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Abstract. Temporal Here and There (THT) constitutes the logical
foundations of Temporal Equilibrium Logic. Nevertheless, it has never
been studied in detail since results about axiomatisation and interdefin-
ability of modal operators remained unknown. In this paper we provide
a sound and complete axiomatic system for THT together with several
results on interdefinability of modal operators.

1 Introduction

In [10], Michael Gelfond and Vladimir Lifschitz introduced the so-called 0 seman-
tics that subsumed many of the existing Logic Programming alternatives but
without the syntactic restrictions made by previous approaches. The model-
based orientation of this semantics led to a paradigm suitable for constraint-
satisfaction problems that is known nowadays as Answer Set Programming
(ASP) [17,18] and that became one of the most prominent and successful
approaches for Knowledge Representation. During the evolution of ASP, many
hints have pointed out its relevance inside the theoretical foundations of Non-
Monotonic Reasoning. One result had a particular success in the study of foun-
dations of ASP: Equilibrium Logic (EQL). Introduced by David Pearce [19], this
characterisation has shown interesting features such as the theorem of Strong
equivalence [15] as well as extensions to first-order and modal logics [4,8,20]
without imposing any syntactic restriction on the formulas.

Among this modal extensions, we remark Temporal Equilibrium Logic
(TEL) [4], which extends the language of EQL with temporal operators from
Linear Time Temporal Logic (LTL) [21]. Following the same spirit as EQL, TEL
strongly relies on Logic of Temporal Here and There (THT), an extension of the
logic of Here and There (HT) [12]. However, contrary to HT, THT has not been
studied in detail. Only its role in the theorem of Temporal Strong Equivalence [2]
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supported by the Centre international de mathématiques et d’informatique (contract
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and a pair of connections with other logics based on HT [5] are known. In this
paper we deal with two problems that remained open in THT. The first prob-
lem consists in determining whether modal operators are interdefinable or not
while the second problem corresponds to the definition of a sound an complete
axiomatic system for THT.

The temporal constructs of THT will be l, ♦, ⋆l and ⋆♦, the constructs
l and ♦ being interpreted by the successor relation between integers whereas
the constructs ⋆l and ⋆♦ being interpreted by the precedence relation between
integers. As usual when one has to axiomatise modal logics where some modal
constructs are interpreted by the reflexive transitive closure of the accessibility
relation used to interpret other modal constructs, our axiomatisation will use
inference rules for induction. In this setting, traditional proofs of completeness
(see [11, Chap. 9]) are based on canonical model and filtration. In our HT setting,
however, the usual filtration method does not allow to transform, as it is the
case in ordinary temporal logic, the canonical model into a model where ⋆l and
⋆♦ are interpreted by the precedence relation between integers. For this reason,
we had to redefine the filtration method in an appropriate way (see Sect. 6 for
details). Moreover, the determinisation of the filtrated model requires, in the case
of ordinary temporal logic, the use of a characteristic formula that cannot be
expressed in our language. As a result, we had to redefined the determinisation
of the filtrated model.

This paper is organised as follows: in Sect. 2 we introduce syntax and two
equivalent semantics for THT. In Sect. 3 we go through the problem of inter-
definability by defining the notion of bisimulation in the HT setting. The proof
of completeness of the axiomatic system described in Sect. 4 is described along
Sects. 5–7 and we finish the paper with conclusions and future work.

2 Syntax and Semantics

Let At be a finite or countable set of atomic formulas (with typical members
denoted by p, q, etc.). We inductively define the set of all formulas (with typical
members denoted by φ, ψ, etc.) as follows:

φ ::= p | ⊥ | (φ ∨ ψ) | (φ ∧ ψ) | (φ → ψ) | lφ | ♦φ | ⋆lφ | ⋆♦φ.

Note that, following the tradition in Intuitionistic Modal Logic, we have
added the new temporal constructs l, ♦, ⋆l and ⋆♦ to the ordinary language of
IPL. As it will soon become clear, the constructs l and ♦ are equivalent in THT
while ⋆l and ⋆♦ are independent. We define ¬φ as the abbreviation ¬φ ::= φ → ⊥.
For all sets of formulas x, let lx = {ϕ | lϕ ∈ x} and ♦x = {♦ϕ | ϕ ∈ x}. The
sets ⋆lx and ⋆♦x are similarly defined. We shall say that a set Σ of formulas is
closed if (1) Σ is closed under subformulas; (2) if ⋆lϕ ∈ Σ then l⋆lϕ ∈ Σ; (3) if
⋆♦ϕ ∈ Σ then ♦⋆♦ϕ ∈ Σ; (4) if ϕ ∈ Σ then ¬ϕ ∈ Σ. Remark that the least closed
set of formulas containing a given formula is infinite. Nevertheless, its quotient by
the relation of logical equivalence will be finite in the context of THT. We define
the degree of a formula φ (in symbols deg(φ)) by induction as follows: (i) deg(p) =



deg(⊥) = 0; (ii) deg(φ∨ψ) = deg(φ∧ψ) = deg(φ → ψ) =max{deg(φ), deg(ψ)};
(iii) deg(lφ) = deg(♦φ) = 1 + deg(φ); (iv) deg(⋆lφ) = deg(⋆♦φ) = deg(φ). We
define a temporal model as a structure M = 〈H,T 〉 where H : N → 2At and
T : N → 2At are such that H(i) � T (i) for all i � 0. If an atomic formula belongs
to H(i), i ∈ N, then it means that p holds here in M at time i whereas if p belongs
to T (i) then it means that p holds there at time i. The satisfaction relation in
a temporal model M = 〈H,T 〉 of a formula ϕ at the pair (i, α) ∈ N × {h, t},
denoted by M, (i, α) |= ϕ, is inductively defined as follows:

– M, (i, h) |= p iff p ∈ H(i);
– M, (i, t) |= p iff p ∈ T (i);
– M, (i, α) |= ϕ ∧ ψ iff M, (i, α) |= ϕ and M, (i, α) |= ψ;
– M, (i, α) |= ϕ ∨ ψ iff M, (i, α) |= ϕ or M, (i, α) |= ψ;
– M, (i, α) |= ϕ → ψ iff for all β ∈ {α, t} M, (i, β) ||= ϕ or M, (i, β) |= ψ;
– M, (i, α) |= lϕ iff M, (i + 1, α) |= ϕ;
– M, (i, α) |= ♦ϕ iff M, (i + 1, α) |= ϕ;
– M, (i, α) |= ⋆lϕ iff for all j � i, M, (j, α) |= ϕ;
– M, (i, α) |= ⋆♦ϕ iff there exists j � i s.t. M, (j, α) |= ϕ;

We will say that a formula ϕ is THT -valid (denoted by THT |= ϕ) iff
M, (0, h) |= ϕ for all THT models M.

Proposition 1 (Persistence). For all formulas ϕ, for all THT models M and
for all i ∈ N, if M, (i, h) |= ϕ then M, (i, t) |= ϕ.

Our aim, in this paper, is to completely axiomatise the set of all THT-
valid formulas. This will be done from Sect. 4 on. In the meantime we study
an alternative semantics for THT formulas that will be used in the proof of
completeness of our axiomatisation. A birelational model is a structure of the

form M = 〈W,�, R�, R⋆�, V 〉 such that:

– W is a non-empty set of worlds;
– � is a partial order on W ;

– R� and R⋆� are binary relations on W ;
– V : W → 2At is such that for all x, y ∈ W , if x � y then V (x) ⊆ V (y).

Given a birelational model M = 〈W,�, R�, R⋆�, V 〉, a world x ∈ W and a
formula ϕ, the satisfaction relation is defined as follows:

– M, x |= p iff p ∈ V (x);
– M, x |= (ϕ ∧ ψ) iff M, x |= ϕ and M, x |= ψ;
– M, x |= (ϕ ∨ ψ) iff M, x |= ϕ or M, x |= ψ;
– M, x |= ϕ → ψ iff for all x′ ∈ W , if x � x′ then M, x′ ||= ϕ or M, x′ |= ψ;
– M, x |= lϕ iff for all x′, y ∈ W , if x � x′R�y then M, y |= ϕ;
– M, x |= ♦ϕ iff there exists y ∈ W s. t. xR�y and M, y |= ϕ;

– M, x |= ⋆lϕ iff for all x′, y ∈ W , if x � x′R⋆�y then M, y |= ϕ;

– M, x |= ⋆♦ϕ iff there exists y ∈ W s. t. xR⋆�y and M, y |= ϕ.



Notice that the clauses concerning the temporal constructs l and ⋆l imitate
the clause for the quantifier ∀ in first-order intuitionistic logic whereas the clauses
concerning ♦ and ⋆♦ imitate the clause for ∃. See [7, Lemma 5.3.2] for details.
We shall say that M is normal if (1) for all x, y, z ∈ W , if x � y and x � z

then either x = y or x = z or y = z; (2) for all x, y, z ∈ W , if x � y and

xR�z (respectively xR⋆�z) then yR�t (respectively yR⋆�t) and z � t for some

t ∈ W ; (3) for all x, y, z ∈ W , if xR�y (respectively xR⋆�y) and y � z then

x � t and tR�z (respectively tR⋆�z) for some t ∈ W . If M is normal then for all
x ∈ W , either x is a maximal element with respect to �, or there exists y ∈ W

such that x � y and x |= y. In the former case let x̂ be x. In the latter case,
there exists exactly one y ∈ W such that x � y and x |= y; let x̂ be this y. A

normal model M = 〈W,�, R�, R⋆�, V 〉 is said to be standard if R� is serial,

R� is deterministic and R⋆� is equal to the reflexive transitive closure of R�.
We say that a formula ϕ is standard-valid iff for all standard birelational models

M = 〈W, �, R�, R⋆�, V 〉 and for all x0 ∈ W , M, x0 |= ϕ. We now relate this
alternative semantics to the THT semantics. Let M = 〈H,T 〉 be a THT model.

We define the birelational model M′ = 〈W, �, R�, R⋆�, V 〉 as follows:

– W = N × {h, t};
– (i1, α1) � (i2, α2) iff i1 = i2 and either α1 = h or α2 = t;
– (i1, α1)R

�(i2, α2) iff i1 + 1 = i2 and α1 = α2;

– (i1, α1)R
⋆�(i2, α2) iff i1 � i2 and α1 = α2;

– V ((i, α)) = H(i) if α = h else T (i).

Obviously, M′ is a standard birelational model. Moreover, as the reader can show
by structural induction, for all formulas ϕ, for all i ∈ N and for all α ∈ {h, t},

M, (i, α) |= ϕ iff M′, (i, α) |= ϕ. Reciprocally, let M′ = 〈W, �, R�, R⋆�, V 〉
be a standard birelational model. Hence, R� is serial, deterministic and for all

x ∈ W and for all i ∈ N, there exists exactly one y ∈ W such that x
(
R�

)i
y;

let
(
R�

)i
(x0) be this y. Let x0 ∈ W . We define the functions H,T : N → 2At

as H(i) = V (
(
R�

)i
(x0)) and T (i) = V (

̂(
R�

)i
(x0)). Remark that for all i ∈ N,

H(i) ⊆ T (i). Let M = 〈H,T 〉. Thus, M is a THT model. As the reader can show

by structural induction, for all formulas ϕ and for all i ∈ N, M′,
(
R�

)i
(x0) |=

ϕ iff M, (i, h) |= ϕ and M′,
̂(

R�
)i

(x0) |= ϕ iff M, (i, t) |= ϕ. As a result,
THT semantics and the alternative semantics are equivalent.

3 Interdefinability

As it is well-known, disjunction is definable in terms of conjunction and impli-
cation within the context of HT [16].

Lemma 1. For all formulas φ, ψ, THT |= φ ∨ ψ ↔ ((φ → ψ) → ψ) ∧
((ψ → φ) → φ).



Below, we show the non-interdefinability of conjunction in THT.

Lemma 2. Let M1 = 〈H1, T1〉, M2 = 〈H2, T2〉 and M3 = 〈H3, T3〉 be the
THT models such that for all i ∈ N, H1(i) = {p, q}, Ti(i) = {p, q}, H2(i) = {p},
T2(i) = {p, q} , H3(i) = {q} and T3(i) = {p, q}. For all ∧-free formulas ϕ and
for all i ∈ N, M1, (i, h) |= ϕ iff M2, (i, h) |= ϕ or M3, (i, h) |= ϕ.

Proof. By structural induction on ϕ.

Lemma 3. Let p, q ∈ At. There is no ∧-free formula ψ such that THT |=
p ∧ q ↔ ψ.

Proof. Remark that M1, (0, h) |= p∧q, M2, (0, h) ||= p∧q and M3, (0, h) ||= p∧q.
Hence, by Lemma 2, p ∧ q is THT-equivalent to no ∧-free formula.

In the HT setting, the non-interdefinability of ∧ has also been proved by
Aguado et al. [1] by means of a denotational semantics based on sets of models.
Our proof is simpler, seeing that it does not require the use of sets of models.
Before considering the interdefinability of the modal operators in THT, we must
remark that the following equivalences are THT-valid:

– l⊥ ↔ ⊥;
– l (ϕ ∨ ψ) ↔ lϕ ∨ lψ;
– l (ϕ ∧ ψ) ↔ lϕ ∧ lψ;
– l (ϕ → ψ) ↔ (lϕ → lψ);
– l⋆lϕ ↔ ⋆l l ϕ;
– l⋆♦ϕ ↔ ⋆♦ l ϕ;

– ♦⊥ ↔ ⊥;
– ♦ (ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ;
– ♦ (ϕ ∧ ψ) ↔ ♦ϕ ∧ ♦ψ;
– ♦ (ϕ → ψ) ↔ (♦ϕ → ♦ψ);
– ♦⋆lϕ ↔ ⋆l♦ϕ;
– ♦⋆♦ϕ ↔ ⋆♦♦ϕ.

As a result, every formula is equivalent to a formula in which ⊥, ∨, ∧, →, ⋆l

and ⋆♦ do not appear within the scope of l or ♦. In order to prove the non-
interdefinability of ⋆l and ⋆♦, we introduce the notions of ⋆l-bisimulation and
⋆♦-bisimulation between THT models. Let D = {(i, α) | i ∈ N and α ∈ {h, t}}
and let k ∈ N. A binary relation Z on D is said to be a k -⋆l-bisimulation between
the THT models M1 and M2 if the following conditions are satisfied:

1. if (i1, α1) Z (i2, α2) then for all j, 0 � j � k, and for all propositional vari-
ables p, M1 (i1 + j, α1) |= p iff M2, (i2 + j, α2) |= p;

2. if (i1, α1) Z (i2, α2) then (i1, t)Z (i2, t) or both (i1, α1) Z (i2, t) and (i1, t) Z
(i2, α2);

3. if (i1, α1) Z (i2, α2) and i1 � j1 then there exists j2 ∈ N s.t. i2 � j2 and
either (j1, α1)Z (j2, α2) or (j1, α1) Z (j2, t);

4. if (i1, α1) Z (i2, α2) and i2 � j2 then there exists j1 ∈ N s.t. i1 � j1 and
(j1, α1) Z (j2, α2) or (j1, t) Z (j2, α2).

A binary relation Z on D is said to be a k-⋆♦-bisimulation between the THT
models M1 and M2 if the following conditions are satisfied:

1. if (i1, α1) Z (i2, α2) then for all j, 0 � j � k, and for all propositional variable
p, M1, (i1 + j, α1) |= p iff M2, (i2 + j, α2) |= p;



2. if (i1, α1) Z (i2, α2) then (i1, t) Z (i2, t) or both (i1, α1) Z (i2, t) and (i1, t)
Z (i2, α2);

3. if (i1, α1) Z (i2, α2) and i1 � j1 then there exists j2 ∈ N s.t. i2 � j2 and
either (j1, α1) Z (j2, α2) or (j1, t) Z (j2, α2);

4. if (i1, α1) Z (i2, α2) and i2 � j2 then there exists j1 ∈ N s.t. i1 � j1 and
(j1, α1) Z (j2, α2) or (j1, α1) Z (j2, t);

The proof of the following lemmas can be done by induction on φ.

Lemma 4 (Bisimulation Lemma 1). Given THT models M1 and M2 and
a k-⋆l-bisimulation Z between them, for all ⋆♦-free formulas φ, deg(φ) � k,
and for all (i1, α1) and (i2, α2) ∈ D, if (i1, α1)Z (i2, α2) then M1, (i1, α1) |=
φ iff M2, (i2, α2) |= φ.

Lemma 5 (Bisimulation Lemma 2). Given THT models M1 and M2 and
a k-⋆♦-bisimulation Z between them, for all ⋆l-free formulas φ, deg(φ) � k,
and for all (i1, α1) and (i2, α2) ∈ D. if (i1, α1)Z (i2, α2) then M1, (i1, α1) |=
φ iff M2, (i2, α2) |= φ.

Proposition 2. Let p ∈ At. There is no ⋆♦-free formula ψ such that THT |=
⋆♦p ↔ ψ.

Proof. Suppose that ψ is a ⋆♦-free formula such that THT |= ⋆♦p ↔ ψ. Let
k � 0 be the degree of ψ. Without loss of generality we can assume that ⊥,
∨, ∧, → and ⋆l do not appear in ψ within the scope of the connectives l

and ♦. Let M1 = 〈H1, T1〉 and M2 = 〈H2, T2〉 be the THT models such that
for all i ∈ N, H1(i) = ∅, T1(i) = {p} if i mod k + 2 = k + 1 and ∅ otherwise,
H2(i) = {p} if i = k + 1 and ∅ otherwise, T2(i) = {p} if i mod k + 2 = k + 1
and ∅ otherwise. Let Z be the binary relation on D such that (i1, α1)Z (i2, α2)
iff one of the following condition holds: (1) either α1 = α2 = h and i1 = i2 = 0,
or α1 = α2 = t and i1 = i2; (2) α1 = α2 = h and i2 = i1 + k + 2; (3)
α1 = α2 = t and i2 = i1 + k + 2; (4) α1 = t, α2 = h and i1 = i2 < k + 2.
The reader may easily verify that Z is a k-⋆l-bisimulation between M1 and
M2. Since M1, (0, h) ||= ⋆♦p, therefore M1, (0, h) ||= ψ. Hence, by Lemma 4,
M2, (0, h) ||= ψ. Thus M2, (0, h) ||= ⋆♦p: a contradiction.

Proposition 3. Let p ∈ At. There is no ⋆l-free formulas ψ such that THT |=
⋆lp ↔ ψ.

Proof. Similarly to the proof of Proposition 2, by using the THT models M1 =
〈H1, T1〉 and M2 = 〈H2, T2〉 such that for all i ∈ N, H1(i) = {p}, T1(i) = {p},
H2(i) = ∅ if i = k + 1 and {p} otherwise, T2(i) = {p} and the binary relation
Z on D such that (i1, α1)Z (i2, α2) iff one of the following condition holds: (1)
either α1 = α2 = h and i1 = i2 = 0; (2) α1 = α2 = t and i1 = i2; (3) α1 = α2 = h

and i2 = i1 + k + 2; (4) α1 = α1 = h and i1 = i2 > k + 1; (5) α1 = h, α2 = t

and i1 = i2.



4 Axiomatisation

The axiomatic system of THT consists of the axioms of Intuitionistic Proposi-
tional Logic [6, Chap. 5] plus the following axioms and inference rules:

Hosoi axiom: (1) p ∨ (p → q) ∨ ¬q;

Axioms for l and ♦:

(2) lp ↔ ♦p;

(3) l (p → q) ↔ (lp → lq);

(4) l (p ∨ q) ↔ lp ∨ lq;

(5) l (p ∧ q) ↔ lp ∧ lq;

(6) l⊥ ↔ ⊥

Fisher Servi axioms for ⋆l and ⋆♦:

(7) ⋆l⊥ ↔ ⊥

(8) ⋆l(p → q) → (⋆lp → ⋆lq);

(9) ⋆l(p → q) → (⋆♦p → ⋆♦q);

(10) ⋆♦(p ∨ q) → ⋆♦p ∨ ⋆♦q;

(11) (⋆♦p → ⋆lq) → ⋆l(p → q);

Axioms combining l, ♦, ⋆l and ⋆♦: (12) ⋆lp → p∧l⋆lp; (13) p ∨ ♦⋆♦p → ⋆♦p;

Induction: (14)
p → lp

p → ⋆lp
; (15)

♦p → p

⋆♦p → p
;

Modus ponens: (16)
p → q, p

q
. Necessitation: (17)

p

⋆lp
; (18)

p

lp
.

Proposition 4 (Soundness). The axiomatic system presented in this section
is sound.

Proof. Left to the reader. It is sufficient to check that all axioms are valid and
the inference rules preserve validity.

The Hosoi axiom corresponds to the fact that, in a normal model, M=〈W,�, R�,

R⋆�, V 〉, if x � y and x � z then either x = y or x = z or y = z. Axioms (2)–(4)

correspond to the fact that in a standard model M = 〈W, �, R�, R⋆�, V 〉, R� is
serial and deterministic. The Fisher Servi axioms for ⋆l and ⋆♦ are similar to the
axioms considered in [9,22]. Remark that the corresponding Fisher Servi axioms
for R� are easily derivable. Axioms combining l, ♦, ⋆l and ⋆♦ correspond to

the fact that, in a standard model M = 〈W,�, R�, R⋆�, V 〉, R⋆� is reflexive and

R� ◦R⋆� ⊆ R⋆�. As for the rules of inference (14) and (15), they will be used in

the proof of Lemma15, where the canonical model Mc = 〈Wc,�c, R
�
c , R⋆�

c , Vc〉

of THT is filtrated into a model MΣ = 〈WΣ ,�Σ , R�
Σ , R⋆�

Σ , VΣ〉 such that R⋆�
Σ is

the reflexive transitive closure of R�
Σ .

Lemma 6. For all m,n ∈ N, the following rules are derivable:

1.
ψ1 ∧ . . . ∧ ψm → φ ∨ χ1 ∨ . . . ∨ χn

⋆lψ1 ∧ . . . ∧ ⋆lψm → ⋆lφ ∨ ⋆♦χ1 ∨ . . . ∨ ⋆♦χn

;



2.
φ ∧ ψ1 ∧ . . . ∧ ψm → χ1 ∨ . . . ∨ χn

⋆♦φ ∧ ⋆lψ1 ∧ . . . ∧ ⋆lψm → ⋆♦χ1 ∨ . . . ∨ ⋆♦χn

.

Proof. These rules are derivable by means of Fisher Servi axioms. See [9,22].

Lemma 7. The following formulas are derivable: ϕ∧l⋆lϕ → ⋆lϕ; ⋆♦ϕ → ϕ∨♦⋆♦ϕ.

5 Canonical Model Construction

As usual, we will base our proof of completeness on the canonical model con-
struction.

5.1 Prime Sets

Given two sets of formulas x and y, we say that y is a consequence of x (denoted
by x ⊢ y) iff there exists φ1, . . . , φm ∈ x and ψ1, . . . , ψn ∈ y such that φ1 ∧ . . . ∧
φm → ψ1 ∨ . . . ∨ ψn ∈ THT . We shall say that a set x of formulas is prime if it
satisfies the following conditions: (1) ⊥ �∈ x; (2) for all formulas φ, ψ, if φ∨ψ ∈ x

then either φ ∈ x, or ψ ∈ x; (3) for all formulas φ, if x ⊢ φ then φ ∈ x.

Lemma 8 (Lindenbaum Lemma). Let x and y be sets of formulas. If x �⊢ y

then there exists a prime set z of formulas such that x ⊆ z and z �⊢ y.

The next Lemma shows the connection between Hosoi axiom and the relation
of inclusion between prime sets of formulas.

Lemma 9. Let x, y, z be prime sets of formulas. If x ⊆ y and x ⊆ z then either
x = y, or x = z, or y = z.

Proof. By Hosoi axiom.

Proposition 5. Let x be a prime set of formulas. There exists at most one
prime set of formulas strictly containing x.

Hence, for all prime sets x, either x is maximal, for inclusion, among all prime
sets, or there exists a prime set y such that x ⊆ y and x |= y. In the former case,
let x̂ = x. In the latter case, there exists exactly one prime set y such that x ⊆ y

and x |= y; let x̂ be this y. In our HT setting, one can easily show that for all
formulas ϕ, ϕ ∈ x̂ iff ¬¬ϕ ∈ x.

5.2 Canonical Model

The canonical model Mc is defined as the structure Mc = 〈Wc,�c, R
�
c , R⋆�

c , Vc〉
where:

– Wc is the set of all prime sets;
– �c is the partial order on Wc defined by: x �c y iff x ⊆ y;
– R�

c is the binary relation on Wc defined by: xR�
c y iff l x ⊆ y and ♦y ⊆ x;



– R⋆�
c is the binary relation on Wc defined by: xR⋆�

c y iff ⋆lx ⊆ y and ⋆♦y ⊆ x;
– Vc : Wc → 2At is the valuation function defined by: p ∈ Vc(x) iff p ∈ x;

Proposition 6. Mc is normal.

Proof. The condition (1) of normality follows from Lemma9. In order to prove
the conditions (2) and (3) it suffices to prove that for all x, y ∈ Wc, if xR�

c y

then x̂R�
c ŷ. Firstly remark that ¬¬ l p → l¬¬p and ♦¬¬p → ¬¬♦p are in

THT seeing that these formulas are derivable in the axiom systems considered
in [9,22]. Secondly, let x and y be prime sets such that xR�

c y and suppose that
x̂✚

✚R�
c ŷ. Hence, either lx̂ �⊆ ŷ or ♦ŷ �⊆ x̂. Let ϕ be a formula such that either

lϕ ∈ x̂ but ϕ �∈ ŷ or ϕ ∈ ŷ but ♦ϕ �∈ x̂. In the former case, ¬¬ l ϕ ∈ x,
l¬¬ϕ ∈ x, ¬¬ϕ ∈ y and ϕ ∈ ŷ: a contradiction. In the latter case, ¬¬ϕ ∈ y,
♦¬¬ϕ ∈ x, ¬¬♦ϕ ∈ x and ♦ϕ ∈ x̂: a contradiction.

Proposition 7. R�
c is serial and deterministic.

Proof. Seriality: Let x ∈ Wc. We define y = lx. By means of Axiom (2) the
reader can easily show that y is a prime set such that lx ⊆ y and ♦y ⊆ x, thus
xR�

c y. Determinism: Suppose that there exists x, y, z ∈ Wc such that xR�
c y

and xR�
c z but y |= z. Without loss of generality, let ϕ ∈ y be such that ϕ �∈ z.

As a consequence ♦ϕ ∈ x but lϕ �∈ x, which contradicts Axiom (2).

Proposition 8. R⋆�
c is reflexive and transitive.

Proof. Reflexivity: Use the first parts of Axioms (12) and (13). Transitivity:
Use the second parts of Axioms (12) and (13) together with the induction rules.

Remark also that Axioms (12) and (13) guarantee that
(
R�

c

)⋆
⊆ R⋆�

c . Nev-
ertheless, as it is usually the case when one axiomatises a modal logic in which
one connective is interpreted by the reflexive transitive closure of the relation

interpreting another connective, it might be the case that
(
R�

c

)⋆
|= R⋆�

c .

Lemma 10 (Truth Lemma). For all formulas ϕ and for all x ∈ Wc, (1) If
ϕ ∈ x then Mc, x |= ϕ; (2) if ϕ �∈ x then Mc, x ||= ϕ.

Proof. By induction on ϕ. We only present the proof for the case of ⋆l. Assume
that ⋆lψ ∈ x but Mc, x ||= ⋆lψ. From the latter assumption it follows that there

exists x′, y ∈ Wc such that x �c x′, x′R⋆�
c y and Mc, y ||= ψ. Since x �c x′

then ⋆lψ ∈ x′. On the other hand, from x′R⋆�
c y, Mc, y ||= ψ and the induction

hypothesis we conclude that ⋆lψ �∈ x′, which is a contradiction.
Reciprocally, assume that Mc, x |= ⋆lψ but ⋆lψ �∈ x. Let u = ⋆lx. Remark

that u �⊢ {ψ} ∪ {χ | ⋆♦χ �∈ x}. By Lindenbaum Lemma, let y ∈ Wc be such that

u ⊆ y and y �⊢ {ψ}∪{χ | ⋆♦χ �∈ x}. Note that ⋆lx ⊆ y and ⋆♦y ⊆ x. Hence, xR⋆�
c y.

Since y �⊢ ψ, therefore ψ �∈ y and, by induction hypothesis, Mc, y ||= ψ, which

contradicts Mc, x |= ⋆lψ and xR⋆�
c y.



6 Filtration

In order to repair the main defect of Mc, namely
(
R�

c

)⋆
|= R⋆�

c , the traditional
tool, filtration, consists in identifying prime sets in Wc that contain the same
formulas from the least closed set of formulas containing a given formula. We
had to change the definition of filtration, seeing that, within the context of THT,
the ordinary definition of filtration as the one presented in [11, Chap. 9] is not

appropriate. Given a normal THT model M = 〈W,�, R�, R⋆�, V 〉 and a closed
set Σ of formulas, we define the equivalence relation ≡Σ on W as: x ≡Σ y iff for
all ϕ ∈ Σ, M, x |= ϕ iff M, y |= ϕ.

Lemma 11. For all x, y ∈ Wc, if x ≡Σ y then x̂ ≡Σ ŷ.

The equivalence class of x ∈ W with respect to ≡Σ is denoted by [x]. We say that

a THT model MΣ = 〈WΣ ,�Σ , R�
Σ , R⋆�

Σ , VΣ〉 is a filtration of M, with respect
to Σ, iff WΣ = W|≡Σ

and for all x, y ∈ W :

1. if x � y then [x] �Σ [y];
2. for all ϕ → ψ ∈ Σ, if [x] �Σ [y], M, x |= ϕ → ψ and M, y |= ϕ then

M, y |= ψ;
3. if xR�y then there exists z ∈ W s. t. [x]R�

Σ [z] and [y] �Σ [z];
4. if xR�y then there exists t ∈ W s. t. [t]R�

Σ [y] and [x] �Σ [t];
5. for all lϕ ∈ Σ, if [x]R�

Σ [y] and M, x |= lϕ then M, y |= ϕ;
6. for all ♦ϕ ∈ Σ, if [x]R�

Σ [y] and M, y |= ϕ then M, x |= ♦ϕ;

7. if xR⋆�y then there exists z ∈ W s. t. [x]R⋆�
Σ [z] and [y] �Σ [z];

8. if xR⋆�y then there exists t ∈ W s. t. [t]R⋆�
Σ [y] and [x] �Σ [t];

9. for all ⋆lϕ ∈ Σ, if [x]R⋆�
Σ [y] and M, x |= ⋆lϕ then M, y |= ϕ;

10. for all ⋆♦ϕ ∈ Σ, if [x]R⋆�
Σ [y] and M, y |= ϕ then M, x |= ⋆♦ϕ;

11. for all p ∈ At ∩ Σ, p ∈ VΣ([x]) iff p ∈ V (x).

Lemma 12 (Filtration Lemma). Let M = 〈W, �, R�, R⋆�, V 〉 be a normal

THT model, Σ be a closed set of formulas and MΣ = 〈WΣ ,�Σ , R�
Σ , R⋆�

Σ , VΣ〉
be a filtration of M with respect to Σ. For all ϕ ∈ Σ and for all x ∈ W ,
M, x |= ϕ iff MΣ , [x] |= ϕ.

Proof. By induction on ϕ.

We will be interested in the filtration MΣ of Mc with respect to the least
closed set Σ containing a given formula ϕ0. Remind that the quotient of Wc by

≡Σ is finite. The relational structure MΣ = 〈WΣ ,�Σ , R�
Σ , R⋆�

Σ , VΣ〉 is defined
as follows:

1. WΣ = Wc|≡Σ
;

2. [x] �Σ [y] iff x ≡Σ ◦ �c ◦ ≡Σ y;
3. [x]R�

Σ [y] iff x ≡Σ ◦R�
c ◦ ≡Σ y;

4. [x]R⋆�
Σ [y] iff [x]

(
R�

Σ

)∗
[y];

5. VΣ([x]) = Vc(x) ∩ Σ.



Lemma 13. For all x, y ∈ Wc, [x] �Σ [y] iff x ≡Σ y or x̂ ≡Σ y.

In the sequel, ϕ and ψ will be Σ-formulas. For each t ∈ Wc, let

Φt =
∧

ϕ∈t

ϕ ∧
∧

ϕ�∈t

¬ϕ ∧
∧

ϕ∈ t \ t

¬¬ϕ ∧
∧

ϕ, ψ∈ t \ t

(ϕ → ψ).

By using the results proved in [3] we can deduce that for all s ∈ Wc, Mc, s |= Φt

iff [s] = [t] or [s] = [t̂]. Now WΣ is finite, as Σ is, so for all D ⊆ WΣ let
ΨD =

∨
[t]∈D

Φt.

Lemma 14. For any set D ⊆ WΣ and for all x ∈ Wc, Mc, x |= ΨD iff ∃[z] ∈
D s. t. [x] = [z] or [x] = [ẑ].

Lemma 15 (Filtrated Model). The aforementioned filtrated model, MΣ, is
a filtration of the canonical model Mc.

Proof. We only study the Conditions 7 and 9.

– Condition 7: Suppose xR⋆�
c y and let D = {[z] ∈ WΣ | there exists t ∈

Wc s.t. [x]R⋆�
Σ [t] and [z] �Σ [t]}. Let us prove that [y] ∈ D. Remark

that for all [z] ∈ WΣ , if [ẑ] ∈ D then [z] ∈ D. Suppose by contradic-
tion that [y] ∈ (WΣ\D). Remark that [x] ∈ D. Let ΨWΣ\D be the char-
acteristic formula of WΣ\D. Since [y] ∈ (WΣ\D) then, by Lemma 14,

Mc, y |= ΨWΣ\D. Since xR⋆�
c y, it holds that Mc, x |= ⋆♦ΨWΣ\D. Since [x] ∈ D,

then Mc, x ||= ΨWΣ\D and, therefore, Mc, x ||= ⋆♦ΨWΣ\D → ΨWΣ\D. Conse-
quently ⋆♦ΨWΣ\D → ΨWΣ\D �∈ THT . From the Induction rule (15) we conclude
that ♦ΨWΣ\D → ΨWΣ\D �∈ THT . This means that there exists u ∈ Wc such
that Mc, u |= ♦ΨWΣ\D and Mc, u ||= ΨWΣ\D (therefore [u] ∈ D). From

the latter it follows that there exists t ∈ Wc s.t. [x]R⋆�
Σ [t] and [u] � [t],

while from the former we get that there exists v ∈ Wc such that uR�
c v and

Mc, v |= ΨWΣ\D (thus [v] �∈ D). Since [u] �Σ [t], therefore by Lemma 13

either u ≡Σ t or û ≡Σ t. In the former case [u] = [t] and we have: [u]R�
Σ [v],

[t]R�
Σ [v] and [x]R⋆�

Σ [v]. Thus [v] ∈ D and Mc, v ||= ΨWΣ\D: a contradiction. In

the latter case, [t] = [û] and we have: [û]R�
Σ [v̂], [t]R�

Σ [v̂] and [x]R⋆�
Σ [v̂]. Hence,

[v] ∈ D and Mc, v ||= ΨWΣ\D: a contradiction.

– Condition 9: Suppose [x]R⋆�
Σ [y] and let ⋆lϕ ∈ Σ. Suppose Mc, x |= ⋆lϕ and

let k ∈ N be such that [x]
(
R�

Σ

)k
[y]. Such k exists by definition of R⋆�

Σ . By
induction on k, we demonstrate Mc, y |= ϕ. Firstly, assume k = 0, therefore
[x] = [y], which means that x ≡Σ y. From Mc, x |= ⋆lϕ and Axiom (12) we
conclude that Mc, y |= ϕ. For the inductive step, assume k � 1 and let [z]

be such that [x]R�
Σ [z] and [z]

(
R�

Σ

)k−1
[y]. From Mc, x |= ⋆lϕ and Axiom (12)

we conclude that Mc, x |= l⋆lϕ. Since Σ is closed and ⋆lϕ ∈ Σ, therefore
l⋆lϕ ∈ Σ. From [x]R�

Σ [z] and Condition 5 of Filtration we conclude that

Mc, z |= ⋆lϕ. Finally from [z]
(
R�

Σ

)k−1
[y] and the induction hypothesis it

follows that Mc, y |= ϕ.



Lemma 16. For all [x], [y], [z] ∈ WΣ, if [x] �Σ [y] and [x] �Σ [z] then [x] = [y]
or [x] = [z] or [y] = [z].

Proof. Suppose that [x] �Σ [y] and [x] �Σ [z]. Let x′, x′′, y′ and z′′ in Wc be
such that x ≡Σ x′ �c y′ ≡Σ y and x ≡Σ x′′ �c z′′ ≡Σ z. Moreover, suppose
that [x][y], [x] |= [z] and [y] |= [z]. Without loss of generality, let φ, ψ and χ

in Σ be such that (Mc, x ||= φ and Mc, y |= φ), (Mc, x ||= χ and Mc, z |= χ)
and (Mc, y |= ψ and Mc, z ||= ψ). Since Mc, y |= ψ then Mc, y ||= ¬ψ and,
together with the definition of [x] �Σ [y], Mc, x ||= ¬ψ. Moreover, from x ≡Σ x′′

and Mc, x ||= φ we conclude that Mc, x
′′ ||= φ ∨ ¬ψ and, by means of Hosoi

axiom, it follows that Mc, x
′′ |= φ → ψ. Since x′′ �c z′′ then Mc, z

′′ |= φ → ψ.
Apart from this, since z′′ ≡Σ z, Mc, z |= φ and Mc, z ||= ψ then Mc, z

′′ ||= ψ

and Mc, z
′′ |= φ. Finally, from Mc, z

′′ |= φ → ψ we reach a contradiction.

Proposition 9. MΣ is normal.

Proof. Condition (1) of normality follows from Lemma16. To prove Conditions
(2) and (3) it is sufficient to prove that if [x]R�

Σ [y] (respectively [x]R�
Σ [y]) then

[x̂]R�
Σ [ŷ] (respectively [x̂]R⋆�

Σ [ŷ]). The proof for R�
Σ follows from Lemma 11 and

Proposition 6 while the proof for R⋆�
Σ follows a similar argument.

Lemma 17. For any formula ϕ and x ∈ Wc.

(1) If ⋆lϕ ∈ Σ and ⋆lϕ �∈ x then there exists y ∈ Wc such that [x]R⋆�
Σ [y] and

ϕ �∈ y;

(2) If ⋆♦ϕ ∈ Σ and ⋆♦ϕ ∈ x then there exists y ∈ Wc such that [x]R⋆�
Σ [y] and

ϕ ∈ y;

Proof. (1) From ⋆lϕ �∈ x and Lemma 10 we conclude that Mc, x ||= ⋆lϕ, so

there exists z ∈ Wc such that xR⋆�
c z and Mc, z ||= ϕ. From Condition 8 of

filtration we conclude that either [x]R⋆�
Σ [z] or [x̂]R⋆�

Σ [z]. In the first case, take
y = z. In the second case, we follow the argument as follows: from Mc, z ||= ϕ

and Condition 9 of filtration we conclude that Mc, x̂ ||= ⋆lϕ. By following an
argument as in Proposition 6 Mc, x ||= ⋆l¬¬ϕ, thus there exists t ∈ Wc such

that xR⋆�
c t and Mc, t ||= ¬¬ϕ (as a consequence, Mc, t ||= ϕ and Mc, t̂ ||= ϕ).

Finally by applying the Condition 7 of filtration, we conclude that [x]R⋆�
Σ [t] or

[x]R⋆�
Σ [t̂]. In the first case take y = t while, in the second one take y = t̂. (2) From

⋆♦ϕ ∈ Σ, ⋆♦ϕ ∈ x and Lemma 10 we conclude that Mc, x |= ⋆♦ϕ and, therefore,

there exists y ∈ Wc such that xR⋆�
c y and Mc, y |= ϕ (and Mc, ŷ |= ϕ). Then,

due to Condition 7 of filtration it follows that either [x]R⋆�
Σ [y] or [x]R⋆�

Σ [ŷ]. We
conclude the proof by saying that it is sufficient to take y in the first case and ŷ

in the second one to reach the condition.

Lemma 18. Let lϕ ∈ Σ be a temporal formula and x ∈ Wc. The following
conditions are equivalent: (1) Mc, x |= lϕ. (2) ∀y ∈ Wc, if

(
[x]R�

Σ [y] then

Mc, y |= ϕ) (3) ∃y ∈ Wc

(
[x]R�

Σ [y] and Mc, y |= ϕ).



Proof. (1)⇒ (2): Assume there exists y ∈ Wc such that [x]R�
Σ [y] andMc, y ||= ϕ.

Thanks to the Condition 5 of filtration we get Mc, y |= ϕ: a contradiction. (2)⇒
(3): Take [x] ∈ Wc. Since R�

Σ is serial, there exists [y] ∈ WΣ such that [x]R�
Σ [y].

From 18 and [x]R�
Σ [y] we obtain (3). (3) ⇒ (1): By definition of [x]R�

Σ [y], there
exist x′, y′ ∈ Wc such that x ≡Σ x′R�

c y′ ≡Σ y. From Mc, y |= ϕ and Axiom (2)
it follows that Mc, x |= lϕ.

Lemma 19. Let ♦ϕ ∈ Σ be a temporal formula and x ∈ Wc. The following con-
ditions are equivalent: (1) Mc, x ||= ♦ϕ. (2) ∃y ∈ Wc

(
[x]R�

Σ [y] and Mc, y ||= ϕ)

(3) ∀y ∈ Wc, if
(
[x]R�

Σ [y] then Mc, y ||= ϕ).

Proof. Similar to the proof of Lemma18.

7 Determinisation

The filtrated model defined in Sect. 6 possesses the normality conditions (1)

and (2). Since R�
Σ is serial and R⋆�

Σ is equal to the reflexive transitive closure
of the R�

Σ , MΣ would be standard if R�
Σ were deterministic. The property

of determinism is not preserved by filtration. In this section we show how to
extract a deterministic model from MΣ . Before that, we must introduce the
concepts of chain and defect. Let S = N × {⋆l, ⋆♦} × Σ. Remark that S is
countable. Let (k0, σ0, ψ0) , (k1, σ1, ψ1) , · · · be an enumeration on S where each
triple is repeated infinitely many times. A chain consists of a finite sequence
([x0], · · · , [xn]) of elements of WΣ such that for all i < n, [xi]R

�
Σ [xi+1]. A

triple (k, ⋆l, ψ) ∈ S is a defect of the chain ([x0], · · · [xn]) if (1) k � n; (2)
⋆lψ �∈ xk; (3) for all i, k � i � n, ψ ∈ xi. Similarly, a triple (k, ⋆♦, ψ) ∈ S is
a defect of the sequence ([x0], · · · [xn]) if (1) k � n; (2) ⋆♦ψ ∈ xk; (3) for all i,
k � i � n, ψ �∈ xi. Let ϕ0 be a formula such that ϕ0 �∈ THT. Let x0 ∈ Wc

be such that ϕ0 �∈ x0. We define an infinite sequence ([x0], [x1], · · · ) of ele-
ments of WΣ such that [x0]R

�
Σ [x1]R

�
Σ [x3] · · · as follows: let S0 = ([x0]). Let

a � 0 and Sa = ([x0], · · · , [xm]) be a sequence of elements of WΣ such that
[x0]R

�
Σ · · ·R�

Σ [xm]. We consider the following cases:

– Case “(ka, σa, ψa) is not a defect of Sa”: In this case let [y] ∈ WΣ be such that
[xm]R�

Σ [y] and define Sa+1 = ([x0], · · · , [xm], [y]).
– Case “(ka, σa, ψa) is a defect of Sa and σa = ⋆l”: Hence, ka � xm, ⋆lψa �∈ xm

and for all i, ka � i � m, ψa ∈ xi. By Lemma 7, ⋆lψa �∈ xm. By Lemma 17,

let [y] ∈ WΣ be such that [xm]R⋆�
Σ [y] and ψa �∈ y. Let [y0], · · · , [yn] ∈ WΣ

be such that [y0] = [xm], [yn] = [y] and [y0]R
�
Σ [y1] · · ·R

�
Σ [yn]. We define

Sa+1 = ([x0], · · · , [xm], [y1], · · · , [yn]).
– Case “(ka, σk, ψk) is a defect of Sa and σa = ⋆♦”: This case is similar to the

previous one.

Now, let Md = 〈Wd,�d, R
�
d , R⋆�

d , Vd〉 be the model defined as follows:

– Wd = N × {h, t};



– (i1, α1) �d (i2, α2) iff i1 = i2 and either α1 = h or α2 = t;
– (i1, α1)R

�
d (i2, α2) iff i1 + 1 = i2 and α1 = α2;

– (i1, α1)R
⋆�
d (i2, α2) iff i1 � i2 and α1 = α2;

– Vd((i, α)) = {p ∈ At | p ∈ xi∩Σ} if α = h and {p ∈ At | p ∈ x̂i∩Σ} otherwise.

Lemma 20 (Truth Lemma). Let ϕ ∈ Σ. For all i ∈ N and for all α ∈ {h, t},
the following conditions are equivalent: (1) Md, (i, α) |= ϕ; (2) MΣ , [xi] |= ϕ.

Proof. By induction on ϕ. The case for atomic formulas follows from the defi-
nition of Vd. The cases for ⊥, ∧, ∨ and → are left to the reader. The cases for
l and ♦ follow from Lemmas 18 and 19. The cases for ⋆l and ⋆♦ follow from the
definition of Md.

And now, the grand finale:

Proposition 10. Let ϕ be a formula. The following conditions are equivalent:
(1) ϕ ∈ THT ; (2) THT |= ϕ.

Proof. (1) ⇒ (2): By proposition 4. (2) ⇒ (1): Suppose ϕ �∈ THT . Let x0 ∈ Wc

be such that ϕ �∈ x0. By Lemma 10, Mc, x0 ||= ϕ. Let Σ be the least closed set
of formulas containing ϕ. By Lemmas 12 and 15, MΣ , [x0] ||= ϕ. By Lemma 20,
Md, (0, α) ||= ϕ. Since Md is standard, therefore THT ||= ϕ.

8 Conclusion

Much remains to be done. For example, suppose the language is extended by the
temporal constructs U (until) and R (release). In that case, within the context of
THT-models, can we demonstrate that these temporal constructs are not inter-
definable? And how to axiomatise the set of all THT -valid formulas? One may
also consider, for this extended language, a van Benthem characterization theo-
rem. Its proof will probably necessitates the definition of an appropriate notion of
bisimulation similar to the one considered by de Rijke and Kurtonina [14]. Now,
what do these problems become when the language, restricted to the temporal
constructs U and R, is interpreted over the nonnegative rationals or the non-
negative reals? In that case, THT-models will be of the form M = 〈H,T 〉 where
H : Q+ (or R+) → 2At and T : Q+ (or R+) → 2At are such that H(i) ⊆ T (i)
for each i � 0. In other respect, for the language extended by the temporal con-
structs U (until), R (release), S (since) and T (trigger), when interpreted over
the set of all integers, can we demonstrate that these temporal constructs are
not interdefinable? When interpreted over Dedekind-complete linear orders, can
one obtain for this language a THT version of Kamp’s Theorem [13]? Finally, if
one prefers partial orders to linear orders then one may want to axiomatise the
HT version of branching time logics like CTL.
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