accuracy of the temporal Gillespie
algorithm numerically by comparison with a classical re-
jection sampling algorithm, and we show that it is up to
∼ 500 times faster for the processes and the parameter
ranges investigated here.
While Poissonian models are of widespread use, real

contagion phenomena show memory effects, i.e., they are
non-Markovian. Notably, for realistic infectious diseases,
the rate at which an infected individual recovers is not
constant over time [30, 31]. Social contagion may also
show memory effects, e.g., one may be more (or less)
prone to adopt an idea the more times one has been ex-
posed to it. To treat this larger class of models, we show
how the temporal Gillespie algorithm can be extended
to non-Markovian processes. We give in particular an
algorithm for simulating SIR epidemic models with non-
constant recovery rates.

II. RESULTS

The following subsections present the main results of
the article. Section IIA defines the stochastic processes
which can be simulated using the temporal Gillespie al-
gorithm, and describes the class of compartmental mod-
els for contagion phenomena on networks—the class we
will use in examples throughout this paper. Section II B
gives a quick overview of the traditional rejection sam-
pling algorithms. Section IIC outlines a derivation of the
static Gillespie algorithm. Section IID derives the tem-
poral Gillespie algorithm for Poisson (constant-rate) pro-
cesses. In Section II E we validate the temporal Gillespie
algorithm through numerical comparison with a rejec-
tion sampling algorithm; we also compare their speeds for
simulating SIR and SIS processes on both synthetic and
empirical time-varying networks. Section II F shows how

the temporal Gillespie algorithm can be extended to sim-
ulate non-Markovian processes; the approach is verified
numerically and the speed of the non-Markovian tempo-
ral Gillespie algorithm is compared to rejection sampling.
Tables listing the notation used in the manuscript, de-

tails on how Monte Carlo simulations were performed,
and pseudocode for application of the temporal Gillespie
algorithm are given in the Methods section.

A. Stochastic processes on time-varying networks

We define in this section the type of stochastic pro-
cesses for which the temporal Gillespie algorithm can be
applied. At the time of writing, the main domain of ap-
plication of the algorithm is the class of compartmental
models for contagion processes on time-varying networks,
which we introduce below. For definiteness, algorithms
detailing the application of the temporal Gillespie algo-
rithm will concern this class of stochastic processes.
In general, we consider a system whose dynamics can

be described by a set of stochastic transition events. We
assume that the system can be modeled at any point in
time by a set, Ω(t), of M(t) independent stochastic pro-
cesses m, which we term transition processes; the rate at
which the transition m takes place is denoted λm. The
set Ω(t) thus defines the possible transition events at time
t and in general changes over time, depending on both
external factors and the evolution of the system itself; the
number of possible transitions, M(t), thus also generally
changes over time, while λm may or may not vary over
time. For the classic “static” Gillespie algorithm to be
applicable, Ω(t) is allowed to change only when a tran-
sition (or chemical reaction in the context of Gillespie’s
original article) takes place. For processes taking place on
time-varying networks, the medium of the process—the
network—also changes with time. As these changes may
allow or forbid transitions, Ω(t) is not only modified by
every reaction, but also by every change in the network.
This is the domain of the temporal Gillespie algorithm,
which only requires that the number of points in which
Ω(t) changes be finite over a finite time-interval [32].
The assumption that the transition processes are in-

dependent is essential to the validity of the Gillespie al-
gorithm, as it allows the calculation of the distribution
of waiting times between consecutive transitions. This
assumption is not overly restrictive, as it only requires
a transition process to be independent of the evolution
of the other simultaneous transition processes. A tran-
sition process may depend on all earlier transitions, and
the current and past states of all nodes. As such, Gille-
spie algorithms can notably be applied to models of co-
operative infections and other non-linear processes such
as threshold models [17], and has even been applied to
model the dynamics of ant battles [33].
Compartmental models of contagion. In a network-

based description of the population in which a conta-
gion process takes place, an individual is modeled as
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a node i (Fig. 1A). A contact between two individuals
taking place at time t is represented by an edge (i, j)t
in the graph describing the population at the instant t
(Fig. 1A). In a compartmental model, each node is in
a certain state, which belongs to a fixed, finite set of q
different states (compartments) [3]. A random variable
xi(t) ∈ {X1,X2, . . . ,Xq} specifies the state of the node i
at time t (i.e. to which compartment it belongs). Nodes
may stochastically transition between states, governed
by the set Ω(t) of transition processes. One is usually in-
terested in the evolution of the number of nodes in each
state, which we denote X1, X2, . . . , Xq.

As an example, we consider the classic SIR model of
epidemic spreading with constant transition rates in a
homogeneous population (rates are the same for all in-
dividuals) (Fig. 1B). Here nodes can be in one of three
states: susceptible, infected, and recovered, {S, I,R}.
Two different transition types let nodes change state: (i)
a node i in the S state switches to the I state with rate
kI(t)β (an S → I reaction), where kI(t) is the num-
ber of contacts i has with nodes in the I state at time t
(Fig. 1A); (ii) a node i in the I state switches to the R
state at rate µ (an I → R reaction).
In general, the transition processes can be divided into

three types:

a. spontaneous transitions, which only depend on the
current state of the node, xi(t) (Fig. 1C)—e.g. an
infected node recovers spontaneously in the SIR
model (Fig. 1B);

b. contact-dependent transitions, which may take
place only when the node i is in contact with other
nodes in a given state; it thus depends on the
states xj of the nodes j currently in contact with i
(Fig. 1D)—e.g. a susceptible node may be infected
upon contact with an infectious node in the SIR
model (Fig. 1B).

c. mixed transitions, which take place spontaneously,
but may depend on the node’s past and current
contacts (Fig. 1E)—e.g. in rumor spreading, an
individual may learn on his own that a rumor is
false (spontaneous) or may be convinced by another
individual who knows the rumor is false (contact-
dependent).

This division is important for practical application of
the temporal Gillespie algorithm as transition processes
of type a need only be updated after a transition has
taken place, and processes of type c need only be updated
whenever a relevant contact takes place, but not at each
time-step. Using this distinction is crucial to obtaining
the large speed-increase that the temporal Gillespie algo-
rithm offers over rejection sampling, as discussed below
(Secs. IID and II E).
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FIG. 1. Schematic representation of a compartmental
contagion process on a network. (A) Illustration of a
contagion process evolving on a time-varying network. Nodes’
colors correspond to their current state; edges denote current
contacts between nodes; edge colors correspond to: black: no
contagion may take place over the edge, red: contagion takes
place during the present time-step, and red-to-blue gradient:
contagion is possible but does not take place. (B) Example:
reaction types in the SIR model. (C) Spontaneous reaction:
a node i may spontaneously transition from its current state
xi to x′

i with rate λm. (D) Contact-dependent reaction: a
node i may transition from its current state xi to x′

i with
rate λm upon contact with the node j in state xj . (E) Mixed
transition: a node i may spontaneously transition from its
current state xi to another state, x′

i with rate λm; contact
with another node j, in state xj , may alter the transition rate
of m, λm → λ′

m. After the contact (i, j)t ends, the transition
rate may revert to λm, remain unchanged, or change to a
third value.
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FIG. 2. Example of how the temporal Gillespie algorithm works for an SIR process on a time-varying network.
We consider the time-varying network of Fig 1A (Network)—time evolves along the vertical axis; a rejection sampling algorithm
considers each transition process at each time-step individually (Transitions); the temporal Gillespie algorithm considers the
integrated cumulative transition rate of all transition processes, L(t; 0), and compares it with the random normalized waiting
times τ ′

l (Normalized time). A transition takes place whenever L(t; 0) =
∑q

l=0 τ
′
l for any q ∈ N. The temporal Gillespie

algorithm works as follows. (A) The first normalized waiting time τ ′
1 is drawn from an exponential distribution with unit rate

[τ ′
1 ∼ Exp(1)] (Normalized time). From the state of the network at the first time-step, the set of possible transitions Ω(0) is

found (Transitions), and from this the cumulative transition rate Λ(0) is calculated. The integrated cumulative transition rate,
L(∆t; 0) = Λ(0)∆t is compared to τ ′

1. If, as in the present example, Λ(0)∆t < τ ′
1 the algorithm is advanced to the next time-

step. (B) and (C) The set of possible transitions Ω(tn) and the cumulative transition rate Λ(tn) is updated at each following
time-step n; if L(tn; 0) = ∆t

∑n−1
l=0 Λ(tl) is still smaller than τ ′

1, the algorithm is advanced to the next time-step. (D) During the
first time-step n∗∗ where L(tn∗∗ ; 0) ≥ τ ′

1, a transition takes place. The exact time of this transition, t∗∗, is given by Eq. (12) and
the transition m that takes place is chosen among the possible transitions in the given time-step with probability proportional
to its transition rate λm [Transitions and Eq. (10)]. (E) The transition changes the system (Network) and consequently the set
of possible transitions, Ω(t∗∗), (Transitions); thus Ω(t∗∗) and Λ(t∗∗) must be updated, which in turn changes the remainder of
L(tn∗∗ ; 0) (Normalized time). A new normalized waiting time is then drawn, τ ′

2 ∼ Exp(1); if L(tn∗∗ ; 0) < τ ′
1 + τ ′

2, no further
transitions takes place during the time-step and the algorithm is advanced to the next time-step (note that multiple transitions
may occur during the same time-step). (F) The above procedure is reiterated.
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B. Rejection sampling for Monte Carlo simulations

A straightforward way to simulate a stochastic process
is to use a rejection sampling algorithm, akin to the clas-
sical Metropolis algorithm. Here one divides the time-
axis in small time-steps ∆t, where ∆t should be chosen
sufficiently small such that this discretization does not in-
fluence the outcome of the process significantly; on time-
varying networks, the choice of ∆t often comes naturally
as the time-resolution at which the network is measured
or simulated (Fig. 1A).
At each time-step t = 0,∆t, 2∆t, . . ., we test whether

each possible transition m ∈ Ω(t) takes place or not. In
practice this is done by drawing a random number rm
that is uniformly distributed on [0, 1) for each m and
comparing it to λm∆t: if rm < λm∆t the reaction takes
place, if rm ≥ λm∆t nothing happens [Fig. 2 (Transi-
tions)]. (Note that one should technically compare rm to
1−exp(λm∆t) to ensure that λm defines a proper transi-
tion rate for finite ∆t. However, the two procedures are
equivalent in the limit ∆t → 0.)
From the design of the rejection sampling algorithm we

see that the proportion of trials that are rejected is equal
to a weighted average over {1−λm∆t}m. Thus, since we
require λm∆t ≪ 1 in order to avoid discretization errors,
the vast majority of trials are rejected and the rejection
sampling algorithm is computationally inefficient.

C. Gillespie algorithm on static networks

The Gillespie algorithm lets us perform stochastically
exact Monte Carlo simulations without having to reject
trials. For Poisson processes on static networks, it works
by recognizing that the waiting time between two consec-
utive transitions is exponentially distributed, and that
each transition happens with a probability that is pro-
portional to its rate.
Specifically, the (survival) probability that the transi-

tion m has not taken place after a time τ since the last
transition event is

Sm(τ) = e−λmτ . (1)

Since each transition takes place independently, the prob-
ability that no event takes place during the interval τ
since the last event is

S(τ) =
∏

m

Sm(τ) = e−Λτ , (2)

where Λ =
∑M

m=1 λm is the cumulative transition rate.
The above result is obtained by using the fact that while
Ω andM do depend on t, they only change when an event
takes place and not in-between. They can thus be treated
as constant for the purpose of calculating the waiting
time between events. The distribution of the waiting
times τ is then given by the probability density p(τ) =
Λe−Λτ , while the probability density for the reaction m

being the next reaction that takes place and that it takes
place after exactly time τ is equal to pm(τ) = λme−Λτ

The static Gillespie algorithm thus consists in drawing
the waiting time τ ∼ Exp(Λ) until the next transition
and then drawing which transition m takes place with
probability πm = λm/Λ. [Here τ ∼ Exp(Λ) is short for:
τ is exponentially distributed with rate Λ.]

D. Temporal Gillespie algorithm

For processes taking place on time-varying networks
however, the set of transition process, Ω(t), changes with
time independently of the transition events, e.g., for the
case of an SIR process nodes may become infected only
when in contact with an infected individual (Fig. 1A).
This means that the survival probability does not reduce
to a simple exponential as in Eq. (1); it is instead given
by

Sm(τ ; t∗) = exp

(

−

∫ t∗∗

t∗
Im(t)λmdt

)

, (3)

where t∗ is the time at which the last transition took
place, t∗∗ = t∗ + τ is the time when the next transition
takes place, and Im(t) is an indicator function that is
equal to one when the process m may take place, e.g.,
when two given nodes are in contact, and zero when m
may not take place. The meaning of Im is exemplified
in Fig. 1A: the node i may be infected by the infectious
node j only when the two nodes are in contact; if we let
m denote this transition process, Im(t) is then one for
t = ∆t, 3∆t, 4∆t and zero for t = 0, 2∆t.

Note that for processes taking place on adaptive time-
varying networks, whose changes only depend on the pro-
cess itself, Im(t) only changes when a transition takes
place and Eq. (3) reduces to Eq. (1). This means that
from the point of view of the algorithm, such networks
are effectively static and the classic “static” Gillespie al-
gorithm may simply be used there [14, 16].
We now consider the general case where Ω(t) may

change independently of the processes evolving on the
network (as described in Sec. II A). Using, as in the pre-
vious section, that transition processes are independent,
we can write the probability that no event takes place
during an interval τ (the waiting time survival function):

S(τ ; t∗) =
∏

m∈Ω

Sm(τ ; t∗)

= exp

(

−
∑

m∈Ω

∫ t∗∗

t∗
Im(t)λmdt

)

, (4)

where Ω denotes the set of all possible transitions (tran-
sition processes) on the interval between two transi-
tion events, (t∗, t∗∗], i.e., Ω is the union over Ω(t) for
t ∈ (t∗, t∗∗], and M is the total number of transition pro-
cesses on the same interval (the size of Ω). We switch
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the sum and the integral in Eq. (4) to obtain

S(τ ; t∗) = exp

(

−

∫ t∗∗

t∗

∑

m∈Ω

Im(t)λmdt

)

. (5)

Finally, using that Im(t) = 0 for all m 6∈ Ω(t), we may
write

S(τ ; t∗) = exp

(

−

∫ t∗∗

t∗
Λ(t) dt

)

, (6)

where

Λ(t) =
∑

m∈Ω(t)

λm (7)

is the cumulative transition rate at time t.
The dynamics of empirical time-varying networks is

highly intermittent and we cannot describe Ω(t) analyti-
cally. This means that we cannot perform the integral of
Eq. (6) to find the waiting time distirbution directly. We
may instead normalize time by the instantaneous cumula-
tive transition rate, Λ(t): We define a unitless normalized
waiting time between two consecutive transitions, τ ′, as

τ ′ = L (t∗∗; t∗) =

∫ t∗∗

t∗
Λ(t)dt , (8)

i.e., equal to the cumulative transition rate integrated
over (t∗, t∗∗]. The survival function of τ ′ has the following
simple form:

S(τ ′) = exp(−τ ′) . (9)

The time t∗∗ when a new transition takes place is given
implicitly by L(t∗∗; t∗) = τ ′, while the probability that m
is the transition that takes place at time t = t∗∗ is given
by:

πm(t) = Im(t)λm/Λ(t) . (10)

This lets us define a Gillespie-type algorithm for time-
varying networks by first drawing a normalized waiting
time τ ′ until the next event from a standard exponen-
tial distribution [i.e. with unit rate, τ ′ ∼ Exp(1)], and
second, solving L(t; t∗) = τ ′ numerically to find t∗∗. In
practice, since Λ(t) only changes when a transition takes
place or at tn = n∆t with n ∈ N, we need only compare
τ ′ to

L(tn+1; t
∗) = (tn∗+1 − t∗)Λ(t∗) +∆t

n
∑

i=n∗+1

Λ(ti) , (11)

for each time-step n (Fig. 2A–C). Here n∗ is the time-
step during which the last transition took place, and
Λ(t∗) is the cumulative transition rate at t∗, immediately
after the last transition has taken place. The first term of
Eq. (11) is the cumulative transition rate integrated over

the remainder of the n∗th time-step left after the last
transition; the second term is equal to L(tn+1; tn∗+1). A
new transition takes place during the time-step n∗∗ where
L(tn∗∗+1; t

∗) ≥ τ ′ (Fig. 2D); the precise time of this new
transition is

t∗∗ = tn∗∗ +
τ ′ − L(tn∗∗ ; t∗)

Λ(tn∗∗)
; (12)

the reactionm that takes place is drawn with probability
given by Eq. (10) (Fig. 2D). We then update Ω and Λ
to Ω(t∗∗) and Λ(t∗∗) (Fig. 2E), draw a new waiting time,
τ ′ ∼ Exp(1), and reiterate the above procedure (Fig. 2F).
The algorithm can be implemented for conta-

gion processes on time-varying networks as follows
(see Methods for pseudocode for specific conta-
gion models and https://github.com/CLVestergaard/
TemporalGillespieAlgorithm for implementation in
C++):

1. Draw a normalized waiting time until the first
event from a standard exponential distribution,
τ ′ ∼ Exp(1) (Fig. 2A).

2. At each time-step tn = n∆t, with n = 0, 1, 2, . . .,
let Ω ≡ Ω(tn) and Λ ≡ Λ(tn); here, only
contact-dependent processes (type b, Sec. IIA) and
mixed (type c, Sec. II A) processes that depend
on contacts taking place at tn or tn−1 need to be
updated—an important point, as it lets the tempo-
ral Gillespie algorithm be much faster than rejec-
tion sampling (see discussion in Sec. II E). Then,
compare τ ′ to Λ∆t:

if Λ∆t ≤ τ ′: Subtract Λ∆t from τ ′, continue to
next time-step and repeat 2 (Figs. 2A–2C)
[34].

if Λ∆t > τ ′: Let the reaction m take place, chosen
from Ω with probability πm = λm/Λ. The
fraction that is left of the time-step when the
transition takes place is ξ = 1 − τ ′/(Λ∆t)
and the precise time of the transition is t∗∗ =
tn + τ ′/Λ (Figs. 2D and 2F). Next, update Ω
and Λ (Fig. 2E); this time all transition pro-
cesses should be updated, as spontaneous pro-
cesses (type a, Sec. IIA) may change, emerge,
or disappear when a transition takes place.
Then:

(a) draw a new normalized waiting time, τ ′ ∼
Exp(1) (Fig. 2F);

(b) compare τ ′ to ξΛ∆t:

if τ ′ ≥ ξΛ∆t: subtract ξΛ∆t from τ ′,
continue to the next time-step and re-
peat 2 (Fig. 2F).

if τ ′ < ξΛ∆t: Another transition takes
place during the present time-step (at
time t∗∗∗ = t∗∗ + τ ′/Λ, where t∗∗ is
the time of the last transition during
the same time-step): choose m from

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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Ω with probability πm = λm/Λ; let
ξ → ξ − τ ′/Λ∆t, and update Ω and
Λ. Repeat a) and b).

By construction, the above procedure produces re-
alizations of a stochastic process for which the wait-
ing times for each transition follow exactly their cor-
rect distributions. The temporal Gillespie algorithm is
thus what we term stochastically exact: all distributions
and moments of a stochastic process evolving on a time-
varying network obtained through Monte Carlo simu-
lations converge to their exact values. Rejection based
sampling algorithms are stochastically exact only in the
limit λm∆t → 0.

A large literature exists on the related problem of
simulating coupled chemical reactions under externally
changing conditions (e.g., time-varying temperature or
volume) [35–40]. Most of these methods consider only
external perturbations that can be described by an an-
alytical expression. In this case the problem reduces to
that of defining a static, yet non-Markovian, algorithm.
Some methods, and notably the modified next reaction
method developed by Anderson [37], can be adapted to a
completely general form of the external driving and thus,
in principle, to simulate dynamical processes taking place
on time-varying networks. These methods are based on
a scheme that is conceptually similar to Gillespie’s direct
algorithm, the next reaction method, proposed by Gib-
son and Bruck [35]. The next reaction method draws a
waiting time for each reaction individually and chooses
the next reaction that happens as the one with the short-
est corresponding waiting time. It then updates the re-
maining waiting times, draws new waiting times (if ap-
plicable), and reiterates. To generalize the next reaction
method to processes with non-exponential waiting times,
Anderson introduced the concept of the internal time for
each transition process [37]. In the notation used in the

present article it is defined as Tm(t) =
∫ t

0
Im(t)λmdt and

is thus equivalent to the normalized time, L(t, 0), only
for an individual transition process.

By construction, the next reaction method needs to
draw only one random number per transition event,
where the Gillespie algorithm draws two. However, this
reduction in the number of required random variables
comes at a price: one must draw a random number for
each individual transition process and keep track of, com-
pare, and update each of the individual waiting times.
For chemical reactions, where the number of different
chemical reactions is small (it scales with the number of
chemical species), this tradeoff favors the next reaction
method. However, for contagion processes on networks,
each individual is unique (if not intrinsically, at least due
to its position in the network). The number transition
processes thus scales with the number of nodes and con-
tacts, which favors the Gillespie algorithm as it does not
need to keep track of each of them individually [17].

On time-varying networks (or for time-varying exter-
nal driving) one must furthermore update relevant in-

ternal times each time the network structure (external
conditions) changes in the next reaction method. Chem-
ically reacting systems are usually close to being adia-
batic, i.e., the external driving changes slowly compared
to the time-scales of chemical reactions. Thus, the ad-
ditional overhead related to updating individual internal
times is practically negligible. However, the dynamics of
temporal networks is highly intermittent and the time-
scale of network change is typically smaller than the time-
scales of relevant dynamical processes. Here one must
thus update the internal times many times between each
transition event, inducing a substantial overhead. Since
the temporal Gillespie algorithm operates with a single
global normalized waiting time, it handles these updates
more efficiently.
Finally, the modified next reaction method may in

principle be extended to non-Markovian processes taking
place on time-varying networks (as treated in Sec. II F us-
ing the temporal Gillespie algorithm). However, such an
approach would, for each single transition, require solving
numerically Eq. (13) of [37] for the internal waiting time
of each individual transition process, taking into account
the time-varying network structure, finding the shortest
corresponding waiting time in real time, and then updat-
ing the internal waiting times of all the other reactions,
rendering the next reaction method even more inefficient
in this general case.

E. Comparison of Gillespie and rejection sampling
algorithms

Numerical validation. We compare the outcome of
SIR and SIS processes on activity-driven time-varying
networks [41] simulated using the temporal Gillespie al-
gorithm to the outcome of simulations using traditional
rejection sampling. For sufficiently small λm∆t, the out-
comes are indistinguishable (Fig. 3, see also Supplemen-
tary Fig. 1 for an empirical network of face-to-face con-
tacts in a high school), confirming the validity of the tem-
poral Gillespie algorithm. Note that rejection sampling
is only expected to be accurate for λm∆t ≪ 1, while the
temporal Gillespie algorithm is stochastically exact for
all λm∆t; the results of the two algorithms thus differ
when the assumption λm∆t ≪ 1 does not hold (Supple-
mentary Fig. 2).
Comparison of simulation speed. Next, we compare

the speeds of the temporal Gillespie and the rejection
sampling algorithms for SIR and SIS processes (see Meth-
ods for details on how simulations were performed). Fig-
ure 4 shows that the temporal Gillespie algorithm is up
to multiple orders of magnitude faster than traditional
rejection sampling. These results are confirmed by simu-
lations on empirical time-varying networks of face-to-face
contacts (Fig. 5, Table I). The speed gain is higher for
larger systems (compare N = 1000 to N = 100 in Fig. 4)
We also see that the speed gain is larger the sparser the
network is. This is because the calculation of the contacts
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FIG. 3. Comparison of numerical results from temporal Gillespie and rejection sampling algorithms. (A) Mean
number of nodes in each state of the SIR model as function of time. (B) Distribution of final epidemic sizes (number of recovered
nodes when I = 0) in the SIR model. (C) Mean number of nodes in each state of the SIS model as function of time. (D)
Distribution of the number of infected nodes in the stationary state (t → ∞) of the SIS model. All simulations were performed
1 000 000 times with the root node chosen at random on an activity driven network [41] consisting of N = 100 nodes, with
activities ai = ηzi, where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when active. Parameters of
the epidemic processes were β∆t = 10−2 and µ∆t = 10−4.

TABLE I. Summary statistics for empirical face-to-face
contact networks from the SocioPatterns collabora-
tion [45]: social setting; number of nodes in the network,
N ; total duration of measurements, T ; average instantaneous
degree, k(t).

Setting N T k(t) Reference

Workplace 92 11 days 0.004 [46]

Hospital 80 4 days 0.064 [47]

High school 327 4 days 0.063 [48]

Conference 399 32 hours 0.070 [49]

between susceptible and infected nodes at each time-step,
necessary to determine the possible S → I transitions, is
the performance limiting step of the temporal Gillespie
algorithm (see below). In the extreme case of a conta-
gion model where all transitions are contact-dependent
(type b, Sec. II A), such as the classic Maki-Thompson
model of rumor spreading [42], the temporal Gillespie
algorithm is approximately a factor two faster than the
rejection sampling algorithm.

Expected time complexity of the algorithms. We may
gain insigth into the performance of the algorithms by
considering their time-complexity, i.e., how their run-
ning time scales with the input parameters of the sim-
ulated system. Since the algorithms are used for Monte
Carlo simulations, it is most interesting to consider the
expected complexity given a set of parameters, i.e., the
mean running time of an algorithm averaged over an
ensemble of simulations, not the worst-case complexity
which is usually considered for deterministic algorithms.
The expected running time of the rejection sampling

algorithm scales as

ΘRS = O
(

E(t)nsimu

)

+O
(

M(t)nsimu

)

, (13)

where O (x) denotes a term that is of order x, E(t) =

Nk(t)/2 is the mean number of contacts per time-step,

M(t) is the mean number of possible transitions at any
instant, and nsimu is the number of time-steps simulated.
For comparison, the expected running time of the tem-
poral Gillespie algorithm is given by

ΘTGA = O
(

E(t)nsimu

)

+O
(

Q(t)nsimu

)

, (14)
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FIG. 4. Comparison of the speed of the temporal Gillespie and the rejection sampling algorithms. Ratio between
computational times ΘRS and ΘTGA per single realization of a spreading process using rejection sampling and the temporal
Gillespie algorithm, respectively: (A) for a SIR process and (B) for a SIS process on networks with different mean degree,

k(t) [for empirical contact networks, k(t) ≈ 0.004–0.07 (Table I)]. Networks consisted of N = 100 or N = 1000 nodes, with
activities ai = ηzi and zi ∼ z−3.2

i for zi ∈ [0.03, 1); a node formed two contacts each time it was active. For ∆t = 20 s (as
for the empirical data), µ∆t ≈ 3 · 10−5 corresponds to a recovery time of roughly one week, typical of flu-like diseases. The

infection rate was β = 103µ for networks with k(t) = 0.002, β = 102µ for networks with k(t) = 0.02, and β = 10µ for networks

with k(t) = 0.2. (Details on how simulations were performed are found in Methods.)

where Q(t) is the mean number of transitions that take
place per time-step.

The first term of the r.h.s. of Eqs. (13) and (14)
correspond to the time needed for looking through the
set of contacts at each time-step to determine the set
of possible infections and are thus similar for the rejec-
tion sampling and temporal Gillespie algorithms (with
the temporal Gillespie algorithm incurring a small ad-
ditional overhead related to calculating the cumulative
transition rate and keeping track of of the normalized
waiting time left till the next transition). For rejection
sampling [Eq. (13)], the second term corresponds to the
determination of whether each of the possible transitions
takes place at each time-step; for the temporal Gille-
spie algorithm [Eq. (14)], the second term corresponds to
drawing inter-event waiting times and which transitions
that take place. For the SIR and SIS processes considered
above, M(t) = MS→I(t) + I(t), where MS→I(t) is mean
the number of possible S → I transitions per time-step,
and I(t) is the mean number of infected nodes.

Empirically relevant networks are sparse and transi-
tion rates are small, so typically Q(t) ≪ E(t) ≪ M(t).
(The first inequality is a consequence of transition rates
being small compared to 1/∆t; the second inequality fol-

lows by noting that I(t) ∼ N ≫ E(t).) This means that
the performance of the rejection sampling algorithm is

limited by the rejection sampling step [second term of
Eq. (13)], while the performance of the temporal Gille-
spie algorithm is limited by the iteration over the set of
contacts in order to update Ω(t) [first term in Eq. (14)];
this explains why the difference in performance decreases
with the mean instantaneous degree of the network. This
also hints at how we may improve the speed of the tem-
poral Gillespie algorithm: by rendering the identification
of relevant contacts during each time-step faster. One
such approach which may be applied to processes with
an absorbing state (e.g. an R state) is explored below.

Improving performance by removing obsolete contacts.

Empirical networks describing human contact differ from
simulated networks in a number of ways. For example,
their structure and dynamics are more complex [25, 46–
49] but perhaps most importantly in the perspective of
optimizing simulations, they are of finite length. One is
often interested in long-time behavior or slowly evolving
processes compared to the length of available data. To
overcome this limitation, one usually loops over the data
set. This means that if a node enters an inactive ab-
sorbing state such as the recovered (R) state in the SIR
model, one may remove all following contacts to this node
from the data, thus reducing the number of contacts that
one must go through during the following loop. Further-
more, since the I → R transition is independent of the
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FIG. 5. Comparison of the speed of the temporal Gillespie and rejection sampling algorithms on empirical
time-varying networks. Ratio ΘRS/ΘTGA between the time per realization of a single simulation using rejection sampling
and the temporal Gillespie algorithm on empirical face-to-face contact networks in different social settings (Table I): (A) for a
SIR process, without (TGA) and with (TGA+CR) contact removal; (B) for a SIS process. Simulations were performed with
β = 1000µ for the workplace and β = 100µ for the other networks. (Details on how simulations were performed are found in
Methods.)

network, one may also remove all contacts between two
infected nodes.

Pseudocode for an algorithm that removes obso-
lete contacts is given in Methods and C++ code
can be found at https://github.com/CLVestergaard/
TemporalGillespieAlgorithm. Figure 5(A) compares
the speed gain of the temporal Gillespie algorithm rela-
tive to rejection sampling with and without contact re-
moval for simulations of a constant-rate SIR process on
empirical networks of face-to-face contacts (Table I). De-
pending on the parameters of the simulated process, re-
moving obsolete contacts may induce both a significant
gain or loss in speed; for processes that are fast compared
to the length of the data set, the data is not repeated or
only repeated few times during a simulation and the ad-
ditional overhead involved in identifying and removing
the obsolete contacts renders the algorithm slower; for
slow processes the data is looped many times and re-
moving the obsolete contacts makes the algorithm faster.
Figure 5(A) suggests an empirically determined rule-of-
thumb: if the slowest time-scale of the simulated process
(here ∼ 1/µ) is longer than the length of the data, T ,
removing obsolete contacts pays off, if it is shorter, one
should not remove obsolete contacts.

Slow network dynamics. For time-varying networks
of face-to-face contacts, which are relevant for simulat-
ing epidemic spreading in a population, network dynam-

ics are typically much faster than the time-scales of the
dynamical process that is simulated (compare the 20 s
time-resolution of the empirical data of Table I to typi-
cal 1/β ∼ 1 hour and 1/µ ∼ 1week for flu-like diseases).
In the opposite case, i.e., if the network evolves much
slower than the dynamical process, the temporal Gille-
spie algorithm simply works like a static Gillespie algo-
rithm in-between changes in the network structure while
taking the changes changes into account exactly when
they occur. The performance of the temporal Gillespie
algorithm then approaches that of a static Gillespie al-
gorithm in this case. Note that since Q(t) ≫ E(t) in
this limit, the second term dominates in Eq. (14), which
means that the speed of the algorithm is limited by the
selection of waiting times and transitions that take place,
and care should be taken to optimize these steps, e.g., by
organizing the transition processes in a heap or a prior-
ity queue [37]. Note finally that to obtain reliable re-
sults using a rejection sampling algorithm one must use
a time-step for simulations ∆tRS which is much smaller
than the time-step ∆t of network change. Thus the ex-
pected time complexity of rejection sampling scales with
∆t/∆tRS nsimu ≫ nsimu in this case.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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F. Non-Markovian processes

For real-world contagion processes, transition rates are
typically not constant but in general depend on the his-
tory of the process [30, 31]. Such processes are termed
non-Markovian. The survival probability for a single
non-Markovian transition process taking place on a time-
varying network is given by:

Sm

(

τ ;F
(m)
t

)

= exp

(

−

∫ t∗∗

t∗
Im(t)λm

(

t;F
(m)
t

)

dt

)

.

(15)

Here F
(m)
t is a filtration for the process m, i.e., all infor-

mation relevant to the transition process available up to

and including time t; typically, F
(m)
t will be its starting

time and relevant contacts that have taken place since.
As in Sec. IID, t∗ is the time of the last transition and
t∗∗ = t∗ + τ is the time of the next. [Note that since λm

now depends explicitly on t, we may absorb Im in λm;
however, to underscore the analogy with the Poissonian
case, we keep the factor Im explicitly in Eq. (15).]

We use again that the transition processes are inde-
pendent, to write the waiting time survival probability:

S (τ ;Ft) = exp

(

−

∫ t∗∗

t∗
Λ (t;Ft) dt

)

, (16)

with

Λ (t;Ft) =
∑

m∈Ω(t)

λm

(

t;F
(m)
t

)

, (17)

and where Ft is the union over F
(m)
t for m ∈ Ω.

For a static network, Eq. (16) reduces to the result
found in [17, Eq. (7)]. This can be seen by noting that
M(t) = M and Ω(t) = Ω are then constant, and thus

that λm(t;F
(m)
t ) = −[dSm(t;F

(m)
t )/dt]/Sm(t;F

(m)
t ) =

d{ln[1/Sm(t;F
(m)
t )]}/dt and Sm(t;F

(m)
t ) = Sm(t +

tm;F
(m)
t )/Sm(tm;F

(m)
t ), yielding directly Eq. (7) of [17].

As in the Poissonian case (Sec. IID) we define the nor-
malized waiting time, τ ′, as

τ ′ = L(t∗∗; t∗,Ft) =

∫ t∗∗

t∗
Λ(t;Ft)dt . (18)

This gives us the same simple forms as above for the
survival function of the normalized waiting time, τ ′,

S(τ ′) = exp(−τ ′) , (19)

and the probability that m is the transition that takes
place at t = t∗∗,

πm(t;Ft) = Im(t)
λm

(

t;F
(m)
t

)

Λ (t;Ft)
. (20)

Until now our approach and results are entirely equiv-
alent to the Poissonian case considered above. However,

since λm(t) in general depend continuously on time, the
transition time t∗∗ is not simply found by linear interpo-
lation as in Eq. (12). Instead, one would need to solve the
implicit equation L(t∗∗; t∗) = τ ′ numerically to find t∗∗

exactly. To keep things simple and speed up calculations,
we may approximate Λ(t) as constant over a time-step.
This assumes that ∆Λ(t)∆t ≪ 1, where ∆Λ(t) is the
change of Λ(t) during a single time-step. It is a more le-
nient assumption than the assumption that Λ(t)∆t ≪ 1
which rejection sampling relies on, as can be seen by not-
ing that in general ∆Λ(t)/Λ(t) ≪ 1. The same assump-
tion also lets us calculate L(tn+1; t

∗) as in the Poissonian
case:

L(tn+1; t
∗,Ft) = (tn∗+1 − t∗)Λ(t∗) + ∆t

n
∑

i=n∗+1

Λ(ti;Ft) ,

(21)
and the time, t∗∗, at which the next transition takes
place:

t∗∗ = tn∗∗ +
τ ′ − L(tn∗∗ ; t∗,Ft)

Λ(tn∗∗ ;Ft)
. (22)

Using the above equations, we can now construct a tem-
poral Gillespie algorithm for non-Markovian processes.
This algorithm updates all λm(t) that depend on time

at each time-step, where for the Poissonian case we only
had to initialize new processes, i.e., contact-dependent
processes (type b and c, Sec. II A). This means the algo-
rithm is only roughly a factor two faster than rejection
sampling [compare dotted lines (ǫ = 0) in Fig. 6]. To
speed up the algorithm, we may employ a first-order cu-
mulant expansion of S(τ ;Ft) around τ = 0, as proposed
in [17, 38] for static non-Markovian Gillespie algorithms.

It consists in approximating λm(t;F
(m)
t ) by the constant

λm(t∗;F
(m)
t ) for t∗ < t < t∗∗ and gives a considerable

speed increase of the algorithm [full lines (ǫ → ∞) in
Fig. 6]. However, the approximation is only valid when
M(t) ≫ 1 [43], which is not always the case for conta-
gion processes. Notably, at the beginning and end of an
SIR process, and near the epidemic threshold for an SIS
process, M is small and the approximation breaks down;
the approximate algorithm for example overestimates the
peak number of infected nodes in a SIR process with re-
covery rates that increase over time [compare full black
line (ǫ → ∞) to the quasi-exact full red line (ǫ = 0) in
Fig. 7A]. An intermediate approach, which works when
the number of transition processes is small, but is not too
slow to be of practical relevance, is needed. We propose
one such approach below [44].
Efficient non-Markovian temporal Gillespie algorithm.

As discussed above, we neither want to update all tran-
sition rates at each time-step as this makes the temporal
Gillespie algorithm slow, nor do we want to only update
them when a transition event takes place as this makes
the algorithm inaccurate.
An intermediate approach is found by looking at the

relevant physical time-scales of the transition processes:
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FIG. 6. Comparison of the speed of the temporal Gillespie and the rejection sampling algorithms: non-
Markovian SIR process. Ratio ΘRS/ΘTGA between the time per realization of a single simulation of an SIR process
with Weibull distributed recovery times using rejection sampling and the temporal Gillespie algorithm on activity driven net-
works of different average degree k(t) [for empirical contact networks, k(t) ≈ 0.004–0.07 (Table I)]: (A) for networks consisting
of N = 100 nodes and (B) of N = 1000 nodes. The parameter ǫ controls the accuracy of the temporal Gillespie algorithm:
for ǫ = 0, where λm(t) is approximated as constant over a single time-step, it is most accurate; for ǫ → ∞, where λm is
approximated as constant between two consecutive transition events, it is the least accurate. Node activities were given by
ai = ηzi with zi ∼ z−3.2

i for zi ∈ [0.03, 1); a node formed two contacts each time it was active. The recovery rate of an infected

node was given by Eq. (23) with γ = 1.5. The infection rate was β = 103µ0 for networks with k(t) = 0.002, β = 102µ0 for

networks with k(t) = 0.02, and β = 10µ0 for networks with k(t) = 0.2. (See Methods for details on how simulations were
performed.)
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FIG. 7. Comparison of the outcome of non-Markovian SIR processes for different values of the parameter ǫ.
(A) Average number of infected nodes, 〈I〉, as function of time for a SIR process with Weibull distributed recovery times. (B)
Distribution of the numbers of recovered nodes after the infection has died out (i.e. when I = 0). For ǫ = 0 the temporal
Gillespie algorithm is quasi-exact (see Supplementary Fig. 3 for comparison with rejection sampling); for ǫ → ∞, corresponding
to a first-order cumulant expansion of Λ(t;Ft) around t = t∗ (see main text), it is least accurate. As ǫ is decreased, both 〈I〉(t)
and p(R) rapidly approach the quasi-exact result obtained for ǫ = 0. Simulations were performed on an activity-driven network
consisting of N = 100 nodes with activities ai = zi/10, where zi ∼ z−3.2

i ; nodes’ recovery times followed Eq. (23) with γ = 1.5
and µ0 = 10−4 Hz; the length of a time-step was ∆t = 1 s and the infection rate β = 100µ0 = 10−2 Hz.
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the average waiting time before they take place, 〈τ (m)〉.
If the time elapsed since we last updated λm(t) is small
compared to 〈τ (m)〉, we do not make a large error by
treating it as constant over the interval; however, if the
elapsed time is comparable to or larger than 〈τ (m)〉, the
error may be considerable. Thus, instead of updating
λm at each time-step, we may update it only after a time
t > ǫ〈τ (m)〉 has elapsed since it was last updated. Here ǫ
controls the precision of the algorithm.
Below, we use this approach to simulate a

non-Markovian SIR process, where the recovery
times of infected nodes follow a Weibull distri-
bution (see Methods for an algorithm written in
pseudocode and https://github.com/CLVestergaard/
TemporalGillespieAlgorithm for implementation in
C++). The recovery rate of an infected node is here
given by

µ(t; t(m)) = γµγ
0

(

t− t(m)
)γ−1

, (23)

where µ0 sets the scale, t(m) is time when the node was
infected, and γ is a shape parameter of the distribution.
For γ = 1, we recover the constant-rate Poissonian case
with µ(t; t(m)) = µ0. For realistic modeling of infections,
γ > 1; here µ(t; t(m)) is zero at t = t(m) and grows with
time. In this case, we thus update the recovery rates
µ(t; t(m)) whenever the time elapsed since a transition
last took place exceeds 〈τ (m)〉 = Γ(1 + 1/γ)/µ0.

The parameter ǫ lets us control the precision of the
non-Markovian temporal Gillespie algorithm: the smaller
ǫ is, the more precise the algorithm is, on the other hand,
the larger ǫ is, the faster the algorithm is (Fig 8). At
ǫ = 0, the temporal Gillespie algorithm is maximally ac-
curate, but also slowest, corresponding to the quasi-exact
approximation that Λ(t;Ft) stays constant over a single
time-step. Letting ǫ → ∞ corresponds to the first or-
der cumulant expansion of [17], and is the fastest, but
least accurate. Intermediate ǫ gives intermediate accu-
racy and speed, and permits one to obtain the desired
accuracy without sacrificing performance. In the case of
the SIR process with Weibull-distributed recovery times,
ǫ = 0.1 gives an error of no more than a few percent
(Figs. 8A–8D and 7)—which is usually acceptable as the
discrepancy between model and reality can be expected
to be larger—with an almost optimal computation time
(Figs. 8E and 6).

III. DISCUSSION

We have presented a fast temporal Gillespie algorithm
for simulating stochastic processes on time-varying net-
works. The temporal Gillespie algorithm is up to mul-
tiple orders of magnitude faster than current algorithms
for simulating stochastic processes on time-varying net-
works. For Poisson (constant-rate) processes, where it is
stochastically exact, its application is particularly sim-
ple. The algorithm is also applicable to non-Markovian
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FIG. 8. Accuracy and speed of the non-Markovian
temporal Gillespie algorithm as function of ǫ. (A)–(D)
Different measures of the difference in outcome of simulations
between algorithms with ǫ > 0 and ǫ = 0 (quasi-exact). (A)
Difference, ∆imax = imax(ǫ) − imax(0), in the peak average
fraction of infected nodes, imax = Imax/N . (B) Difference
∆tmax between the times at which this peak takes place, nor-
malized by µ0. (C) Difference, ∆r∞, in the average frac-
tion of nodes affected by the infection—the average attack

rate. (D) Kullback-Leibler divergence, KL[p(r∞)], between
the distributions of attack rates (E) Time per simulation of
the process. Simulations were performed on an activity-driven
network with N = 100 nodes and activities ai = zi/10 with
zi ∼ z−3.2

i for zi ∈ [0.03, 1); nodes’ recovery times followed
Eq. (23) with γ = 1.5, µ0 = 10−4 Hz, and ∆t = 1 s.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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processes, where a control parameter lets one choose the
desired accuracy and performance in terms of simulation
speed. We have shown how to apply it to compartmen-
tal models of contagion in human contact networks. The
scope of the temporal Gillespie algorithm is more gen-
eral than this, however, and it may be applied e.g. to
diffusion-like processes or systems for which a network
description is not appropriate.
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METHODS

The following four subsections contain supporting in-
formation to the manuscript: the first subsection lists
notation used in the article (Notation); the second de-
tails how Monte Carlo simulations were performed (De-
tails on how Monte Carlo simulations were performed)
the third gives pseudocode for application of the tem-
poral Gillespie algorithm to specific contagion processes
on time-varying networks (Algorithms for simulating spe-
cific contagion models). Finally, in the fourth subsection
we give pseudocode for further optimization of the al-
gorithm for empirical networks by removal of obsolete
contacts (Removing obsolete contacts for an SIR process
on empirical networks).

Notation

Tables II and III list the notation used in the
manuscript. Table II gives notation pertaining to the
temporal Gillespie algorithm, and Table III lists notation
pertaining to time-varying networks and compartmental
contagion processes.

Details on how Monte Carlo simulations were
performed

All simulations for comparing the speed of algorithms
were performed sequentially on a HP EliteBook Folio
9470m with a dual-core (4 threads) Intel Core i7-3687U
CPU @ 2.10 GHz. The system had 8 GB 1 600 MHz
DDR3 SDRAM and a 256 GB mSATA Solid State Drive.
Code was compiled with TDMGCC 64 bit using g++ with

the optimization option -O2. Speedtests were also per-
formed using -O3 and -Ofast, but -O2 gave the fastest
results, both for rejection sampling and temporal Gille-
spie algorithms.
For SIR processes simulations were run until I = 0; for

SIS processes simulations were run for 20/(µ∆t) time-
steps (as in Fig. 3) or until I = 0, whichever happened
first. Between 100 and 10 000 independent realizations
were performed for each data point depending on µ∆t
(100 for low µ∆t and 10 000 for high µ∆t). For simula-
tions on empirical contact data, data sets were looped if
necessary.

Algorithms for simulating specific contagion models

We here give pseudocode for the application of the tem-
poral Gillespie algorithm to three specific models: the
first subsection treats the Poissonian SIR process, the
second treats the Poissonian SIS process, and the third
treats a non-Markovian SIR process with recovery times
following a general distribution.
We assume in the following that the time-varying net-

work is represented by a list of lists of individual con-
tacts taking place during each time-step. An individ-
ual contact, termed contact, is represented by a tu-
ple of nodes, i and j. The list contactLists[t] gives
the contacts taking place during a single time-step, t,
for t=0,1,...,T_simulation-1, where T_simulation is
the desired number of time-steps to simulate. The state
of each node is given by the vector x, where the entry
x[i]∈ {S,I,R} gives the state of node i.
As one may always normalize time by the duration of a

time-step, ∆t, we have in the following set ∆t = 1. Note
that beta and mu in the code then corresponds to β∆t
and µ∆t, respectively.
SIR process. The classical SIR model with constant

infection and recovery rates is the simplest epidemic
model where individuals can gain immunity. As dis-
cussed in the main text, nodes may be in one of three
states: susceptible (S), infectious (I), or recovered (R).
Two different transition types let the nodes switch state:
a spontaneous I → R transition which takes place with
rate µ, and a contact-dependent S → I transition which
takes place with rate β upon contact with an infectious
node. Pseudocode 1 shows how the temporal Gillespie
algorithm may be implemented for an SIR process on a
time-varying contact network.
SIS process. In the SIS model, nodes can be in one of

two states: susceptible (S) or infectious (I). As for the
SIR model, two different transition types let the nodes
switch state: a spontaneous I → S transition which takes
place with rate µ, and a contact-dependent S → I tran-
sition which takes place with rate β upon contact with
an infectious node.
The SIS model is implemented in a manner very sim-

ilar to the SIR model; an implementation can be found
by using the code of Pseudocode 1 with lines 07 and
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TABLE II. Notation pertaining to the temporal Gillespie algorithm.

Symbol Description First appearance(s)

t Real time. Sec. II A

∆t Duration of a time-step. Sec. II B

n Time-step number. Sec. IID

tn Time at beginning of time-step n: tn = n∆t. Sec. IID

m Possible transition / transition process. Sec. II A

λm Transition rate for m. Sec. II A

Im(t) Function indicating if the transition m may take place at time t. Sec. IID

Ω(t) Set of transition processes at time t. Secs. II A,IID

M(t) Number of transition processes at time t. Secs. II A,IID

Ω Set of total possible transitions between two consecutive transition events. Secs. II A,IID

M Number of total possible transitions between two consecutive transition events. Secs. II A,IID

Λ, Λ(t) Cumulative transition rate (at time t): Λ(t) =
∑

m∈Ω(t) λm. Secs. II C,IID

L(t; t∗) Integrated cumulative transition rate (from t∗ to t). Sec. IID

τ Waiting time between two consecutive transitions. Sec. II C

S(τ) Waiting time survival function. Sec. II C

t∗, t∗∗ Times when the last/next transition took/takes place, respectively. Sec. IID

n∗, n∗∗ Time-steps during which the last/next transition took/takes place, respectively. Sec. IID

τ ′ Normalized waiting time between two consecutive transition events. Sec. IID

S(τ ′) Normalized waiting time survival function. Sec. IID

τ ′ ∼ Exp(1) τ ′ is exponentially distributed with unit rate. Sec. IID (Sec. II C)

ΘRS Time per simulation for the rejection sampling algorithm. Sec. II E

ΘTGA Time per simulation for the temporal Gillespie algorithm. Sec. II E

O (x) Term of order x, i.e., O (x) = a x for a given constant a. Sec. II E

F
(m)
t Filtration for the transition process m. Sec. II F

Ft Union of all F
(m)
t . Sec. II F

40 removed and line 37 replaced by x[m] = S. C++
code is found at https://github.com/CLVestergaard/
TemporalGillespieAlgorithm for both homogeneous
and heterogeneous populations.
Non-Markovian SIR process. We consider in the main

text (Sec. II F) an SIR model with non-constant recov-
ery rates; instead of being exponentially distributed (as
in the constant-rate SIR model), the individual recovery
times, τ (m), are here Weibull distributed,

τ (m) ∼ γµ0

(

µ0τ
(m)
)γ−1

e−µ0τ
(m)

. (24)

As for the classical SIR model, nodes may be in one of
three states: susceptible (S), infectious (I), or recovered
(R). Two different transition types let the nodes switch
state: a contact-dependent S → I transition with con-
stant rate β upon contact with an infectious node, and
a spontaneous I → R transition which takes place with
rate µ(t; t(m)), given by Eq. (23).
The implementation of the SIR model with non-

exponentially distributed waiting times requires some ex-
tension of the code for the constant-rate SIR model to ac-
count for the heterogeneous and time-dependent recovery
rates. To this end, we introduce the following variables:

t_inf lists the times at which each node was infected (if
applicable); t* is the exact time at which the last tran-
sition took place; mu is a function of time that is called
as mu(t-t_inf[m]) to return the instantaneous recov-
ery rate of m at time t; mu_avg is the expected recovery
time of an infected node and is used together with the
precision control parameter epsilon in the approximate
simulation scheme discussed in Sec. II F. Pseudocode 2
shows pseudocode for an implementation of such a SIR
model with non-constant recovery rates.

Removing obsolete contacts for an SIR process on
empirical networks

When simulations are carried out on data which are
looped due to their finite length, the speed of the tem-
poral Gillespie algorithm may be further increased for
processes with an absorbing state, such as the SIR pro-
cess by removing obsolete contacts to nodes that have
entered such a state. Pseudocode 3 shows pseudocode
for removing obsolete contacts; its replaces lines 11 to 19
of Pseudocode 1.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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TABLE III. Notation pertaining to compartmental contagion models and time-varying networks.

Symbol Description First appearance

i, j Node. Sec. II A

N Number of nodes in network. Sec. II A

(i, j)t Contact taking place at time t between nodes i and j. Sec. II A

kI(t) Number of infected nodes in contact with i at time t Sec. II A

k(t) Average degree (number of contacts per node) of network at time t. Fig. 4

xi(t) Random variable specifying the state (compartment) of node i at time t. Sec. II A

X ∈ {X1,X2 . . .Xq} Possible node states (compartments). Sec. II A

Xp Number of nodes in state Xp. Sec. II A

S, I, R Possible node states in SIS and SIR models of epidemic spreading. Sec. II A

S, I, R Number of nodes in each of the states S, I, and R, respectively. Sec. II A

β Rate of S → I transition of a susceptible node in contact with an infectious node. Sec. II A

µ Rate of spontaneous I → R or I → S transition of an infectious node. Sec. II A

E(t) Mean number of contacts during a single time-step. Sec. II E

M(t) Mean number of transition processes per single time-step. Sec. II E

Q(t) Mean number of transitions that take place per time-step. Sec. II E

MS→I(t) Mean number of S–I contacts during a single time-step. Sec. II E

I(t) Mean number of infectious nodes. Sec. II E

T Length of a data set describing a time-varying network (in time). Sec. II E

nsimu Number of time-steps that are simulated during a single realization. Sec. II E

∆tRS Time-step used for rejection sampling when λm∆t are large, ∆tRS ≤ ∆t. Sec. II E

µ0 Scale parameter of the Weibull distribution. Sec. II F

γ Shape parameter of the Weibull distribution. Sec. II F

t(m) Starting time for transition process m (e.g. the time when a node was infected). Sec. II F
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//Initialize:

01 FOR i=1,...,N

02 x[i] = S //set node states to S

03 ENDFOR

04 x[root] = I //set state of root node to I

05 m_I = [root] //list of infected nodes

06 N_I = 1 //number of infected nodes

07 N_R = 0 //number of recovered nodes

08 Mu = mu //cumulative recovery rate

09 tau = randexp(1) //draw tau ~ Exp(1)

//Run through the time-steps:

10 FOR t=0,1,...,T_simulation-1

//Update list of possible S->I transitions:

11 CLEAR m_SI //S nodes in contact with I nodes

12 FOR contact in contactLists[t]

13 (i,j) = contact

14 IF (x[i],x[j])==(S,I)

15 APPEND i to m_SI

16 ELSE IF (x[i],x[j])==(I,S)

17 APPEND j to m_SI

18 ENDIF

19 ENDFOR

20 M_SI = length of m_si

21 Beta = beta*M_SI //cumulative infection rate

22 Lambda = Mu+Beta //cumulative transition rate

//Check if a transition takes place:

23 IF Lambda<tau //no transition

24 tau -= Lambda

25 ELSE //at least one transition

26 xi = 1. //remaining fraction of time-step

27 WHILE xi*Lambda>=tau

28 DRAW z uniformly from [0,Lambda)

29 IF z<Beta //S->I transition

30 DRAW m at random from m_SI

31 x[m] = I

32 APPEND m to m_I

33 N_I += 1

34 Mu += mu

35 ELSE //I->R transition

36 DRAW m at random from m_I

37 x[m] = R

38 REMOVE m from m_I

39 N_I -= 1

40 N_R += 1

41 Mu -= mu

42 ENDIF

43 xi -= tau/Lambda //update remaining fraction

//Update list of S->I transitions and rates:

44 REDO lines 11-22

45 tau = randexp(1) //draw new tau

46 ENDWHILE

47 ENDIF

//Read out the desired quantities:

48 WRITE N_I, N_R, ...

49 ENDFOR

Pseudocode 1. Pseudocode for an SIR process with constant and homogeneous transition rates. C++ code for
homogeneous and heterogeneous populations is found at https://github.com/CLVestergaard/TemporalGillespieAlgorithm.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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//Initialize:

01 FOR i=1,...,N

02 x[i] = S //set nodes states to S

03 ENDFOR

04 x[root] = I //set state of root node to I

05 t_inf[root] = 0 //time of infection = 0

06 m_I = [root] //list of infected nodes

07 mus = [mu(0)] //list of recovery rates

08 Mu = mu(0) //cumulative recovery rate

09 N_I = 1 //number of infected nodes

10 N_R = 0 //number of recovered nodes

11 tau = randexp(1) //draw tau ~ Exp(1)

//Run through the time-steps:

12 FOR t=0,1,...,T_simulation-1

//Update mus if t-t*>=epsilon*mu_avg:

13 IF t-t*>=epsilon*mu_avg

14 CLEAR mus

15 FOR m in m_I

16 APPEND mu(t-t_inf[m]) to mus

17 ENDFOR

18 Mu = sum of mus

19 ENDIF

//Update list of possible S->I transitions:

20 CLEAR m_SI //S nodes in contact with I nodes

21 FOR contact in contactLists[t]

22 (i,j) = contact

23 IF (x[i],x[j])==(S,I)

24 APPEND i to m_SI

25 ELSE IF (x[i],x[j])==(I,S)

26 APPEND j to m_SI

27 ENDIF

28 ENDFOR

29 M_SI = length of m_si

30 Beta = beta*M_SI //cumulative infection rate

31 Lambda = Mu+Beta //cumulative transition rate

//Check if transition takes place:

32 IF Lambda<tau //no transition

33 tau -= Lambda

34 ELSE //at least one transition

35 xi = 1. //remaining fraction of time-step

36 t* = t //for calculating transition times

37 WHILE xi*Lambda>=tau

38 t* += tau/Lambda //transition time

39 DRAW z uniformly from [0,Lambda)

40 IF z<Beta //S->I transition

41 DRAW m at random from m_SI

42 x[m] = I

43 t_inf[m] = t*

44 APPEND m to m_I

45 N_I += 1

46 ELSE //I->R transition

47 DRAW m from m_I with weight mus[m]

48 x[m] = R

49 REMOVE m from m_I

50 N_I -= 1

51 N_R += 1

52 ENDIF

53 xi -= tau/Lambda //update remaining fraction

//Update mus:

54 CLEAR mus

55 FOR m in m_I

56 APPEND mu(t*-t_inf[m]) to mus

57 ENDFOR

58 Mu = sum of mus

//Update list of S->I transitions and rates:

59 REDO lines 20-31

60 tau = randexp(1) //draw new tau

61 ENDWHILE

62 ENDIF

//Read out the desired quantities:

63 WRITE N_I, N_R, ...

64 ENDFOR

Pseudocode 2. Pseudocode for a non-Markovian SIR process with non-constant recovery rates. The function mu

returns the instantaneous recovery rate as function of (t− t∗); for Weibull distributed recovery times, mu is given by Eq. (23).
C++ code is found at https://github.com/CLVestergaard/TemporalGillespieAlgorithm.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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01 CLEAR m_SI //S nodes in contact with I nodes

02 FOR contact in contactLists[t]

03 (i,j) = contact

04 IF x[i]==S

05 IF x[j]==I

06 APPEND i to m_SI

07 ELSE IF x[j]==R //remove if x[j]==R

08 REMOVE contact from contactLists[t]

09 ENDIF

10 ELSE IF x[i]==I

11 IF x[j]==S

12 APPEND j to m_SI

13 ELSE //remove if (x[i],x[j])==I or x[i]==R

14 REMOVE contact from contactLists[t]

15 ENDIF

16 ELSE //remove if x[i]==R

17 REMOVE contact from contactLists[t]

18 ENDIF

19 ENDFOR

Pseudocode 3. Pseudocode for counting possible S → I transitions with removal of outdated contacts. C++ code
is found at https://github.com/CLVestergaard/TemporalGillespieAlgorithm.

https://github.com/CLVestergaard/TemporalGillespieAlgorithm
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Supplementary FIG. 1. Numerical results from temporal Gillespie and rejection sampling algorithms for
contagion processes taking place on empirical networks. (A)–(D) for a SIR process and (E)–(H) a SIS process.
(A),(B),(E), and (F) for β∆t = 10−2 and µ∆t = 10−4; (C),(D),(G), and (H) for β∆t = 10−1 and µ∆t = 10−3. (A),(C) Mean
number of nodes in each state of the SIR model as function of time. (B),(D) Distribution of final epidemic size (number of
recovered nodes when I = 0) in the SIR model. (E),(G) Mean number of nodes in each state of the SIS model as function of
time. (F),(H) Distribution of the number of infected nodes in the stationary state (t → ∞) of the SIS model. All simulations
were performed 1 000 000 times with the root node chosen at random on a face-to-face contact network recorded in a high school
(Table I).
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Supplementary FIG. 2. Comparison of numerical results from temporal Gillespie and rejection sampling algo-
rithms for high transition probability per time-step. (A)–(D) for a SIR process and (E)–(H) a SIS process. (A),(B),(E),
and (F) for β∆t = 10−1 and µ∆t = 10−3; (C),(D),(G), and (H) for β∆t = 1 and µ∆t = 10−2. (A),(C) Mean number of nodes
in each state of the SIR model as function of time. (B),(D) Distribution of final epidemic size (number of recovered nodes
when I = 0) in the SIR model. (E),(G) Mean number of nodes in each state of the SIS model as function of time. (F),(H)
Distribution of the number of infected nodes in the stationary state (t → ∞) of the SIS model. All simulations were performed
1 000 000 times with the root node chosen at random on an activity driven network consisting of N = 100 nodes, with activities
ai = ηzi, where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when active.
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Supplementary FIG. 3. Comparison of numerical results from temporal Gillespie and rejection sampling al-
gorithms for a non-Markovian SIR process. (a),(c) Mean number of nodes in each state as function of time in the SIR
model with Weibull distributed recovery times (Sec. VIIA); the parameter controlling the precision of the temporal Gillespie
algorithm was set to ǫ = 0 (quasi-exact). (b),(d) Distribution of final epidemic size (number of recovered nodes when I = 0).
(a),(b) β∆t = 10−2 and µ∆t = 10−4; (c),(d) β∆t = 10−1 and µ∆t = 10−3. The outcome of the rejection sampling algorithm
approaches that of the temporal Gillespie algorithm as β∆t and µ∆t become smaller. All simulations were performed 100 000
times with the root node chosen at random on an activity driven network consisting of N = 100 nodes, with activities ai = ηzi,
where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when active. Nodes’ recovery times followed
Eq. (20) with γ = 1.5 and the length of a time-step was ∆t = 1 s.
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