
Journal of the Indian Institute of Science

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

© Indian Institute of Science

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in

R
ev

ie
w

s

Temporal Issues in Cyber-Physical Systems

David Broman1,2, Patricia Derler1 and John C. Eidson1

Abstract | This paper reviews the use of time, clocks, and clock synchro-
nization protocols in cyber-physical systems (CPS). Recent advances in
the area of timing suggest avenues of research and potential new applica-
tion areas. We discuss how introducing timestamps and clocks can help
overcome issues such as latency, jitter, and determining correct execution
order. Furthermore, we show how system complexity can be reduced and
distribution as well as parallelism can be done deterministically. We also
point to recent work in raising time to first class citizen status in modeling
and implementation. In particular, we describe design and execution envi-
ronments of CPS and specialized hardware such as predictable timing
architectures where time plays a key role.
Keywords: Timestamps, Clocks, Synchronization, Ordering, Simultaneity, Discrete event systems,
Distributed control, Real-time systems, and PTIDES.

1University of California,
Berkeley, CA, USA.
2Linköping University,
Sweden.

broman@eecs.berkeley.edu
pd@eecs.berkeley.edu
eidson@eecs.berkeley.edu

1 Introduction
This paper discusses temporal issues in the design
and implementation of cyber-physical systems
(CPS). Increasingly synchronized clocks and
timestamps are being used to improve applica-
tion performance in distributed CPS. We review
the state of the art in the underlying clock and
synchronization techniques and illustrate how
this technology helps overcome issues such as
latency, jitter, and determining correct execution
order. Recent research in the areas of design and
execution environments and specialized hard-
ware such as predictable timing architectures
raises time to first class citizen status in modeling
and implementation. Finally we suggest avenues
of future research and potential new application
areas.

Section 2 of this paper briefly reviews the tra-
ditional use of time and clocks in CPS. Section
III reviews the current state of the art in distrib-
uted timing systems and notes recent improve-
ments and support available to designers of CPS.
Section 4 outlines existing and recent techniques
for using timestamps and clocks to alleviate prob-
lems in ordering events and overcoming some
issues related to latency, jitter and system com-
plexity. Section 5 discusses recent results in rais-
ing timing issues to first class citizen status in
design and execution environments used to cre-
ate CPS. Section 6 reviews analysis techniques

used in designing CPS and recent efforts to cre-
ate time-centric hardware support including the
use of predictable timing architectures. Finally we
summarize and suggest new avenues of research
suggested by the discussion.

2 Traditional Uses of Time and Clocks
in CPS

A cyber-physical system consists of a digital com-
putation portion, the cyber portion, and whatever
the cyber portion interacts with, i.e., the physical
portion. Here, physical is understood to cover not
only artifacts modeled by the laws of physics but
also artifacts modeled by the laws of chemistry,
biology and increasingly man-made laws, e.g., tel-
ecommunication protocols.

For our purposes it is convenient to divide
CPS into two categories, as the consideration of
time and clocks is somewhat different in each. The
first category, data acquisition, consists of systems
where the primary focus is on observing the phys-
ical world. The second category, control, consists
of systems incorporating closed loop control with
reasonably stringent loop requirements. Of course,
there are many systems that do not fit cleanly into
one of these categories, e.g., supervisory control
and data acquisition (SCADA) systems. However,
we believe the role of timing in these systems can
be understood based on the characteristics of tim-
ing in each of the two categories.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in390

2.1 Data acquisition systems
A data acquisition CPS consists of one or more
computers that acquire data from sensors that
observe the physical world. Familiar examples are
surveillance systems, test and measurement sys-
tems, and environmental monitoring systems.

The purpose of a data acquisition system is to
acquire, record, and display data describing the
physical world for eventual evaluation by humans
or computers. The raw data is often correlated or
otherwise subject to algorithmic processing prior
to recording or display. However, any action taken
based on the data is delayed in time (often due to
a human in the loop), such that typically it is inap-
propriate to model it as a control system.

It is important that data acquired from sev-
eral sensors be indexed in such a way as to permit
meaningful analysis. For example, we may need
to order data to 1) help establish causal relation-
ships e.g., the flight data recorders for aircraft and
data recorders on military test ranges, 2) to enable
identification and tracking, e.g., surveillance, 3) to
determine location e.g., trilateration for gunshot
location, or 4) in a test and measurement system
to ensure that the device under tests meets its
specifications.

In almost all distributed CPS, data indexing is
done using timestamps. The accuracy and preci-
sion of the timestamps is application dependent.
For example, for gunshot detection, millisecond
accuracy is sufficient, but for locating clandestine
radio transmitters, sub-microsecond accuracy is
required. In most cases, timestamps are required
to be based on wall clock time, e.g., coordinated
universal time (UTC) or international atomic
time (TAI). In complex or extended physical sys-
tems with multiple computers this requires some
sort of time distribution protocol as discussed in
Section 3.

Prior to the advent of digital computers, the
global navigation satellite system (GNSS), and
network-based time protocols, data acquisition
systems typically recorded measurements on
mechanical chart recorders, analog tape recorders
or on film. The time of measurement was based
either on the speed of the recording medium or in
the case of film on recorded or photographed time
codes such as IRIG-B.a,1 In the United States, wide
area timing and reference to standard time made

a Inter-range instrumentation group (IRIG). IRIG-B is one
of the time codes created by the TeleCommunications Work-
ing Group of the Inter-Range Instrumentation Group, the
standards body of the Range Commanders Council of the US
Department of Defense.

use of WWVb radio broadcasts.2 With the advent of
digital computers, the GNSS, and network-based
time protocols, the timestamping of acquired data
can easily be done with accuracies adequate for
all but the most demanding applications. Times-
tamps are associated with data either upon receipt
at a computer or, increasingly more common, at
the source using local clocks synchronized over a
network as discussed in Sections 3 and 6.

2.2 Control systems
In contrast to data acquisition systems, a control
CPS consists of one or more computers that
1) acquire data from sensors that observe the
physical world, 2) execute a control strategy, and
3) instantiate changes in the physical world via
actuators. Familiar examples are fly-by-wire
aircraft control, automotive cruise control, HVAC
(heating, ventilation, and air conditioning)
systems for buildings, and the control of industrial
processes and machinery. Prior to the advent of
digital computers and networks, control systems
were based on analog electronics, and mechanical,
pneumatic, or hydraulic components.

Almost all modern control systems of
appreciable size are based on digital computers
and networks, and fall into two rough categories:
safety critical and non-safety critical.

Safety critical systems are those where failure
may result in loss of life, severe financial loss, or
unacceptable inconvenience. In many cases, these
systems are subject to government certification and
required to be provably correct. Timing is invari-
ably a major issue in the design of such systems
which typically use a time-slotted control protocol
to perform sensing, computation, networking, and
actuation on a periodic schedule. This is enforced
by a local clock and, in the case of a networked
system, by local clocks synchronized over the net-
work or by basing time on the slot boundaries in
a time division multiple access (TDMA) network
protocol, i.e., the time-triggered model of compu-
tation.3 This fixed schedule provides a degree of
composability and admits to formal verification
procedures needed for certification.4 This type
of system plays a critical role in the ARINC5 and
SAE6 standards for aircraft.

While non-safety critical systems can use the
time-triggered approach, many require different
execution strategies often due to the presence of
highly asynchronous inputs. For example, a test and
measurement system verifying the performance of

b WWV is the call sign of the United States National Institute
of Standards and Technology’s (NIST) shortwave radio station
in Fort Collins, Colorado.

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 391

a radar system requires careful temporal coordina-
tion between several instruments and the device
being tested. However, the instrument system
controllers invariably depend on a combination
of code execution time and hardware triggers to
determine system timing. Adjusting such systems
is difficult and the result is not robust in the face
of system evolution or replacement of devices or
controllers with faster computers.

Alternative techniques for designing these
systems are discussed in Sections 5 and 6.

2.3 Internet of things
In recent years, mobile devices such as smart
phones have proliferated to the extent that there
are few places on earth without mobile cover-
age. Furthermore, these devices increasingly
incorporate sensors. For example, the Samsung
Galaxy S4 smart phone reportedly incorporates
an accelerometer, a gyroscope, a hygrometer, a
magnetometer, a light sensor, a thermometer, and
a barometer as well as a camera. The existence of
these devices in principle enables unprecedented
capabilities for data acquisition and control. The
paradigm of connecting such devices, usually
termed the Internet of things (IoT), has spawned
lots of research on the many technical and social
issues involved.7,8 Many, if not all potential appli-
cations or services of the IoT, will require the
explicit use of a global or local timebase. However,
the implementation of such a timebase in an ever
changing, mobile and largely wireless environ-
ment presents new challenges. Except possibly for
localized applications, the simplest way to pro-
vide such a timebase is via the communications
infrastructure, i.e., a combination of the Internet
and mobile devices such as smart phones. Many
wireless devices will have access to GNSS receivers
which can provide sub-microsecond global time.
However, GNSS has limitations as discussed in
Section 3.2. In particular, most mobile devices
using GNSS will exhibit worse time accuracy than
fixed installations due to their poorer antennae
and the requirementto compute location as well
as time in solving the equations based on received
satellite signals. Fixed devices not only have bet-
ter antennae but can have accurate position infor-
mation available, e.g., from a survey or averaging
spatial information over extended periods, thus
increasing the accuracy of computing time from
the equations. Fortunately, the world’s telecommu-
nication providers, who will carry the bulk of the
IoT traffic, are in the process of standardizing and
deploying robust sub-microsecond time services
for the operation of their own networks.9,10 They
are therefore in a position to make time available

to any connected device or application network.
Figure 1 is a diagram of the topology of a field trial
conducted by China Mobile that delivered better
than 3 µs time transfer over each of the 40–50 km
paths under normal traffic loads.10 The figure also
shows the type of equipment used in the trial.

3 State of the Art of Distributed Timing
Systems

Today a device or system designer has a wide range
of options for implementing clocks within devices
and establishing a common sense of time among
devices. These options result from advances dur-
ing the last twenty years in oscillator technology,
in GNSS, in network technology, and in time and
frequency distribution protocols.

3.1 Oscillator technology
In a centralized timing system, a remote device
obtains the time by querying a central clock, a
process that limits the accuracy to milliseconds
due to communication latency fluctuations. As
discussed in Section 3.3, network-based time dis-
tribution protocols synchronize the local clocks
of devices in a distributed system. The principal
oscillator limits on obtainable synchronization
accuracy and precision of clocks are the tem-
perature stability and the noise characteristics of
the local oscillators driving the clocks. In most
CPS devices, the oscillators will be quartz crystal
oscillators.

Figure 1: Diagram of China Mobile field trial.
Photos courtesy of Huawei.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in392

The oscillation frequency of a quartz crystal is
temperature dependent. Quartz crystal oscillators
typically have a temperature fractional frequency
dependence, ∆f/f, from ∼10-4 for an uncompen-
sated crystal to <4 × 10−9 from 0 °C to 70 °C for
an ovenized oscillator, OCXO, such as the HP
10811D. For example, a 1 °C temperature rise over
a 1s interval using an unsynchronized 100PPM
oscillator results in a time error of 100µs over
the 1s interval. Using an HP 10811D, the error is
reduced to 4ns.

In addition to temperature dependence, ∆f/f is
limited by noise processes within the crystal. This
dependence is shown in Figure 2 for a variety of
oscillators. The Allan deviation is a function of
the observation interval, τ, with short observation
times limited by white phase noise, long observa-
tion times limited by random walk frequency noise
and the noise floor by flicker frequency noise.11
The observation interval, τ, limits integration
times whether for data averaging or synchronizing
to another clock. Once the noise floor is reached,
increases in the averaging time will decrease the
temporal accuracy.

Figure 2 shows plots of ∆f/f, the Allan deviation,
for a typical uncompensated crystal, CTS CB3LV,
and Rakon RFP040 and HP 10811D OCXOs.
Uncompensated oscillators, e.g., CTS CB3LV, com-
monly used in computers cost around $1, while a
high quality ovenized oscillator can cost more than
$100 forcing designers to carefully consider appli-
cation timing requirements in selecting an appro-
priate oscillator. Recently miniature OCXOs such

as the Rakon RFP04012 have reached the market
with performance nearly equal to instrument grade
oscillators such as the HP 10811D but with costs in
the range of $10. For applications requiring long
observation intervals a variety of atomic clocks are
available. Atomic clocks depend on a quartz oscil-
lator for short observation interval stability and on
some atomic resonance for longer term stability.
Atomic clocks most commonly used in CPS are
the rubidium and the cesium clocks whose prop-
erties are shown in Figure 2. Rubidium clocks are
found in great numbers in telecommunications
base stations, which has driven the cost down to
around $700, while the more expensive cesium
clocks, ∼$60000, are found in lesser numbers in
the core of telecommunications systems, military
systems, and some scientific CPS.

Recently, so-called chip scale cesium atomic
clocks have been introduced into the market.13
These cesium-based oscillators currently have
rubidium performance but in a <17 cm3, 35 grams,
<120 mW form factor. At a price of ∼$1500 they
are used mostly in special circumstances such as
oil exploration sensors. However, the cost will no
doubt be greatly reduced as larger numbers are
used. These oscillators promise much longer aver-
aging times, up to an hour, and temperature sta-
bility <4 × 10−10 from 0 °C to 70 °C which should
eventually open up a new class of designs for CPS
devices.

3.2 GNSS technology
Over the past twenty years, satellite-based time
and location services have found their way into
numerous CPS, e.g., military applications, tel-
ecommunications base stations, surveillance
and tracking. Today these services are obtainable
world-wide from the global positioning satellite
(GPS) system maintained by the United States
Department of Defense and the Glonass system
maintained by the Russian Defense Forces. The
BeiDou system (formerly known as Compass)
maintained by the Chinese government is cur-
rently available only in China and environs but
is expected to provide global coverage in the next
decade. Another regional system is the Indian
Regional Navigational Satellite System. The Gal-
ileo system is a similar project of the European
community but is not yet fully operational. Col-
lectively these systems are termed Global Naviga-
tion Satellite Systems (GNSS).

GNSS can be used as a source of time for a CPS
either as the source for a networked time distribu-
tion protocol or as a source for individual devices.
In either case the GNSS receiver must have line of
sight communication with a sufficient number of Figure 2: Allan deviation of several oscillators.

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 393

satellites. This is problematic in urban canyons
and in the interior of buildings. As noted, all of
the existing systems are controlled by a national
government which has raised concern in some cir-
cles as to the availability during periods of inter-
national tension. Each of the GNSS systems, e.g.,
GPS, Glonass, derives its time from the national
laboratory of the host country. The consistency of
UTC time between these systems has been meas-
ured to be tens of nanoseconds at best.14 GNSS
systems are also subject to inadvertent or inten-
tional degradation either by spoofing of satellite
signals or simply raising the noise floor by jam-
ming. These issues are a major issue for safety
critical and public infrastructure systems as evi-
denced by discussionsat recent telecommunica-
tions conferences.15–18

GNSS timing accuracy over continental scale
distance is unmatched by any other technology
with the exception of two-way satellite time trans-
fer (TWSTT) which is practical only for national
laboratories. A GNSS receiver synchronizes a local
clock based on signals from the satellites. The
accuracy depends on the quality of the quartz
oscillator and the averaging time as noted in the
discussion of Figure 2 in Section 3.1. A cheap
crystal is unlikely to do better than 100ns. With
a well-designed receiver and an oscillator permit-
ting integration times of >100s, 100ns accuracy
can be achieved. With an oscillator permitting
integration times of 24 hours, ±10ns accuracy can
be achieved.19

3.3 Network timing distribution
protocols

As noted in Section 2.1, time distribution prior to
1985 was typically via WWV, IRIG-B and propri-
etary methods. The network time protocol (NTP)
became available around 1985 and today is the
dominant network-based time distribution sys-
tem and is implemented in essentially every PC in
the world. NTP accuracy is on the order of mil-
liseconds and is limited by network and operating
system latency jitter. GPS has been available world-
wide since 1994 and can achieve sub-microsecond
accuracy as noted in Section 3.2.

In recent years two additional network-based
time distribution protocols designed for CPS
have been standardized. The first, SAE6802,6 is
designed for safety-critical systems and has been
implemented in several recently designed aircraft.
SAE6802 is designed for reasonably compact sys-
tems such as an aircraft and achieves sub-micro-
second accuracy. SAE6802 partitions IEEE 802.3
bandwidth using time slots allocated to safety-
critical and normal traffic thereby providing

latency guarantees for safety-critical traffic and
best effort for normal traffic.

The second major protocol is the precision time
protocol (PTP), defined in standard IEEE 1588.20
IEEE 1588 specifies a master-slave synchroniza-
tion hierarchy with the root, the grandmaster,
determining the time scale for the system. The
grandmaster in turn can be synchronized to GNSS
or other sources of time traceable to international
time standards. IEEE 1588 has achieved wide
acceptance and implementation in the areas of
telecommunications, data acquisition, industrial
automation and power systems. Because it speci-
fies specialized network bridges, so-called bound-
ary and transparent clocks, that greatly reduce
bridge timing jitter, IEEE 1588 can easily achieve
100ns synchronization over a local area network
and with care <10ns.21,22

In addition, recent work at CERN has achieved
100ps accuracy and 8ps precision across three
5 km hops of fiber optic cable using a combina-
tion of IEEE 1588 and layer 1 syntonization.23 This
work will likely be incorporated into the upcom-
ing revision of IEEE 1588–2008.

Other than oscillator characteristics discussed
in Section 3.1, the principal accuracy limitation
in two way time transfer techniques such as NTP
and PTP is asymmetry in the communication
paths. Two way time transfer protocols work via
an exchange of signals which are timestamped as
illustrated in Figure 3. The source and sink for the
transfer process exchange signals which are times-
tamped based on the local clocks on transmission
and receipt at shown. The asymmetry is the dif-
ference in the propagation times of the two mes-
sages, i.e., D

1
–D

2
. In order to solve the equations

describing this process it is necessary to assume
that D

1
 = D

2
 i.e., that the path is symmetric. With

this assumption the equationsfor computing the

Figure 3: Two way time transfer.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in394

offset between the two clocks and the mean path
delay are:

offset = [(t
2
 - t

1
) - (t

4
 - t

3
)]/2 (1)

delay = [(t
2
 - t

1
) + (t

4
 - t

3
)]/2 (2)

The error in the offset is one half of the asym-
metry D

1
–D

2
.

Unfortunately the asymmetry cannot be meas-
ured using an exchange of signals but must be
determined by some other means. There are three
principal sources of this asymmetry:

• The transceivers between digital representa-
tions and the signals on the network media,
i.e., the PHY,c typically have different latencies
on the transmit and receive paths. Depending
on the media, the PHY asymmetry can be sev-
eral tens of nanoseconds. These asymmetries
are extremely difficult to measure and are best
determined by the PHY manufacturer. A recent
standard, IEEE 802.3bf, provides an abstract
interface designed for IEEE 1588 based imple-
mentations that allows PHY manufacturers to
provide these latency parameters.24

• The communication medium itself may be
asymmetric. For example the length of the for-
ward and reverse fibers in an optical link, chro-
matic dispersion in a full duplex wave division
multiplex fiber optic link, or the different twist
rates in Category 5 twisted pair copper cable
all introduce asymmetry. Asymmetry can be
calibrated at installation. For some media it is
possible to model asymmetry as a function of
mean path delay which can be measured using
two way protocols.

• In routed systems, such as the Internet, unless
careful attention is paid to network design, it
is possible for the forward and reverse paths to
take different routes through the system. This
can produce very large asymmetry. Even with
identical routes the differences in network
traffic on the forward and reverse paths may
produce asymmetry unless on-path time sup-
port is provided, for example via boundary or
transparent clocks when using IEEE 1588.

If the asymmetry is known then the appropri-
ate correction can be made to the clock offset. A
detailed discussion of network clock synchroniza-
tion protocols is beyond the scope of this paper.

c PHY is the term often used to designate a device implement-
ing the physical or lowest layer, i.e., layer 1, of the OSI seven
layer computernetwork model.

Interested readers should consult the extensive lit-
erature on this subject including papers found in
the proceedings of the International Symposium on
Precision Clock Synchronization, the papers of Les-
lie Lamport and Flaviu Christian, as well as more
recent work of Herman Kopetz,3 and Kumar et al.25

These protocols establish a global sense of pre-
cise time in a networked distributed system. Each
node of the network has a local clock synchro-
nized to its peers that may be used for a variety of
purposes as outlined in next section.

4 Explicit Time Techniques in CPS
Until recently the principal uses of time in CPS
were found in safety-critical systems as the foun-
dation for time triggered architectures3 and in data
acquisition and SCADA applications where data
was timestamped upon receipt at a central proces-
sor. Barbara Liskov noted that NTP spurred inter-
est in using global time to improve mainstream
computer science algorithms and protocols by
“Examining the messages to identify those that
could be avoided by using timestamps”.26

Given that accurate global time can now be
implemented using the protocols discussed in
Section 3.3, it is appropriate to ask whether the
techniques suggested by Liskov can be applied to
CPS. We believe that this is the case and suggest
the following examples as evidence.

4.1 Replacing messages with reasoning
about timestamps

Recently the Google “Spanner” project used NTP
to enable better performance in a global database
by “Transform(ing) commit order reasoning to
timestamp order reasoning”.27 While not a CPS,
Spanner is an example of using timestamps to
enforce consistent global state which is a common
requirement in many CPS.

Rockwell reportedly uses timestamps in speci-
fying motion control trajectories of components
in high speed machinery to reduce the message
traffic between controllers and actuation devices.28
The actuator is provided with trajectory specifica-
tion which can replace controller point-by-point
command to an initialization command and less
frequent minor trajectory corrections, thus saving
bandwidth.

4.2 Reducing complexity, signal
conditioning, and calibration issues

In control systems with thousands of sensors and
actuators, bringing dedicated analog wiring to
a central point leads to complexity, signal con-
ditioning, bandwidth, calibration and response
time problems. Moving to a distributed system

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 395

with local processing ameliorates many of these
issues but requires global time to realize tempo-
ral control equivalent to the centralized architec-
ture. General Electric took this approach in their
MarkVIe control system for power plants and
wind farms.29 Figure 4 shows one of the MarkVIe
distributed devices. This device communicates via
Ethernet, synchronizes a local clock using IEEE
1588, and includes both a small computer as well
as local signal conditioning for sensors and actua-
tors. General Electric uses these devices to manage
the several thousand sensors and actuators used in
a typical thermal or nuclear power plants replac-
ing long analog sensor cables with local processing
and timestamping and using Ethernet communi-
cation to centralized supervisory control.

Bruel & Kjaer30 use global time in data acquisi-
tion systems for vibration monitoring to improve
accuracy, and to simplify wiring and calibration.
For example, Figure 5 shows a bridge vibration
monitoring application where a local data acqui-
sition device captures and timestamps sensor data
and communicates the data to a central analysis
computer via Ethernet. Boeing has developed a
similar application for data acquisition used in
aircraft monitoring.31

Similar efforts are being investigated in the
power industry for substation automation and
control of the grid.32,33

Certainly the most exciting example of the use
of timestamps and a distributed architecture to
reduce complexity and address signal conditioning
and calibration issues is the CERN White Rabbit
project.23,34–36 Figure 6 illustrates a section of the
accelerator that sends neutrinos from CERN to
Gran Sasso, a distance of 732 km in an experiment
to measure the overall neutrino time of flight. The
White Rabbit timing system was used to verify the
timing of measurements crucial to determining
that the neutrinos indeed traveled at less than the
speed of light.23

5 Design and Execution with Time
as a First Class Citizen

In this section we discuss recent results in raising
timing issues to first class citizen status in design
and execution environments used to create CPS.
In synchronous programming models,37 logic
ticks are part of the language semantics. These
ticks are used to order events and is not necessarily
related to the actual physical time observed by the
computing platform.

Figure 5: Bridge vibration monitoring. Photo
courtesy of Bruel & Kjaer.

Figure 6: CERN to Gran Sasso (CNGS) neutrino
speed test. Photo courtesy of CERN.

Figure 4: General Electric MarkVIe distributed
measurement device. Photo courtesy of General
Electric.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in396

5.1 Time-triggered programming models
Explicit modeling of time becomes a fundamen-
tal part in the time-triggered programming para-
digm. In a time-triggered system, certain actions
such as IO operations take place at fixed, periodic
time instances. Other actions such as performing
computations and updating internal states can
happen at any time between IO operations. Time
determinism is achieved by specifying the timing
behavior of the software execution independent
from the platform. At this point, time is considered
purely logical and used to define an order on the
computations. Functional correctness can be veri-
fied by executing the system in a way that obeys the
order provided by the logical times. When deploy-
ing the software, the logical times are mapped to
physical times and a check must be performed to
ensure that the underlying hardware can meet the
timing requirements. In such time-triggered pro-
gramming models, software is typically separated
into tasks. For each task, the release time, the time
for reading inputs, and the time for writing out-
puts, is strictly defined. Time-triggered program-
ming models have been used in PLC designs and
later formalized in languages such as Giotto,38 the
hierarchical timing definition language HTL,39
the timing definition language TDL,40 and oth-
ers. In general, time-triggered systems perform
more computations than necessary since tasks are
executed in every period, even when inputs to the
task remain unchanged. One can think of optimi-
zations to such systems by buffering inputs for the
next period and only executing if inputs changed.
However, there is still some overhead in the buff-
ering and the reaction to input changes is delayed
to the next period start.

5.2 PTIDES, an event-triggered
programming model

PTIDES (Programming Temporally Integrated
Distributed Event Systems)41 is a programming
model that uses timestamps to perform determin-
istic distributed computations. All inputs from the
environment are received by sensors which assign
timestamps to each value. These timestamps are
stored with the values throughout the computation
path from sensors to actuators. Along the path, the
timestamps are carefully modified to meet appli-
cationand system timing requirements. First, the
desired fixed delay between sensing and actuation
is modeled. Such a delay specification is usually
given by the control engineer who determines the
controller performance based on the given time
delay. Delay requirements between sensing and
actuation can also come from the characteristics
of the physical environment. For instance, one can

estimate the time it takes between two events and
use this information to perform an actuation on
the second event. An example is given in,42 where
a controller for a printing press determines the
exact time to exchange paper rolls on the fly.

PTIDES is an event-triggered programming
model that leverages discrete event simulation tech-
niques for execution. In a PTIDES system, compo-
nents communicate via timestamped events. Static
as well as dynamic analysis leveraging information
about the structure, the inputs, and the state of
other components in the system allow an efficient
execution to be implemented. Unlike in typical dis-
crete event (DE) simulations, the relation of timing
specification in terms of logical time to physical
time allows for out of timestamp order process-
ing of unrelated events. Knowing which events
are unrelated, allows not only out of timestamp
order processing but also dynamic distribution
over multiple cores and distribution over multiple
platforms without changingthe observable behav-
ior at the actuator outputs. Some results on mul-
ticore execution of PTIDES programs are shown
in Figure 7. The upper trace plots the designed
events using the Ptolemy simulation platform as
a PTIDES design environment. From this design,
code was generated for execution on two different
platforms one with a Renesas processor and the
other with a multicore XMOS processor. The mid-
dle and bottom traces are measured results on the
two platforms. Note that the event timing specified
at design is reproduced in the execution platform
to a sub-microsecond accuracy (although this is
not visible on the timescale of the plots). The grey
area indicates times when the processors were actu-
ally executing code and clearly shows that whilethe

Figure 7: Deterministic timing with different
execution platforms.

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 397

time occupied in instruction set execution differed
between the two processors, the external actions
at actuators was identical. Although not shown in
this figure, the code was compiled for single and
multicore execution on the XMOS platform with
no change in the external timing.

In a distributed PTIDES systems, the differ-
ent platforms need to synchronize in order to
reason about timestamps of events. Synchroniza-
tion messages, such as null messages in Chandy
and Misra’s work,43 impose a great bandwidth
overhead. However, by analyzing timestamps and
given some knowledge about the sending system,
one can compute how long to wait for new input
and when input is safe to process. In particular
when communication media is shared, reducing
bandwidth is a desirableproperty.

The entire workflow around the PTIDES pro-
gramming model including modeling, simula-
tion, implementation, and analysis is presented in
Figure 8. A modeling and simulation environment
has been implemented in Ptolemy II,44 a frame-
work for heterogeneous systems. This tool allows
for exploring designs of PTIDES models with dif-
ferent distribution of functions to components,
scheduling strategies and underlying architecture
components. With this framework it is possible to
research the interaction of PTIDES-based models
with models of other system components such as
plant models and networks. A code generation
framework is outlined in45 and an implementa-
tion of this approach has been performed by
extending the Ptolemy code generation function-
ality. PTIDES systems have been implemented on
bare iron using a light weight operating system,
PtidyOS, that uses an earliest deadline first (EDF)
scheduling algorithm to implement the PTIDES
timing requirements.46 Recent results show that
the schedulability of PTIDES programs is decid-
able. More precisely, the schedulability problem
can be reduced to a reachability problem for timed
automata.

6 Time-Critical Embedded Systems
The cyber part of CPS is inherently a real-time
system; sensors and actuators are interacting with
the physical environment at distinct point in time.
These systems are often realized as embedded sys-
tems—cheap platforms with limited memory and
computation power. In this section we review dif-
ferent aspects of implementing real-time applica-
tions on embedded systems.

6.1 Tasks, deadlines, and scheduling
A real-time system must react to external or inter-
nal timed events according to specified timing
constraints. These constraints are often defined as
deadlines. A real-time program fragment, typically
referred to as a task, must finish executing before
its deadline is reached. As a consequence, the time
it takes for a real-time system to execute a task is
not just a performance factor; it is also a correct-
ness criterion.

Missed deadlines may have different conse-
quences depending on the type of the real-time
application. Real-time tasks are often divided into
three categories:47

• Hard tasks must finish executing before its
deadline, otherwise catastrophic consequences
may occur. Example of such systems are sen-
sory data acquisition, image processing, and
control systems.

• Firm tasks are tasks where missed deadlines do
no harm, but there is no use of the computa-
tion result after missing the deadline. Network
and multimedia applications are examples
where firm tasks may be used.

• Soft tasks are tasks that still have some utility
even if the deadline is missed. System-user
interactions are examples of soft real-time
tasks.

If a single processor executes several concur-
rent tasks or if a multicore system executes more
tasks than available cores then tasks must be sched-
uled. A scheduling algorithm determines at what
time, in which order, and on which cores differ-
ent tasks should be scheduled. Besides the timing
constraints used in forming deadlines, tasks may
also have precedence and resource constraints.
A schedule is said to be feasible if all tasks can be
scheduled to meet all constraints. If there exists
at least one algorithm that can generate a feasible
schedule, a set of tasks are schedulable.47

Real-time scheduling theory is a mature but
still very active area of research. Scheduling poli-
cies are commonly implemented in real-time
operating systems (RTOS) and are fundamental for

Figure 8: PTIDES workflow.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in398

efficiently utilizing limited resources of embedded
systems.

6.2 Timing analysis
In real-time scheduling theory, the computation
time of specific tasks are assumed to be known.
In general, the computation time for a specific
task is, however, not constant; the execution time
depends highly on input data, system state, and
timing behavior of the hardware.

Figure 9 depicts the distribution of execution
times for a specific task. The upper bound is called
worst-case execution time (WCET) and the lower
bound best-case execution time (BCET). In gen-
eral, it is very hard to compute exact numbers of
WCET and BCET. Instead, the goal is to estimate
safe upper and lower bounds of WCET and BCET,
respectively. A safe estimate of the WCET means
that the estimated number is equal to or larger
than the real WCET. The upper bound of WCET
should also be tight, meaning that the uncertainty
between the real WCET and the estimated upper
bound is as small as possible.

In industry, it is common to estimate the
WCET by measuring the execution time for a set
of test cases with different input data. Measured
WCET cannot, however, be guaranteed to be safe
in general.48 The drawback with this approach is
that measurements cannot be performed for all
possible inputs and machine states—only a small
subset can in practice be covered. As a conse-
quence, the estimated values are given extra safety
marginals, introducing overall pessimistic WCET
bounds.

An alternative approach is to perform static
timing analysis on a task’s code. Static WCET
analysis typically consists of three distinct phases:
program flow analysis, microarchitectural analy-
sis, and global bound analysis.49 The program flow
analysis phase identifies loop bounds50 and infea-
sible paths51 of the program. Such constraints on
the program’s control flow are commonly referred
to as flow facts. Some WCET tools perform this
analysis automatically, either on the executable
binary or on the source code, whereas other tools

require users to specify these constraints manu-
ally. The microarchitectural analysis determines
safe time bounds of individual basic blocks.d The
microarchitectural analysis uses an abstract archi-
tectural model to estimate a safe upper bound for
each basic block. However, caches and pipelines—
essential for achieving good average case perform-
ance—make static timing analysis particularly
challenging. Analysis techniques based on abstract
interpretation52 can be used for analyzing both
caches53 and pipelines. The strength of these
methods highly depends on the complexity of the
underlying hardware. Finally, the global bound
analysis phase computes an upper bound of the
WCET by combining the results from the two pre-
vious phases. This computation phase is typically
solved as an integer linear programming (ILP)
problem, using the implicit path enumeration
technique.54

Although significant progress of timing analy-
sis has been achieved during the last two decades,
several challenges remain. New methods for pro-
gram flow analysis are needed to enable analysis
of large complex programs. Complex hardware,
including new multicore platforms with shared
caches, introduces new analysis challenges.

6.3 Precision timed hardware
Timing analysis can be vastly simplified if the
underlying hardware has predictable timing behav-
ior. By predictable timing we mean that the size of
the machine state is limited. The idea of precision
timed (PRET) machines, a new era of processors
with predictable timing, was first advocated by
Edwards and Lee55 in 2007.

One distinguished feature of a PRET machine
is that the instruction set architecture (ISA) is aug-
mented with timing instructions. For instance,
PTARM56 is an ARM-based processor devel-
oped at UC Berkeley. The ARM ISA is extended
with several instructions for programming with
real-time. The main purpose of extending the ISA
with timing instructions is to enable portability of
real-time systems.

Another desirable property of a real-time sys-
tem is testability. Although formal verification of
embedded systems is a very active area of research,
testing is the predominate verification technique
used by industry. However, if a system is exe-
cuted several times with the same input data and
returns different output for each execution, test-
ing becomes extremely difficult. As a consequence,
repeatability of both functional and timing

d A basic block is a sequence of instructions ending with a
branch instruction.

Figure 9: Probability distribution of execution
time.

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 399

behavior is vital for testability. A common way for
PRET machines to achieve repeatability is to use
thread-interleaved pipelines57 (to remove pipeline
hazards) and by replacing caches with scratchpad
memories.58 There exist also other predictable
processor designs, e.g., ARPRET,59 a reactive proc-
essor based on Xilinx’s MicroBlaze processor, and
JOP,60 a predictable Java processor.

6.4 Precision timed infrastructure
Many modern modeling environments for CPS,61
such as Modelica,62 Simulink,63 Ptolemy II,44 and
Modelyze,64 all include ways of precisely modeling
and controlling time. Several of these environ-
ments can also compile the functional behav-
ior of a model into C code, but few can give any
guarantees about timing correctness. In enabling
correct-by-construction of cyber-physical mod-
els, the challenge is to compile or synthesize a
model’s cyber parts so that the behavior of a
simulated model and the real system coincide.
The key challenge of this model fidelity problem is
to guarantee the correctness of timing.65

A recent research initiative, called precision timed
infrastructure,66 addresses this problem. Besides
PRET hardware, such an infrastructure should
include both an PRET intermediate language and
a PRET compiler. The purpose of an intermediate
language is to act as an abstraction layer between
the PRET hardware and the modeling language.
The key advantage of this approach is that the inter-
mediate language exposes timing constructs for
expressing real-time, but hides machine dependent
details of the platform. In particular, memory hier-
archies and hardware threads must be abstracted
away, so that the modeling environment’s code
generators do not need to consider platform
dependent details. The benefit with this approach
is twofold: Firstly, portability is improved; timing is
now part of the language semantics and is not just
an accidental consequence of implementation. Sec-
ondly, the PRET compiler—which has the inter-
mediate language as source language and an PRET
ISA as target language—can now perform timing
dependent optimizations. In particular, scratchpad
allocation schemes may be used to improve WCET
for specified timing constraints.

7 Conclusions and Future Work
In this paper we have provided an overview of
some of the more important issues and techniques
related to timing issues in designing and imple-
menting CPS. Oscillator and clock technology for
CPS is well developed but further work is needed
to reduce costs, particularly for future mobile
applications with demanding temporal accuracy

requirements. GNSS systems play an important
role in widely distributed CPS but are vulnerable
to a variety of failures and attacks. Time transfer
over networks is readily available from NTP at
millisecond accuracy and with recent protocols
such as IEEE 1588 to sub-microsecond accuracy.
However increasing the accuracy of network time
transfer will require additional work to resolve
asymmetry problems in a way that is cost effective
for use in CPS. The design and implementation of
embedded controllers for CPS that ensure correct
timing remains a difficult issue. Compact safety-
critical systems are reasonably well understood
but the design of systems with highly asynchro-
nous inputs, extensive spatial distribution, and
systems of systems remains problematic although
significant progress has been made in recent years.
Additional work on design environments that
allow better specification and verification of tim-
ing requirements is needed as well as more work in
controlling processor instruction execution times.

Acknowledgements
This work was supported in part by the iCyPhy
Research Center (Industrial Cyber-Physical Sys-
tems, supported by IBM and United Technolo-
gies), and the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley (sup-
ported by the National Science Foundation, NSF
awards #0720882 (CSREHS: PRET) and #0931843
(ActionWebs), the Naval Research Laboratory
(NRL #N0013-12-1-G015), and the following
companies: Bosch, National Instruments, and
Toyota). The first author was funded by the Swed-
ish Research Council #623-2011-955.

Received 6 July 2013.

References
 1. Timing Committee Telecommunications and Timing

Group—Range Commanders Council, “IRIG Serial time

code formats,” September, 2004. [Online]. Available:

http://www.irigb.com/pdf/wp-irig-200-04.pdf

 2. NIST, “Radio station WWV.” [Online]. Available:

http://www.nist.gov/pml/div688/grp40/

 3. H. Kopetz, Real-Time Systems: Design Principles for

Distributed Embedded Applications. Springer, 1997.

 4. J. Rushby and W. Steiner, “TTA and PALS: Formally veried

design patterns for distributed cyber-physical systems,”

in 30th IEEE/AIAA Digital Avionics Systems Conference

(DASC), Seattle, WA, 2011.

 5. ARINC, “ARINC 653 family of standards,” November,

2010. [Online]. Available: https://www.arinc.com/cf/store/

 6. As-2d2 Deterministic Ethernet And Unified Networking,

“AS6802 Time-Triggered Ethernet,” SAE, Standard

Specification, November 1, 2011.

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in400

 7. L. Atzori, A. Iera, and G. Morabito, “The internet of

things: A survey,” Computer Networks, vol. 54, no. 15,

pp. 2787–2805, 2010.

 8. M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s

intranet of things to a future internet of things: a wireless-

and mobility-related view,” Wireless Communications,

IEEE, vol. 17, no. 6, pp. 44–51, 2010.

 9. ITU, “Network synchronization and time distribution

performance,” 2013. [Online]. Available: http://www.itu.

int/en/ITU-T/studygroups/2013-2016/15/Pages/q13.aspx

10. M. Ouellette, K. Ji, S. Liu, and H. Li, “Using IEEE 1588

and boundary clocks for clock synchronization in telecom

networks,” Communications Magazine, IEEE, vol. 49, no. 2,

pp. 164–171, 2011.

11. J. Vig, “Quartz crystal resonators and oscillators for fre-

quency control and timing applications—a tutorial,”

April, 2012. [Online]. Available: http://www.ieee-uffc.org/

frequency-control/learning-vig-tut.asp

12. Rakon, “RFPO40 SMD Oven Controlled Crystal Oscil-

lator,” 2013. [Online]. Available: http://www.rakon.com/

products/families/ocxo-ocso

13. Symmetricom, “SA.45s CSAC,” 2013. [Online]. Availa-

ble: http: //www.symmetricom.com/products/frequency-

references/

14. BIPM, “Circular T,” BUREAU INTERNATIONAL DES

POIDS ET MESURES, Tech. Rep. 303, April 10 2013.

15. A. Gupta, “Mitigation of GPS vulnerability using time

transfer over microwave systems,” Telcordia—NIST—

ATIS Workshop on Synchronization in Telecommunication

Systems, 2013.

16. ——, “GPS spoofing: A brief survey of methods, effects

and counter measures,” Telcordia—NIST—ATIS Workshop

on Synchronization in Telecommunication Systems, 2012.

17. J. Merrill, “GPS vulnerability and backing up critical

infrastructure,” Telcordia—NIST—ATIS Workshop on

Synchronization in Telecommunication Systems, 2012.

18. C. Curry and G. Jolly, “GPS jamming quantifying the

threat interference of GPS anti-jam techniques with

accurate time determination,” Telcordia—NIST—ATIS

Workshop on Synchronization in Telecommunication

Systems, 2013.

19. M. Weiss, “One way GPS time transfer,” 2013. [Online].

Available: http://tf.nist.gov/time/oneway.htm

20. IEEE Instrumentation and Measurement Society, “1588:

IEEE standard for a precision clock synchronization

protocol for networked measurement and control

systems,” IEEE, Standard Specification, July 24, 2008.

21. D. Vook, B. Hamilton, A. Fernandez, J. Burch, and

V. Srikantam, “Update on high precision time synchro-

nization,” in Proceedings of the 2005 Conference on IEEE-

1588, Zurich, CH, 2005.

22. D. Mohl and M. Renz, “Improved synchronization

behavior in highly cascaded networks,” in International

IEEE Symposium on Precision Clock Synchronization for

Measurement, Control and Communication, Vienna, AT,

2007.

23. M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. David,

G. Cobas, A. Rubini, and P. Moreira, “Performance results

of the first white rabbit installation for cngs,” in Interna-

tional IEEE Symposium on Precision Clock Synchronization

for Measurement, Control and Communication, San Fran-

cisco, CA, 2012.

24. IEEE Computer Society, “IEEE standard for information

technology–local and metropolitan area networks—part

3: CSMA/CD access method and physical layer specifica-

tions amendment 7: Media access control (mac) service

interface and management parameters to support time

synchronization protocols,” IEEE, Standard Specification,

2011.

25. N.M. Freris, S.R. Graham, and P.R. Kumar, “Fundamen-

tal limits on synchronizing clocks over networks.” IEEE

Trans. Automat. Contr., vol. 56, no. 6, pp. 1352–1364, 2011.

[Online]. Available: http://dblp.uni-trier.de/db/journals/

tac/tac56.html#FrerisGK11

26. B. Liskov, “Practical uses of synchronized clocks in dis-

tributed systems,” Distributed Computing, vol. 6, no. 4,

pp. 211–219, 1993.

27. J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Fur-

man, S. Ghe-mawat, A. Gubarev, C. Heiser, P. Hochschild,

W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,

D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,

M. Szymaniak, C. Taylor, R. Wang, and D. Woodford,

“Spanner: Google’s Globally-Distributed Database,” in

10th USENIX Symposium on Operating Systems Design

and Implementation, Hollywood, CA, 2012.

28. K. Harris, “An application of IEEE 1588 to industrial auto-

mation,” in Precision Clock Synchronization for Measurement,

Control and Communication, 2008. ISPCS 2008. IEEE Inter-

national Symposium on. IEEE, 2008, pp. 71–76.

29. M. Shepard, D. Fowley, R. Jackson, and D. King,

“Implementation of IEEE Std.-1588 in a Networked I/O

Node,” in Proceedings of the 2003 Workshop on IEEE-

1588, NIST publication NISTIR 7070, Gaithersburg,

MD, 2003. [Online]. Available: http://www.nist.gov/

publication-portal. cfm

30. Bruel & Kjaer, “Features and specifications,” 2013.

[Online]. Available: http://www.bksv.com/products/

frontends/lanxi/ features-and-specifications.aspx

31. H. Mach, E. Grim, O. Holmeide, and C. Calley, “PTP

enabled network for flight test data acquisition and

recording,” in Precision Clock Synchronization for

Measurement, Control and Communication, 2007. ISPCS

2007. IEEE International Symposium on. IEEE, 2007,

pp. 110–115.

32. F. Steinhauser, C. Riesch, and M. Rudigier, “IEEE 1588

for time synchronization of devices in the electric

power industry,” in Precision Clock Synchronization for

Measurement Control and Communication (ISPCS), 2010

International IEEE Symposium on. IEEE, 2010, pp. 1–6.

33. M. Lixia, C. Muscas, and S. Sulis, “Application of IEEE

1588 to the measurement of synchrophasors in electric

power systems,” in Precision Clock Synchronization for

Temporal Issues in Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 401

Measurement, Control and Communication, 2009. ISPCS

2009. International Symposium on. IEEE, 2009, pp. 1–6.

34. M. Antonello, B. Baibussinov, P. Benetti, F. Boffelli,

E. Calligarich, N. Canci, S. Centro, A. Cesana, K. Cieslik, D.

Cline et al., “Precision measurement of the neutrino veloc-

ity with the ICARUS detector in the CNGS beam,” Journal

of High Energy Physics, vol. 2012, no. 11, pp. 1–21, 2012.

35. P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and

G. Gaderer, “White rabbit: Sub-nanosecond timing

distribution over ethernet,” in Precision Clock Synchroniza-

tion for Measurement, Control and Communication, 2009.

ISPCS 2009. International Symposium on. IEEE, 2009, pp.

1–5.

36. G. Gaderer, P. Loschmidt, E.G. Cota, J.H. Lewis,

J. Serrano, M. Cattin, P. Alvarez, P.M. Oliveira Fernandes

Moreira, T. Wlostowski, J. Dedic, C. Prados, M. Kreider,

R. Baer, S. Rauch, and T. Fleck, “The white rabbit project,”

in Int. Conf. on Accelerator and Large Experimental Physics

Control Systems, Kobe, Japan, 2009.

37. A. Benveniste and G. Berry, “The synchronous approach

to reactive and real-time systems,” Proceedings of the IEEE,

vol. 79, no. 9, pp. 1270–1282, 1991.

38. T.A. Henzinger, B. Horowitz, and C.M. Kirsch, “Giotto:

A time-triggered language for embedded program-

ming,” in EMSOFT 2001, vol. LNCS 2211. Tahoe City,

CA: Springer-Verlag, 2001, pp. 166–184.

39. A. Ghosal, T.A. Henzinger, D. Iercan, C.M. Kirsch, and

A. Sangiovanni-Vincentelli, “A hierarchical coordination

language for interacting real-time tasks,” in Sixth Annual

Conference on Embedded Software (EMSOFT). Seoul,

Korea: ACM, 2006.

40. W. Pree and J. Templ, “Modeling with the timing definition

language (TDL),” in Automotive Software Workshop San

Diego (ASWSD) on Model-Driven Development of Reliable

Automotive Services, ser. LNCS. San Diego, CA: Springer,

2006.

41. Y. Zhao, J. Liu, and E.A. Lee, “A programming model

for time-synchronized distributed real-time sys-

tems,” in 13th IEEE Real Time and Embedded Tech-

nology and Applications Symposium, 2007. RTAS

’07, April 2007, pp. 259–268. [Online]. Available:

http://chess.eecs.berkeley.edu/pubs/325.html

42. P. Derler, J. Eidson, S. Goose, E.A. Lee, and M. Zimmer,

“Using ptides and synchronized clocks to design distributed

systems with deterministic systemwide timing,” in 2013

International IEEE Symposium on Precision Clock Synchro-

nization for Measurement, Control and Communication

(to appear), 2013.

43. K.M. Chandy and J. Misra, “Distributed simulation: A case

study in design and verification of distributed programs,”

IEEE Trans. on Software Engineering, vol. 5, no. 5, pp. 440–

452, 1979.

44. J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig,

S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming

heterogeneity—the Ptolemy approach,” Proceedings of the

IEEE, vol. 91, no. 2, pp. 127–144, 2003. [Online]. Available:

http://www.ptolemy.eecs.berkeley.edu/publications/

papers/03/TamingHeterogeneity/

45. P. Derler, J. Eidson, E.A. Lee, S. Matic, and M. Zimmer,

“Model-based development of deterministic, event-driven,

real-time distributed systems,” in International Workshop

on Model-Based Design with a Focus on Extra-Functional

Properties (MBDEFP), 2011. [Online]. Available: http://

chess.eecs.berkeley.edu/pubs/895.html

46. J. Zou, S. Matic, and E. Lee, “PtidyOS: A lightweight

microkernel for Ptides real-time systems,” in Real-Time

and Embedded Technology and Applications Symposium

(RTAS). IEEE, April 2012.

47. G.C. Buttazzo, Hard real-time computing systems: pre-

dictable scheduling algorithms and applications, 3rd ed.

Springer, 2011.

48. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whal-ley, G. Bernat, C. Ferdinand, R. Heckmann,

T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,

and P. Stenström, “The Worst-Case Execution-Time Prob-

lem—Overview of Methods and Survey of Tools,” ACM

Transactions on Embedded Computing Systems, vol. 7,

pp. 36:1–36:53, May 2008.

49. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister,

and C. Ferdinand, “Memory hierarchies, pipelines, and

buses for future architectures in time-critical embedded

systems,” IEEE Transactions on Computer Aided Design,

vol. 28, no. 7, pp. 966–978, 2009.

50. J. Knoop, L. Kovcs, and J. Zwirchmayr, “Symbolic Loop

Bound Computation for WCET Analysis,” in Perspectives of

Systems Informatics, ser. LNCS, E. Clarke, I. Virbitskaite, and

A. Voronkov, Eds. Springer, 2012, vol. 7162, pp. 227–242.

51. J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper,

“Automatic derivation of loop bounds and infeasible

paths for WCET analysis using abstract execution,” in Pro-

ceedings of the 27th IEEE International Real-Time Systems

Symposium (RTSS’06). IEEE, 2006, pp. 57–66.

52. P. Cousot and R. Cousot, “Abstract interpretation: a

unified lattice model for static analysis of programs

by construction or approximation of fixpoints,” in

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium

on Principles of programming languages, ser. POPL ’77.

New York, USA: ACM Press, 1977, pp. 238–252.

53. C. Ferdinand and R. Wilhelm, “Efficient and precise cache

behavior prediction for real-time systems,” Real-Time

Systems, vol. 17, no. 2, pp. 131–181, 1999.

54. Y.-T. Li and S. Malik, “Performance analysis of embedded

software using implicit path enumeration,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 16, no. 12, pp. 1477–1487, 1997.

55. S.A. Edwards and E.A. Lee, “The case for the preci-

sion timed (pret) machine,” in Proceedings of the 44th

annual conference on Design automation, June 2007,

pp. 264–265.

56. I. Liu, J. Reineke, D. Broman, M. Zimmer, and E.A.

Lee, “A PRET Microarchitecture Implementation with

Repeatable Timing and Competitive Performance,” in

David Broman, Patricia Derler and John C. Eidson

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in402

David Broman is currently a visiting scholar
at UC Berkeley, USA, working in the Ptolemy
group at the Electrical Engineering & Computer
Science department. He is an assistant
professor at Linköping University in Sweden,

where he also received his Ph.D. in computer science in
2010. David’s research interests include programming and
modeling language theory, compiler technology, software
engineering, and mathematical modeling and simulation of
cyber-physical systems. He has worked five years within the
software security industry, co-founded the EOOLT work-
shop series, and is member of the Modelica Association and
the Modelica language design group.

John C. Eidson received his BS and MS degrees
from Michigan State University and his Ph.D.
Degree from Stanford University all in electrical
engineering. He retired in 2009 after a career
in the central research laboratories of Varian

Associates, Hewlett-Packard and most recently, Agilent
Technologies. He is a co-chair of the IEEE 1588 standards
committee. He is a life fellow of the IEEE, the recipient of
the 2007 Technical Award of the IEEE I&M Society, and a
co-recipient of the 2007 Agilent Laboratories Barney Oliver
Award for Innovation. He is currently a visiting scholar in
the PTIDES group at the University of California at Berkeley
and is interested in the application of synchronized clocks to
cyber-physical systems.

Patricia Derler received her Ph.D. in Computer
Science from the University of Salzburg, Austria
and she did her undergraduate studies at the
University of Hagenberg, Austria. After she
graduated, she started a postdoctoral position

at the University of California, Berkeley. She currently holds
this position and is a member of the PTIDES group where
she does research on the design and simulation of cyber-
physical systems, deterministic models of computation and
modeling of time in distributed systems.

Proceedings of the 30th IEEE International Conference on

Computer Design (ICCD 2012). IEEE, 2012.

57. E. Lee and D. Messerschmitt, “Pipeline interleaved

programmable dsp’s: Synchronous data flow program-

ming,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 35, no. 9, pp. 1334–1345, 1987.

58. R. Banakar, S. Steinke, B. sik Lee, M. Balakrishnan, and

P. Marwedel, “Scratchpad memory: A design alternative

for cache on-chip memory in embedded systems,” in In

Tenth International Symposium on Hardware/Software

Codesign (CODES), Estes Park. ACM, 2002, pp. 73–78.

59. S. Andalam, P. Roop, and A. Girault, “Predictable

multithreading of embedded applications using PRET-C,”

in Proceedings of the 8th IEEE/ACM International

Conference on Formal Methods and Models for Codesign

(MEMOCODE). IEEE, 2010, pp. 159–168.

60. M. Schoeberl, “A Java processor architecture for embedded

real-time systems,” Journal of Systems Architecture, vol. 54,

no. 1-2, pp. 265–286, 2008.

61. D. Broman, E.A. Lee, S. Tripakis, and M. Törngren, “View-

points, formalisms, languages, and tools for cyber-physical

systems,” in Proceedings of the 6th International Workshop

on Multi-Paradigm Modeling, 2012.

62. Modelica—A Unified Object-Oriented Language for Physi-

cal Systems Modeling—Language Specification, 2012,

http://www.modelica.org.

63. MathWorks, “The Mathworks—Simulink—Simulation

and Model-Based Design,” http://www.mathworks.com/

products/simulink/ [Last accessed: May 8, 2013].

64. D. Broman and J.G. Siek, “Modelyze: a gradually typed

host language for embedding equation-based modeling

languages,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2012-173, June 2012.

65. D. Broman, “High-confidence cyber-physical co-design,” in

Proceedings of the Work-in-Progress (WiP) Session of the 33rd

IEEE Real-Time Systems Symposium (RTSS 2012), 2012, p.

12.

66. D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A.

Shrivastava, S.A. Edwards, and E.A. Lee, “Precision

Timed Infrastructure: Design Challenges,” in Proceed-

ings of the Electronic System Level Synthesis Conference.

IEEE, 2013.

