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IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY:
A NEURAL NETWORK APPROACH

Andy ADLER, Robert GUARDO, Greg SHAW
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ABSTRACT - Reconstruction of images in electrical
impedance tomography requires the solution of an inverse
problem which is typically ill-conditioned due to the
effects of noise and therefore requires regularisation
based on a priori knowledge. This paper presents a linear
reconstruction technique using neural networks which
adapts the solution to the noise level used during the
training phase. Results show a significantly improved
resolution compared to the weighted equipotential
backprojection method.

where [vhom]i and [vinhom]i represent the ith element of the

voltage measurement vector before and after, respectively, a

conductivity change.

We look for a linear approximation to this problem, in

order to simplify the design and reduce the training time of

the neural network. Linearizing about r = 0 results in:
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INTRODUCTION INVERSE PROBLEM

Electrical Impedance Tomography estimates the
conductivity distribution of a medium from potential
measurements produced by injected currents on the medium
boundary.  We are interested in dynamic imaging, which
estimates conductivity changes in the medium from changes
in these measurements, because these changes in
measurements are much more stable than the measurements
themselves to variations in electrode position, resistance, and
amplifier gain.

This inverse problem may be stated as finding the
matrix Z which, in the presence of noise n, best approximates,

 r Z f n≈ +( )                                 (4)

in the least squared error sense. The  neural network model
considered here is the "adaptive linear element", or
ADALINE[2]. One ADALINE corresponds to each value of r
and sums each value of f by the corresponding row in Z. The
values of Z are calculated or "trained" by the Widrow-Hoff
learning rule, using a set of input vectors fk and their (known)
desired responses from the network dk. Training aims to
reduce the error φ for all training sets k..

The best image reconstruction techniques are based on
fitting the measured voltages to finite element models (FEMs)
of tissue conductivity. This inverse problem, however, is ill-
posed for any reasonable number of elements (>50) in noisy
data. Regularization, based on a priori knowledge of the
problem is typically necessary. The neural network approach,
however, can be used to calculate a linear inverse to the
problem without any need of a priori knowledge.
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We choose the desired responses to be individual
objects in each element, i.e. the column vectors of  In×n , and
we obtain the input vectors from the direct problem, f = YI =
Y. In order to train the network to deal with noise, we must
include the expected noise in the input. Using this training set
we carry out the following algorithm:

FORWARD PROBLEM

Using the FEM, we simulate the voltage
measurement vector by

 v = (r ) =
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                                                (1) • Initially, all weights are set to zero.

• The training vectors are presented to the current network

weights, outputting: O = Zk(Y + n)
where rh is the uniform homogenous log conductivity, r is a
vector of the M element log conductivity changes, and F is a
linear function of the injected current and a non-linear
function of r. The voltage measurements are obtained from a
16 electrode system, using 16 current injection patterns,
resulting in N=256 differential voltage readings. From (1) we
calculate our dynamic measurement vector f  by

• The error E= O - D is defined as the difference between the

output, O, and the desired response, D=In×n.

• Network weights are updated by the learning rule:

Zk+1=Zk - αEOt                             (6)
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• Iteration is continued until the error is below an acceptable
limit.



The parameter α controls the learning rate; for
stability, it's value must be less than the reciprocal of the
maximum eigenvector of  YY t
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Figure 1:  Images Produced by Neural Network

Once training is completed, Z can be used as a
reconstruction operator which calculates the log element
conductivities from the voltages measured by:

r Z
v v
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hom                         (7)

EXPERIMENTAL RESULTS

The above procedure was used to train neural networks
N1 and N2 on a two dimensional circular geometry for no
noise and 15dB signal to noise ratio (SNR) respectively.
Training encompassed 5000 iterations, during which time the
least mean squared error (the reconstructed output minus the
desired output) decreased by 50 percent.

While this technique works well on real data obtained
from our tomographic system, the performance compromises
involved are most clearly seen on simulated data. Figure 1A
shows the pattern to be imaged: two small non-conductive
objects in a circular milieu separated by one third of the
diameter. This pattern was simulated on a much finer finite
element mesh than was used for the training of the neural
networks. Figures 1B to 1D were reconstructed using the
voltage measurements from 1A with no noise added, using
reconstruction based on weighted backprojection (1B),
network N1 (1C), and network N2 (1D). Figures 1E to 1G
were reconstructed using measurements with a SNR of 15dB,
again using backprojection (1E), network N1 (1F) and
network N2 (1G).

We define the SNR as  ( f tf ) / ( ntn ).

DISCUSSION AND CONCLUSIONS

The results show that the neural network produces
significantly better resolution images than weighted
equipotential backprojection, and also offers the advantage of
being adaptable to the noise level present in the
measurements. The network trained for no noise displays the
best resolution, but has little ability to reject noise. The
network trained with noise, while having slightly degraded
resolution, has better ability to reject noise. Although the
training is a long process; image reconstruction times with a
trained neural network and with the backprojection method
are similar, as both processes require only one matrix
multiplication.

A: Theoretical Object

B: Backprojection: no noise
C: Image: no noise Training: no noise
D: Image: no noise Training 15dB SNR
E: Backprojection: 15dB SNR
F: Image: 15dB SNR Training no noise
G: Image: 15dB SNR Training 15dB SNR
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