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ABSTRACT Graphs in real-world applications are dynamic both in terms of structures and inputs. Infor-

mation discovery in such networks, which present dense and deeply connected patterns locally and sparsity

globally can be time consuming and computationally costly. In this paper we address the shortest path query

in spatio-temporal graphs which is a fundamental graph problem with numerous applications. In spatio-

temporal graphs, shortest path query classical algorithms are insufficient or even flawed because information

consistency can not be guaranteed between two timestamps and path recalculation is computationally costly.

In this work, we address the complexity and dynamicity of the shortest path query in spatio-temporal graphs

with a simple, yet effective model based on Reinforcement Learning with Proximal Policy Optimization. Our

solution simplifies the problem by decomposing the spatio-temporal graph in two components: a static and

a dynamic sub-graph. The static graph, known and immutable, is efficiently solved with A∗ algorithm. The

sub-graphs interconnecting the static graph have unknown dynamics and we address such issue by estimating

the unknown dynamic portion of the graph as aMarkov Chain which correlates the observations of the agents

in the environment and the path to be followed. We then derive an action policy through Proximal Policy

Optimization to select the local optimal actions in the Markov Process that will lead to the shortest path,

given the estimated system dynamics. We evaluate the system in a simulation environment constructed in

Unity3D. In partially structured and unknown environments, with variable environment parameters we’ve

obtained an efficiency 75% greater than the comparable deterministic solution.

INDEX TERMS Machine learning, graphs, Markov-chain, deep reinforcement learning, path-planning.

I. INTRODUCTION

With the rapid increase of data availability, and the increased

use of data analytics for decision making, the necessity of

efficient techniques for data querying rise. Different from

standard data structures, Graphs (a.k.a. networks) have been

used to organize information in various areas including biol-

ogy [1], social sciences [2], linguistics [3], and even path

planning in robotics (grid networks) [4]. Moreover, the search

of information in such networks is more computationally

expensive as the correlation between the nodes increase [5].

In addition such networks, even though sparse in a global

sense, tend to be dense in a local sense (nearby nodes) [6].

Even though more paths and links exist, there is more vari-
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ability as we consider the dynamicity of the information,

and consequently, the constant change of the network struc-

ture [7]. Such dynamic graphs are theoretically attractive,

as well as computationally challenging. A Graph is defined

as dynamic when the data structure components (such as

vertices, edges, weights) change along with the evolution

of time. In general, weights are the most time-dependent

entities, but in many applications, the nodes of the graph can

completely change due to the dynamic nature of the data.

In graph databases, a very important problem is the st-

connectivity problem. Given a graph G, an input node s and

a target node t , the st-connectivity problem is to define if

there’s a path in G that connects s and t [8]. Such problems

translate directly to real-world applications such as robotic

grid networks, social network advertisement suggestions, and

real-time information queries from stock markets. Planning
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FIGURE 1. The agent learns the spatial-temporal graph dynamics, and
the relation between the dynamic nodes are abstracted into probability
distributions mapping embedded states to optimal actions in the
environment.

for such systems involves dealing with problems not faced in

simpler domains. A problem of the information query in such

domains is the increased number of ramifications of vertices

and nodes from a graph representing such systems. As an

example, the graph representing both the dynamics of a robot

and the dynamics of the environment grows exponentially as

onemodels all the position and velocity variations that a robot

is allowed in each position of the environment. Moreover,

requesting a short path in such an environment would require

each time step re-planning [9]. Such requirements make the

short path query prohibitive in such large structures, even

more so if we consider that accurate models of such systems

are hard to obtain and quickly become outdated due to the

dynamic nature of the system.

The task of guiding the robot with a network graph

becomes more challenging as we consider that the envi-

ronment is imprecise, vast, dynamic, and partially non-

structured. To capture such restrictions, the agent has to rely

on real-time sensory information captured from the envi-

ronment, which in general contains noise and uncertainty.

As a consequence, the control scheme of the agent under

such rough conditions should be adaptive. To achieve such

level of adaptiveness, an agent with a path generated upon

a graph network would require both a very detailed dis-

cretization of the space and constant route re-planning and

searching to account for unexpected environmental changes.

These and other conditions change the representation of

the environment, requiring it to be represented not as a

grid, but a dynamic navigation mesh in which the adja-

cency graphs usually have highly irregular edge costs con-

necting a much larger number of nodes. Such configuration

increases the complexity of the system, making it impossible

to compute safe and efficient paths in real-time. Alternatively,

local path planners rely on local sensing and reaction to

avoid collisions in possibly unknown environments, which

means it applies to short length paths in which no high-

level decision (like goal localization) should be taken. Typical

examples of local path planners include the potential field-

based navigation [10], dynamic window approaches [11], and

sampling-based approaches [12]. However, as we increase

the distance between waypoints, add more adverse scenarios,

and increase constraints, local path planners based on strict

deterministic conditions tend to fail, due to their suscepti-

bility to local minima. Probabilistic approaches can avoid

such problems due to taking actions based on a probability

distribution rather than a deterministic function. Learning-

based methods have been shown to present better and more

compliant results for navigation in imprecise, dynamic, and

partially nonstructured environments [13], as they succeed in

incorporating the uncertainty and dynamicity of such envi-

ronments and apply adequate actions for safe behavior.

On the other hand, learning-based methods such as Rein-

forcement Learning (RL) can be tough to converge in large

and complex scenarios, which would make it hard to train

an end-to-end agent capable of navigating in a given envi-

ronment. As a consequence, in this work, we combine the

stochastic nature of decision policies learned with the RL

approach to simplify the discretization requirements in the

environment. More specifically, we extract portions of a

graph network and let the navigation in these points to be

handled by a non-deterministic policy.

In this paper we propose the use of graph decomposi-

tion [14], to reduce the complexity of the short path query

in a graph network, based on the importance, and the static

characteristic of certain nodes [15], [16]. Our proposed

model is simple, yet effective in addressing the complexity

of the short-path query, based on Reinforcement Learning

with Proximal Policy Optimization. Unlike D∗ [17] or A∗

[18] which focus only on immutable graphs, or Rapidly

Exploring Random Trees (RRT) [19], Dynamic Domain RRT

(DDRRT) [20], and Probabilistic Road Maps (PRM) [21]

which requires an every-step update of the knowledge, our

solution simplifies the problem by decomposing the spatio-

temporal graph into two components - a static and a dynamic

sub-graph - and solves them simultaneously. The static graph,

known and immutable, is efficiently solved with A∗ algo-

rithm. The sub-graphs interconnecting the static graph have

unknown dynamics and we address such issue by estimating

the unknown dynamic portion of the graph as a Markov

Chain. We then, derive an action policy through Proximal

Policy Optimization to select the local optimal actions in the

Markov Process that will lead to the shortest path, given the

estimated system dynamics. With this approach and a known

policy, there is no need for every-step re-planning. The policy

optimization was performed in a cloud environment to reduce

the time required [22], [23].

The main contribution of this paper consists of providing

an efficient solution to the short-path query problem in spatio-

temporal graphs using graph-decomposition and state action

correlation estimation through RL framework, with the fol-

lowing key aspects:

1) we address the problem of short-path query in spatio-

temporal graphs without the need of every-step replan-

ning, which significantly reduces the computation load;

2) we propose a method for estimating the dynamic

changes in the state action correlation of the
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spatio-temporal graph through a reinforcement learn-

ing framework, and optimize the state to action policy

using Proximal Policy Optimization;

3) we show the efficiency of the approach by present-

ing a thorough analysis of corner case scenarios by

implementing the decision making algorithm in mul-

tiple real-time 3D simulated environments, created in

Unity3D.

II. RELATED WORK AND BACKGROUND

A single socially aware agent path planning with collision

avoidance and global orientation can be formulated as a

sequential decision-making problem in a deep reinforcement

learning framework with dynamic goals and observations.

We useA∗ algorithm to generate goals, andwe train our agent,

using Proximal Policy Optimization (PPO) [24] to follow

those way-points while avoiding static, dynamic, and human

obstacles.We use a joint state representation to capture crowd

behavior and enhance the social skills of the robot.

A. RELATED WORK

As mentioned, Path Planning is a widely explored area,

but with still many aspects to improve. Several algorithms

have already been developed for UAV’s [25]–[27], underwa-

ter vehicles [28]–[30], and ground vehicles [31]–[33]. For

controlled environments and restricted conditions, several

algorithms have been synthesized for path planning in [34].

Aside from the standard path planning algorithms proposed in

[35], new approaches and work have been published recently

showing that it’s a hot and demanding field.

In recent years, the publications on Path Planning either

focus on a local path planner or a global path planner sep-

arately. In the realm of global planners, mapless navigation

has drawn some attention. In [36] the global path planner

focuses on the recognition of pre-trained landmarks for the

global localization; even though there is no need for a map,

the system requires a dataset with global coordinates of the

landmarks. Differently in [37], the authors modify A∗ path
planning to make the search more efficient in large graph

structures. In [38], a genetic algorithm is provided to find a

global path in a grid environment. In [39], a CNN method is

used on planetary images to derive a global path for interplan-

etary rovers. Moreover, when dealing with non-adversarial

multiple agents, global planners focus on the consensus of

such agents. In [40], [41], the author builds a global controller

with the objective of cooperation among the agents which

compose the systems, in a latter publication [42], instead of

fully modelling the dynamics of the system, the uncertainties

were dealt with an adaptative neural network.

New and innovative results in local path-planning were

proposed in [43]–[47], but none of these focused on navi-

gation in crowded environments. A new work in local and a

global path planners [48], the authors integrate a Generative

Adversarial Network as a decisionmaking planner to evaluate

the condition of the current path and decide if it is safe to

proceed or not. In [49], the authors have integrated a local

navigator based on a CNN called intention-net with a global

navigator to generate an indoor navigation system. Another

method was presented in [50],the PRM-RL, which consists

of a hierarchical method for long-range navigation tasks that

combines sampling-based path planning with reinforcement

learning.Different from their method, we do not vary the

number of way-points known in the environment, we leverage

the pre-existing knowledge of the intersections, and more

important, while in PRM-RL the authors restrict their obsta-

cles to be only static, in our work we train and evaluate our

system under hard dynamic conditions.

In [51], a RL approach was proposed to solve a mapless

navigation problem in the crowd, but different from our

work, the authors have only focused on the local naviga-

tion without considering the global planner. In [52], a deep

inverse reinforcement learning approach was proposed to

learn pedestrian behavior from a dataset, but no path planner

was proposed. In [13], [53], the authors in a previous work

encoded the states of a fixed amount of surrounding agents

with the states of the agent to capture the behavior of other

agents. In the latter work, an LSTM was proposed to encode

the state of surrounding agents, and consequently consider

as many surrounding agents as robot detects. However, these

approaches are restricted to a local planning, whereas our

work integrates a deterministic decision-making global path

planner that takes into consideration a priory knowledge of

the environment and enables navigation in more complex

and broader environments with a local non-deterministic

approach, which integrates the state of surrounding peo-

ple and predicts, before action, the behavior of surrounding

obstacles.

B. REINFORCEMENT LEARNING FRAMEWORK

A Markov Decision Process (MDP) is a mathematical

description of sequential decision making [54]. An agent

observes the environment in the form of states. In each state,

the agent takes an action which evolves the environment

into another state, receiving or not a reward in the process.

In MDP’s, only the current state and action influence the

probability of the next state, action, and reward. Formally,

MDP is a tuple 〈S,A, T , r, γ 〉, where S = {s1, s2, , . . . , sk}
is the state space, A = {a1, a2, . . . , an} is the action space,

T is the set of transition probabilities, such that T (s, a, s′) =
p(s′|s, a) is the transition probability of going to state s′ by
taking action a on state s, γ ∈ [0, 1) is the discount factor

and r : S × A → R is the reward function where r(s, a)

is the reward obtained by taking a in s. A stochastic policy

πθ : S → A specifies the action distribution conditioned to

the state s and parameterized by the parameters θ .

MDP’s are the bases for RL framework. The RL framework

makes it possible to underlay the unknown state probability

distribution and optimize the policy towards goal accomplish-

ment. Several methods have been derived to solve the RL

problem. As stated in the previous section, we will focus

on gradient policy methods as they have become prevalent

recently and have shown significant improvements towards
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those based on Value or Q-value functions. In RL, policy

gradient methods, are learning algorithms that focus on learn-

ing a parameterized policy which describes the probability

distribution of actions over the state space. We define the

policy as

π (a|s, Eθ ) = P{At = a|St = s, Eθ = θ}.
The focus of policy gradient methods is to build an esti-

mator of the policy gradient and using a stochastic gradient

ascend, adjust the weights of the policy towards themaximum

rewards. An unbiased estimator for the gradient is given by

ĝ = Êt [∇θ logπθ (at |st )Ât ],
where Ât is the estimator of the advantage function at

time step t. In this case, Ê is the expected value over a

finite trajectory of the system. We define a trajectory τ =
{(s1, a1, r1), (s2, a2, r2), . . .} of the system as a sequence of

state, action, and rewards. In order to define the advantage,

Ât , function we define:

η(π ) = Es0,a0,...[

∞
∑

t=0
γ tr(st )] (1)

Qπ (st , at ) = Est+1,at+1,...[

∞
∑

l=0
γ lr(st+l)] (2)

Vπ (st ) = Eat ,st+1,...[

∞
∑

l=0
γ lr(st+l)], (3)

where η(π ) is the expected discounted reward, Qπ (st , at )

is the state-action value function and Vπ (st ) is the value

function. With Equation 2 and Equation 3, we define the

advantage function as:

Aπ (s, a) = Qπ (s, a)− Vπ (s),

where at ∼ π (at |st ), st+1 ∼ P(st+1|st , at ) for t ≥ 0.

Following with the gradient optimization for continuous

state space, in [55] the authors presented a framework, named

Deep Deterministic Policy Gradient (DDPG), to address the

application of Deep Reinforcement Learning in continuous

control of objects. However, the main issue of DDPG is

choosing the right step size for the optimization of the policy.

A small step size would make the convergence too time-

consuming, and one too large would lead to the optimization

being overwhelmed by noise, reducing the performance of the

policy drastically.

When Trust Region Policy Optimization was proposed in

[56], it aimed to propose a method to update the parameters in

a manner that would guarantee policy improvement; namely,

we want Equation 1 to be an always increasing function.

In order to guarantee policy improvement, the old policy,

πold , is updated in a trusted region.

More precisely, Equation 1 is changed, based on [57],

so that the expected discount reward of a sampled sequence

is just an increment to the old policy, as shown by

η(π̃ ) = η(πold )+ Eτ∼π̃ [

∞
∑

t=0
γ tAπold (st , at )],

which can be locally approximated around a region within

step size δ,

L(π̃ ) = η(πold )+
∑

s

ρπ (s)
∑

a

π̃ (a|s)Aπold (s, a)],

in terms of optimizing the parameterized policy, TRPO does

so by maximizing a surrogate objective function constrained

to the max step size (the trust region). Specifically,

maximize
θ

Êt [
πθ (at |st )

πθold (at |st )
Ât ]

subject to Êt [KL[πθold (.|st ), πθ (.|st )]] ≤ δ, (4)

where KL is the Kullback-Leibler divergence [58] function

for distributions.

In TRPO, Equation 4 can also be seen with the constraint

added to the objective function as penalty weighted by a

constant β, as seen in:

max
θ

Êt [
πθ (at |st )

πθold (at |st )
Ât ]− βKL[πθold (.|st ), πθ (.|st )]. (5)

Eq. 5 is the starting point for Proximal Policy Optimization

method, which proposes two methods for the policy updates.

The first method proposes an adaptive weight for the KL

divergence penalty. The objective is to achieve a target value

of the divergence, dtarg each policy update. The following

rules adapt the value of β:

1) Compute d = Et [KL[πθold (.|st ), πθ (.|st )]]

2) β =
{

β/2 if, dtarg ≤ dtarg/1.5
β × 2 if, dtarg ≥ dtarg × 1.5

A slightly different approach for the penalty weight

brought better overall results than previous techniques. The

proposed approach was a clipped version of Equation 5.

In this clipped version, the objective function is defined as

LCLIP(θ ) = Êt [min(rt (θ ))Ât , clip(rt (θ )), 1− ǫ, 1+ ǫ)Ât ]

(6)

where ǫ is a tunable hyperparameter. Under this condi-

tion, the final objective is a lower bound (pessimistic) on

the unclipped objective, in which the probability ration is

included when it would make the objective worse and not

considered when it would improve the objective function.

III. PROBLEM FORMULATION

In this section, we formally define our problem linking the

st-connectivity to the robotics path planning, and define the

graph decomposition proposed to solve such a problem. The

st-connectivity problem, consists in determining if there is a

connection between nodes s and t , and, under the assump-

tion that such a connection exists, determines in real-time

a shortest path query. We solve the short path query in

dynamic graphs with graph decomposition, an estimation

of the dynamics of the agent and environment with the RL

framework.

We model the mapping of the environment, the environ-

ment dynamics, and agent dynamics as a graph G. The nodes
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FIGURE 2. The agent view and the flow of graphical representation and estimation. Given the Spatio-Temporal representation of the system as
G(N(t), E(t)) and Gs(Ns, Es), the transition probability model is estimated using RL framework. The static graph Gs is searched with deterministic
algorithm. With the estimated model, the optimized policy πθ , and the set of waypoints, the desired path is generated.

of G represent entities in the system (such as position in

a grid, people in social networks, and the information in

databases) and the links between these entities models the

connection that exists between this information and the cost

of a path between them. As we assume these entities are

dynamic, the weights defining the cost of traversing from

node ni to ni+1, become a function of time,w(t). Furthermore,

G incorporates the dynamics of the agent, as mentioned in

[59], where G is extended to incorporate the state of the agent

(a.k.a. state lattices) and its node transition limitations. With

the dynamics, time, and lattices assumption, we can define

the model of the system as,

G = G(N (t),E(t)), (7)

in which, N (t) and E(t) are time-dependent functions that

incorporate the dynamicity of the whole system. Such a

model restricts conventional solutions for graph travers-

ing or would require trial and error path searches at execution

time, which would reduce the performance of the system

drastically.

To solve such a problem, assume G, is composed of

two or more edge disjoint sub-graphs, G = {G1,G2, . . . }
in which, we can decompose the system in, at least two

structurally different instances of the system: (i) G1(Ns,Es)

- the static and immutable graph of the system, and

(ii) G2(Nd (t),Ed (t)) - the dynamic graph of the sys-

tem. G1(Ns,Es) is static and assumed to be known by

the user in the form of maps(path planning), interper-

sonal relations(social networks), or information correlation

(databases).

Under such conditions, G1(N ,E) the st-connectivity prob-

lem can naturally be solved with standard graph search tech-

niques. Still, G2(Nd (t),E(t)) remains unsolved. Given the

random nature of G2(Nd (t),E(t)), to determine with preci-

sion the value of the weights of the edges and the existence

of nodes, requires approximation, which can be estimated if

we assume, that:

G2(Nd (t),E(t)) ∝ Sa(t) & Se(t),

where Sa(t) = {sa1, sa2, . . . } and Se(t) = {se1, se2, . . . } are
respectively the states of the agent and the environment.

Here, we use the symbol ∝ to indicate a relation between

the dynamic graph and its decomposition, even though the

exact transformation and relation is unknown. It is reasonable

to assume that estimating the agent’s model and environment

model to a certain level of confidence, will suffice to navigate

in the system. Under that perspective we define

5̂ : (Sa, Se) ∈ Rn 7→ EVθ ∈ Rm,

in which, n is the order of the dynamics of the combined agent

and environment system, and m is the number of parameters

used to parameterize the system function. Such mapping is

highly dependent on the system. As we try to capture the

dynamics of a highly probabilistic system, it is logical to

model the system as a Markov chain, in which we compose

the state of the system, with the fusion of the dynamics of the

environment and the agent. The combined state Sc is defined

as Sc = {{se1, sa1}, {se2, sa2}, . . .}.
The dynamics of the system is modeled by esti-

mating from experience and the transition probabilities

between the states of the system. Experience is defined

as the trajectory, or sequences of state/action/reward, τ =
(s1, a1, r1), (s2, a2, r2) . . .. Moreover, we use a reinforcement

learning approach to capture the dynamics of the interaction

between the environment and the agent, and consequently

map the states to the actions through the parameterized policy

πθ . The collection of trajectories of the agent in the envi-

ronment is used to generate the gradient estimators, which

leads to the optimization of the policy parameters θ , which we

define learning by experience. More specifically, we estimate

the chain of transition probabilities sc→ sc′ from the system.

Assuming a uniform distribution over the initial states, p0 =
U{sc = sc0}, and assuming that the state incorporates enough
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information of the system, we can claim theMarkov property,

in which the future state depends only on the current state.

As a consequence, we can define the probability of the system

being in a certain state in time T as:

P(ScT ) = p0

T−1
∏

t=0
P(Sct+1|Sct ) (8)

Moreover, with the systemmodeled as a chain of transition

probabilities independent of past states, the st-connectivity

problem resumes to defining a set of actions, whichmaximize

the probability of reaching state scn, which connects to the next

node of G1(Ns,Es). For that, as described in subsection II-B,

we define a parameterized policy πθ : S → A which maps

the action distribution over the states. Moreover, with the

knowledge of the objectives of the system, a reward function

is also defined as r(s, a). The key aspect to estimate the

desired behavior of the system, specifically the shortest path

query is to define the objectives of the agent. Such objec-

tives are application dependent and need to be translated to

the mathematical formulation of the implementation. In this

work, based on the formulation from [60], we’ve defined the

rewards function rtotal(s, a, s
′) as a composition of K reward

functions that supports or punishes specific desired or unde-

sired behaviors of the agent.

r(s, a, s′) =
K

∑

k=1
rk (s, a, s

′)

with these terms derived from the graph G, we can directly

utilize the described RL framework, described from Eq. 1-6

to estimate the states of the system, and derive πθ .

Algorithm 1 Spatio-Temporal Graph Abstraction

Input:

• G = (N (t),E(t))

• Gs = (Ns,Es)

1: for Number Episodes ≤MAX Episodes do

2: while Each Es ∈ Gs do

3: Run πθold for T time-steps

4: Compute advantage estimates Â1, . . . , ÂT

5: Optimize L from Eq. 6 wrt θ

6: θold ← θ

7: Ĝoldd = Ĝd

8: return

We now, apply such formulation in a robotic path plan-

ning scenario with complex and adversarial environments,

involving static, dynamic, and crowded scenarios in which

we divide the Graphs into two control schemes: (i) - The

immutable graphG1, represents the general knowledge of the

environment and is used by a global controller for the global

navigation, and (ii) - the dynamic graph, G2, is abstracted by

a RL framework, in a local controller scheme, in which we

train our policy using PPO and define a set of joint states to

learn social behavior and improve social compliance.

For illustration, in the problem definition, we assume an

environment in which the agent should navigate through

paths (corridors, streets) which intersect in known locations.

We represent the whole, static and known environment as

an undirected graph G(N ,E), in which the intersections of

the corridors are the vertices N , and the corridors are the

edges E . Each of the vertices represents a fixed Cartesian pair

Ni = (xi, yi). Each Cartesian pair (xi, yi) is the exact location

of vertice Ni in the map of the environment. A sequence of

vertices N = {N1,N2, . . . ,Nk )} defines the desired path

along the known environment.

Different from [61], our system does not propose that the

global planner should generate very close waypoints and the

local controller would guide the agent through minimal dis-

tances. We propose a global planner that will guide the agent

in crucial portions of the environment, like intersections,

directing it to one of the available directions according to the

designated path. Meanwhile, the local planner avoids colli-

sions, maintains system safety, and drives the agent towards

Ni+1.
This problem can easily be visualized in a ware-

house or supermarket scenario, in which the agents (robots)

need to reach specific shelves to collect or store specific

products. While such a problem can be solved easily for a

static scenario, where no interaction with humans happens

and a central controller is available, when such conditions

are not met, robots are forced to go through an every-step

re-planning, which is computationally costly and reduces the

time available to respond to immediate danger. Under such

conditions, with the proposed framework, a way to model

the system, is assuming the static graph Gs to model the

immutable interest points (shelf locations, product location,

turns). On the other hand, Ĝd , the estimated Markov model,

establishes a relation between the actions of the agent and the

observations it can collect from the environment.

A. GLOBAL PATH PLANNING

For the global navigation problem, we consider the path

mapping, where the robot needs to navigate from origin O to

goal,G through a known environment. We assume a search in

an indoor environment, at this level with only the environment

original obstacles, namely walls, shelves, and other items

that were part of the initial environment. First, we define in

the scene points of interest or waypoints through which the

goal can be achieved, but not considering the specifics of

local navigation like velocity, collision avoidance, and obsta-

cle avoidance. The disposition of intersections and corridors

created by the ambient structures are taken into consideration

to build a graph that describes the existence, or lack thereof,

of a path between places in the environment.

As proposed in [62], the adjacent way-points form a graph

structure. In order to have a more goal-oriented movement,

we implement the path search algorithm A∗. In this specific

implementation, we use the Manhattan Distance heuristic in

order to capture the Cartesian aspect of our environment. At

each iteration of its main loop, A∗ needs to determine which
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of its partial paths to expand into one or more longer paths.

It does so based on an estimate of the cost (total weight) to

get to the goal node. Specifically, A∗ selects the path that

minimizes:

f (n) = g(n)+ h(n),
where n is the last node on the path, g(n) is the cost of the

path from the start node to n, and h(n) is a heuristic that

estimates the cost of the cheapest path from n to the goal. The

heuristic is problem-specific. As we are dealing with a grid,

which allows four directions of movement, the most suitable

heuristics uses Manhattan distance (L1). The cost of moving

from point a to b is defined as the distance between the vectors

Ep = (p1, p2, . . . , pk ) and Eq = (q1, q2, . . . , qk ), which is:

h1(Ep, Eq) = β(

k
∑

i=1
|pi − qi|)β,

in a x − y plane the cost can be reduced to h1(Ep, Eq) =
β(|px − qx |+

∣

∣py − qy
∣

∣). In both cases, β represents the min-

imum cost to translate from the current node to the adjacent

one.

The graph search generates a tree, which defines a path

plan to be followed. Even if the generated tree may lead

towards the goal, it does not take into consideration the set

of decisions that should be taken between waypoints. The

navigation between waypoints is the core of our work and

is described in details in subsection III-B.

B. LOCAL CONTROLLER

With theA∗ search, we generate a set of waypoints that should
be followed, but so far we have not discussed the navigation

in-between waypoints. Before discussing the control method,

we define the second-order model, S of our agent as a double-

integrator, as proposed in [63],

S(t) =
[

ṙx
ṙy

]

=
[

vx
vy

]

,

[

v̇x
v̇y

]

=
[

ux
uy

]

. (9)

In Equation 9, the system is independently controlled on

x and y directions. The controller uq(t) applies a force to the

agent S(t) in order to direct towards the reference point.

In Figure 3a, the feedback branch with the observations is

not subtracted of the input vector Xk , and instead both are fed

to the controller that decides its current state and define the

best action pair to be applied, uk = [ux , uy]
T .

The local controller is formulated as a sequential decision

making entity trained in a reinforcement learning framework

[54], [64], [65]. In order to drive the agent from position Xk−1
to Xk , a decision-making algorithm was trained in a straight

line environment initially with static obstacles, and later with

the crowd. With such a scenario, the agent would initially

learn about the goal achievement, and in a second moment

would enhance crowd avoidance by incorporating behavior

learning.

As shown in Figure 3b, the RL framework does not react

to the difference of current agent position and the goal only.

FIGURE 3. Local controller system. (a) - The control input uk is applied to

the system S(t), which reacts, generating the observation vector ED.
Different from regular feedback, the observation vector is fed as whole to
the controller. (b) - the local controller performs a rotation in the output

of πθ based on the difference from EXk and EXk−1.

On the contrary, this information is used to compose the state

Si ∈ S of the agent. We define the state as

S = {(xa − xg), (ya − yg), ẋa, ẏa}, (10)

in which (ra − rg) represents the vector distance between

current position ra and the goal position rg. In the crowd

environment, the state of the agent for the RL framework is

not enough to generate the desired actions, as we consider

the environment to be continuously changing and evolv-

ing. As for the system to incorporate the crowd behavior,

the system state incorporates position and velocity of the

nearest human being, Sobs = {xobs, yobs, ẋobs, ẏobs}. Then
Equation 10, would become:

S = {(xa − xg), (ya − yg), ẋa, ẏa xobs, yobs, ẋobs, ẏobs},

note that we focus this work on exploring the ability of the

agent to generalize its knowledge to unseen situations and

multiple obstacles, to that purpose the agent is restricted to

observing a single agent at each moment.

To compose the set of information necessary for act-

ing precisely, we feed the policy a vector of observations

about the environment. The vector of observation ED =
{d1, d2, . . . , d180} is composed of 180 observations around

the robot, simulating a LIDAR sensor with 1 degree precision.

The policy πθ , which maps the observation vector ED and

the state Si to the actions A was parameterized using a neural

network. The policy network is not very deep. It has only

three hidden layers. Such a configuration was an implemen-

tation choice to improve the time of convergence. In order

to compensate for such a shallow network, the state space S

and observation space D were reduced by a design strategy,

in which the policy was trained such that the agent would

learn only a single behavior. The agent learns to go forward

(positive y direction) while avoiding static, dynamic, and

human obstacles.
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Such a design choice would limit the utilization of the

system in broad areas. The agent would not be able to follow

goals which were not aligned in the y direction. In order to

add more mobility to the agent, we map the action vector to

the desired goal based on the previous waypoint and the next

waypoint. The base coordinate system is rotated by φ, so that

the direction of the goal, EGd = EXk − EXk−1, coincides with the
new direction of the y axis, y′.

We solve the generalization problem by performing a linear

mapping in the coordinates of the system. More specifically,

we calculate the angle phi as the rotation angle of EGd in

polar coordinates, rotate the original coordinates system, and

map EA to the new coordinate system. The option for using

such a rotation matrix allows the agent to cover any given

direction in the 2-dimensional space, even in asymmetrical

cases, conditioned to the limitations of the static graph.

IV. RESULTS

In this section, we evaluate the performance of the proposed

algorithm and describe the learning process. For evaluation,

in this paper, we have outlined an indoor scenario, with

a priori known structures (external and middle walls), and

unknown obstacles (boxes and people), in which the agent

needs to arrive at a specific destination in a store. In this

work we focus on environments that mix static and dynamic

restrictions, modeled as spatio-temporal graphs. To the best

of our knowledge, no environment with such conditions and

modelling was available and experimented on at the time

of the writing of this article. Most of the trained RL poli-

cies, degrades or do not transfer from one domain to the

other, leading to a loss of performance or being completely

incompatible due to the differences in the observation vec-

tor. A comparison with other learning method such as the

PRM-RL in [50] would not be relevant due to the incompat-

ibility of inputs, unavailability of the trained model, and the

different nature of the proposed scenarios. As a comparison,

we have implemented an artificial potential fields method (as

comparison to the RL policy), as it is widely used and proven

to be efficient in the literature under the conditions presented

in this article and similar conditions presented in a previous

article by one of the authors [31] .

A. DEEP RL AGENT TRAINING

We train our agent in a straightforward scenario composed

of people(dynamic obstacles) and static obstacles using PPO

[24]. We set γ to be a larger number, so that agent acts in the

present in order to prepare for rewards in the distant future.

We set λ to a higher value, so that the agent relies more on

the current reward than the estimate it is producing. We have

a Batch Size of 2048, to improve the updates in the gradient

descend (more indicated for continuous systems). Our trainer

setup is described in Table 1.

The training environment, though virtual, simulates with

high fidelity real-world physics. Under this scenario, it would

be easy to feed as information to the robot the position of

the obstacles. However, we have limited the knowledge of

TABLE 1. List of hyper-parameters used for the deep reinforcement
learning agent PPO trainer.

the robot to a 4m, 180 degrees LIDAR perception. This

restricted implementation emulates as close as possible a real-

life scenario with obstacle occlusion, sensor restrictions, and

environmental restrictions. In addition to the sensor readings,

the agent also knows its location in the environment (GPS

emulation), and the location of the target. Both the robot’s

location and target location are in a global frame.

The training scenario consists of a long straight road in

which the robot starts in one end, and has its target known

to be on the other side of this road. The environment,

constructed in Unity3D, was configured with a set of rewards

R ∈ R.R is defined in Table 2.

We have trained the algorithm for 3000000 steps. Every

episode of the training would have at most 4500 steps. The

cumulative reward, episode length, and policy loss are shown

in Figure 4. As seen in Figure 4-(a), initially, with random

policy, the agent has very erratic behavior and does not

accomplish or demonstrate objective towards a goal within

the 4500 step limit. As the training occurs, the episode length

reduces, which means the agent has more effective behavior

but still collides very soon (low rewards). As it explores

the environment and learns, its actions are more assertive

towards the goal, which increases the received rewards. The

oscillations noticed in the cumulative rewards can be inter-

preted as adjustments in the behavior due to the explo-

ration/exploitation trade-off in the RL framework. In Fig-

ure 4-(c), we observe an inflection of the Policy Loss between

steps 0 106, we associate such inflection to the observed

behavior of the agent. Initially, the agent is learning about

the unknownMDP and is collecting experiences by sampling

actions from an almost random policy. In the initial states,

the gradient of the loss function is trying to adjust the weights

for actions that yields a positive reward, but as there’s no

effective behavior towards the goal, there’s an increase in the

loss of the policy.

The proposed experiment runs on a 3D simulated environ-

ment; in order to abstract the sensor observations to states and

map it to an action, we use a parameterized policy. The policy

is parameterized through a Neural Network and trained using

PPO. In order to improve the training, and more importantly

reduce the inference time, we have architected a shallow

network with 3 hidden layers and 183 neurons in each layer.

Such choices have allowed us to have a very small inference
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TABLE 2. Rewards defined in the environment for training. Goal
achievement or collision are final actions. Rewards for positive velocity
are added each frame to enforce goal seek and reduce training time.

FIGURE 4. The cumulative reward in (a) grows as the episode length (b),
and policy loss (c) reduces. The slight increase in around 1.25M steps can
be associated with less collisions and more objective oriented behavior.

time. In our system, with the GPU dedicated only to render

the environment, and inference being performed in an Intel

i7-8700k CPU (having only 11% CPU utilization). we were

able to achieve a 0.02s inference time.

B. CROWDED AREA NAVIGATION EVALUATION

We evaluate the performance of our algorithm in a simulated

store environment. The store is composed of 14 different

possible destinations. The only prior knowledge of the robot

is the intersection map, saved in an undirected graph as

described in subsection III-A. In between waypoints the static

obstacles are placed randomly, and the human behavior is also

FIGURE 5. (a) A top view of the test environment with the intersections
mapped to nodes in the graph G. (b) A 3D visualization of the
environment with the robot’s point of view in the top right corner.

random but follows maximum speed limitation, we have sim-

ulated the crowd with random speeds ranging from 0.7km/h

to 3.7km/h. The current scenario, proposed to the tests, was

discretized in 2376 nodes. From these nodes, 336 nodes

were occupied by the shelves (static obstacles). The other

2040 nodes were available paths to the agent and the dynamic

obstacles which compose the unknown dynamic graph Gd .

In order to navigate along this environment, a 15 nodes graph

was designed as the static graphGs, and assumed to be known

by the agent. Under such circumstances, not considering

the position the nodes occupied by the shelves, we have

a ratio of 15/2040 when comparing the static graph to the

dynamic.

In order to have a comprehensive evaluation of our algo-

rithm, we have executed all possible paths (set each node as

a destination once) 300 times each for a total of 4200 trials.

We have compared our system with artificial potential fields

(APF) as proposed in [31] with the addition of a rotation field,

as shown in [66]. In the implemented controller Kattraction =
0.5,Krepulsion = 25, obstacle radius of influence and attraction

switch distance are 4m. The gains were optimized for the

current configuration of the store.

Table 4 and Table 3 contains the results obtained after

300 trials for each possible destination, following the way-

points generated by the A* algorithm. The average times,

distances, and efficiencies for each path were calculated for
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TABLE 3. Results of APF.

TABLE 4. Results of RL.

the N samples with a confidence level of 95%, as follows:

Avg Time = 1

N

N
∑

i=1
timei ± 1.96 ∗ σ√

N

Avg Distance = 1

N

N
∑

i=1
distancei ± 1.96 ∗ σ√

N

Efficiency = p̂± 1.96 ∗
√

p̂ ∗ (1− p̂
N

where σ is the standard deviation of the samples, and the

efficiency rate, p̂ is calculated by dividing the number of goal

achievements by the total number of samples, N = 300.

In most of the cases, the algorithm running with APF had a

higher achievement rate compared to its RL counterpart, but it

does not translate into overall better performance. In the APF

case, the gains for the algorithm were carefully optimized

to the situation of the tests, in which the speed of dynamic

obstacles and number of static obstacles were controlled.

This posted it remains to evaluate the efficiency of the

algorithm in adversarial situations. Mainly when those vary

from the training conditions of the algorithm.

C. ADVERSE CONDITIONS EVALUATION

The advantage of using a non-deterministic policy over the

actions is that the agent will have the possibility of better

estimating its state and generalizing its distribution of actions

FIGURE 6. Overall result of the RL policy, in 9680 trials with 1936 different
scenarios.(a) The Reinforcement Learning Results. (b) The APF results.

over states, to choose the adequate action in the presented sce-

nario. We have empirically evaluated this statement through

a series of experiments.

To explore the generalization ability of the policy, we have

restricted the scenario to the navigation between two way-

points and varied the maximum speed of the agent, the maxi-

mum speed of humans, the number of static obstacles and also

the number of humans in the scenario. Each of the conditions

was tested five times, with random placement of humans and

obstacles.

As seen in Figure 6, overall, the Reinforcement Learning

algorithm had a better efficiency in the more adverse scenar-

ios. In this case, the trials labeled as incomplete falls under

the category in which the time limit for the execution was

reached, without the agent achieving the goal or colliding

which is the result of local minima or early termination of

the process.

The maximum speed of the agent defines the time it has

to react to the perceived obstacles in the environment. As the

velocity increases, the reaction time reduces, and the control

policy needs to take actions accounting for this fact. In the

multiple path scenario, we have executed the tests with a

pre-defined maximum speed, and have optimized the APF

algorithm for that speed. Such circumstances, have shown

APF as a more goal efficient algorithm. In Figure 7, we have

isolated the different maximum velocities we have used to
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FIGURE 7. The goal achievement rate obtained, in different maximum
velocities for the agent. The APF policy efficiency (in blue) decreases
exponentially with the speed, opposed to the RL policy (in orange) which
adapts better to the parameter variation.

FIGURE 8. The goal achievement rate obtained, in different maximum
speed of the dynamic obstacles for the agent. The RL perform better in all
tests, we observe greater correlation of the dynamic obstacles speed and
the efficiency of the agent.

FIGURE 9. The goal achievement rate obtained, with different number of
dynamic obstacles, by the agent.

test the robot and varied all the other parameters. We can see

that as speed increases, the success rate of the APF method

is reduced exponentially to below 20%. On the contrary,

the probabilistic policy adapts better to the increase of speed.

Differently, in Figure 8, it is noticeable that even with a

more significant achievement rate of the RL policy, the RL

policy is greatly affected by the speed of the dynamic obsta-

cles. We attribute this to the fact that it requires a faster

lateral reaction from the agent, which was not exploited in

the training phase. The lateral reaction is compromised due

to the use of only a 180 degree LIDAR; it reduces in 50% the

number of visualizations of the side obstacles. In this case,

since the dynamic obstacles and humans are not simulated

FIGURE 10. The goal achievement rate obtained, with different number of
static obstacles, by the agent.

with object avoidance, they would still go in the direction of

the robot.

As we see in Figures 9 and 10, as we increase the number of

obstacles, either dynamical or static, the possibilities to avoid

them decrease; besides, the performance of both algorithms

decline as the number of obstacles in the path increase. It is

evident that even with this variation and increase in com-

plexity, the RL can have better efficiency. Overall we notice

that the implemented policy can generalize the environment

better and take more effective actions, to avoid obstacles, and

consequently achieve the goal.

V. CONCLUSION

Graph navigation for short path queries is essential for

autonomous vehicles and robotic navigation. This paper stud-

ied a hybrid methodology to improve navigation efficiency

in uncertain environments. The algorithm is divided into two

main parts, a graph navigator based on A∗ which enables

navigation between landmarks and known structures of the

environment, and a local navigator that abstracts the dynam-

ics of the agent and the environment into states and proba-

bilistically chooses the adequate action for the current state.

We have extensively tested our algorithm in many adverse

scenarios. Initially, we tested for different paths in a simulated

store scenario and compared its performance to the Artificial

Potential Fields method, optimized for those specific con-

ditions. Also, we tested and compared both methods when

applied to adverse situations, to which they were neither

trained nor optimized. The algorithm based on the Reinforce-

ment Learning Policy, outperformed the APF one in up to

100% in specific cases.

Our future work will focus on the integration of the per-

formance analysis of the algorithm on the time of training,

in order to improve the training phase of the algorithm.
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